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1. Introduction

In this paper we show that the following problem, the k disjoint paths problem for
directed planar graphs, is solvable in polynomial time, for any fixed k:

(1) given: a directed planar graph D = (V, A) and k pairs (r1,s1), ..., (k, %) of
vertices of D;

find: k pairwise vertex-disjoint directed paths P;, ..., P, in D, where P; runs
fromr; tos; (i=1,...,k).

The problem is NP-complete if we do not fix k (even in the undirected case; Lynch
[2]). Moreover, it is NP-complete for k = 2 if we delete the planarity condition (Fortune,
Hopcroft, and Wyllie [1]). This is in contrast to the undirected case (for those believing
NP#P), where Robertson and Seymour [4] showed that, for any fixed &, the & disjoint paths
problem is polynomial-time solvable for any graph (not necessarily planar).

In this paper we do not aim at obtaining the best possible running time bound, as we
presume that there are much faster (but possibly more complicated) methods for (1) than
the one we describe in this paper. In fact, recently Reed, Robertson, Schrijver, and Seymour
[3] showed that for undirected planar graphs the k disjoint paths problem can be solved
in linear time, for any fixed k. This algorithm makes use of methods from Robertson and
Seymour’s theory of graph minors. A similar algorithm for directed planar graphs might
exist, but probably would require extending parts of graph minors theory to the directed
case.

Our method is based on cohomology over free (nonabelian) groups. For the k disjoint
paths problem we use free groups with & generators. It extends methods given in [5]
for undirected graphs on surfaces based on homotopy. Cohomology is in a sense dual to
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id can be defined in any directed graph, also if it is not embedded on a surface.
aomology to an extension of the planar graph dual of D—just using homology
:ems not powerful enough.

rk that in our approach free groups and (co)homology are used mainly as a
» formulate certain ideas smoothly; they give us a convenient tool of recording
'es over the plane. No deep group theory or topology is used. We could avoid
wnd cohomology by adopting a more complex notation and terminology, that
licitly would mimic free groups and cohomology. The present approach also
s application of the algorithm where the embedding of the graph in the plane
sinatorially, viz. by a list of the cycles that bound the faces of the graph.

ups

jroup Gy, generated by the generators g1, gz, - . - , gk consists of all words bybs .. .b;
and bl) . -’bt € {ghg]__li cees Gk 9;1} such that bibi-’rl # gjgj_l and bibi+1 #
:1,...t—1and j =1,...,k The product z - y of two such words is obtained
icatenation zy by deleting iteratively all occurrences of any gjg;1 and g; 1g_.,-.
otation generally not # - y = zy.) This defines a group, with unit element 1
empty word @). The size |z| of a word z is the number of symbols occurring in
multiplicities. We call g1, g7 L gk ' 1 the symbols.

' is called a segment of word w if w = zyz for certain words , z. A subset I of
is called hereditary if with each word y € T, each segment of y belongs to I.
r some word z, y is called a beginning segment of w, denoted by y < w. This
gives a lattice if we extend G with an element oo at infinity. We denote the
n by A and V.

t for any symbol b and words z, z one has:

fe<b-zandz<b ! -zthenzl.b-z=lorz=2z=1.

let y:=21-b-2. Asz2<b-z,b-z=2y;as z< b 1.2, bt -2 =2y} ie,
1 Hfy#1lthenzyzl=2-y-27! = b, implying 2 = z = 1 (as b is a symbol).

omology feasibility problem for free groups

(V, A) be a weakly connected directed graph, let » € V, and let (G,:) be a
functions ¢,1 : A — G are called r-cohomologous if there exists a function
such that

(@) fr)=1
(ii) 9(a) = f(u)™" - ¢(a) - f(w) for each arc a = (u,w).

hecks that this gives an equivalence relation.
the following cohomology feasibility problem for free groups:



(4) given: a weakly connected directed graph D = (V, A), a vertex r, a function
¢ : A — Gy, and for each a € A a nonempty hereditary subset I'(a)
of Gy;

find: a function ¢ : A — Gy such that % is r-cohomologous to ¢ and such
that ¥(a) € I'(a) for each arc a.

We give a polynomial-time algorithm for this problem. The running time of the algorithm
is bounded by a polynomial in |A| + o + k, where ¢ is the maximum size of the words #(a)
and the words in the I'(a). (In fact we can drop k and assume that Gy is the free group
generated by the generators occurring in the ¢(a) and the words in the I'(a).)

Note that, by the definition of r-cohomologous, equivalent to finding a 1 as in (4), is
finding a function f : V — G}, satisfying:

(5) @ fn=1
(ii) f(u)™* - ¢(a)- f(w) € I'(a) for each arc a = (u,w).

We call such a function f feasible.
In solving the cohomology feasibility problem for free groups we may assume

(6) |¢(a)| < 1 for each arc a; with each arc a = (u,w) also a=! = (w,u) is an
arc, with ¢(a™!) = ¢(a)~* and I'(a~!) = T'(a)™ 1.

Here I'(a)~! := {z~!|z € T(a)}. The first condition can be attained by replacing any arc
a = (u,w) with ¢(a) = b;...b;,t > 2byau—wpatha;...a with ¢(a;) :=b; (i =1,...,%)
and I'(a;) := I'(a) and I'(a;) := {1} (s = 2,.. ., t).

4. Pre-feasible functions

Let input D = (V, A),r,4,T for the cohomology feasibility problem for free groups (4)
be given, assuming (6). We call a function f : V — G}, pre-feasible if f(r) = 1 and for
each arc a = (u,w) with f(u)™! - ¢(a) - f(w) & I'(a) one has f(u) = f(w) = 1.

Pre-feasibility behaves nicely with respect to the partial order < on the set G’Z of all
functions f : V' — G} induced by the partial order < on Gy, as: f < g < f(v) < g(v) for
each v € V. It is easy to sée that G} forms a lattice if we add an element oo at infinity.
Let A and V denote the meet and join. Then:

Proposition 1. If f; and f, are pre-feasible then so is f := fy A fo.

Proof. Clearly f(r) = 1. Suppose y := f(u)~-¢(a)- f(w) ¢ T'(a) while not f(u) = f(w) =
L. By (2) and by symmetry we may assume f(u) £ ¢(a)- f(w). Since Fw) = fi(w) A fo(w),
there is an ¢ € {1,2} such that y < f(u)™! - ¢(a) - fi(w). As f(u) £ ¢(a)- f(w), the first
symbols of f(u)~* and y are equal, and hence f;(u)™! - ¢(a) - fi(w) ¢ I'(a), as it contains y
as segment. So f;(u) = fi(w) = 1 and therefore f(u) = f(w) = 1. 1

So for any function f : V — G}, there exists a smallest pre-feasible function f > f,
provided there exists at least one pre-feasible function ¢ > f. If no such g exists we set
f := co. We observe:



a 2. Let f be finite. Then:

(i) f(r) =1 and [f(v)| < 20|V| for each vertez v;

(i) for each arc a = (u,w): if f(u)™! - ¢(a) - f(w) & T(a) then f(u) <
¢(a) - f(w) or f(w) < $(a~?) - f(u).

tly, f(r) < f(r} = 1. Moreover, by induction on the minimum number ¢ of
» — v path one shows |f(v)| < 20t (if @ = (u, v) is the last arc in the path then
) - f(v) belongs to I'(a} or is equal to ¢(a), and hence has size at most o; so
)| +1¢(a)l + o < 20(t - 1) + 20 = 20t). So |f(v)| < |f(v)| < 20]V].

i), suppose f(u) £ $(a) - f(w) and f(w) £ $(a=*)- f(u). The first implies
t symbol of f(u)~! - ¢{a) - f(w) is equal to the first symbol of f(u)~!. The
es that the last symbol of f(u)~! . ¢(a) - f(w) is equal to the last symbol of
f < F, it follows that f(u)™' - ¢(a) - f(w) is a segment of f(u)™! - ¢(a) - f(w).
@) Fw) ¢ T(a) So F) = F(w) = 1, and hence f(0) = f(w) =1, 2
L

utine finding f

; D = (V, A),r,¢,T for the cohomology feasibility problem for free groups (4)
\in assuming (6). We describe a polynomial-time subroutine that outputs f for
'V — Gk.

e-feasible output f:= f. If f violates (7) output f := co. Otherwise choose an

v) satisfying f(u)~! - ¢(a) - f(w) & T(a) and f(w) £ ¢(a~1)- f(u) (as f is not
and satisfies (7), such an arc exists by (2)). Perform the following

frite ¢(a) - f(w) = 2y, with y € I'(a) and |y| as large as possible, and reset

n 3. In the iteration, resetting f increases |F(u)| and does not change f.

ider the iteration. Denote by f' the reset f. As (7)(ii) holds, f(u) < ¢(a)- f(w).
-¢(a) - f(w) € I'(a), f(u) should be a proper segment of z. So |f'(u)| > |f(u)].
" = f, we must show f' < f, that is, f'(u) < f(u) if f is finite. Since
1) . f(u), the last symbol of f(u)! - ¢(a) - f(w) is equal to the last symbol of
fu)™ - ¢(a)- f(w) < f(u)™" - ¢(a) - f(w). Since f(u)™* - ¢(a)- f(w) belongs
dlows that f'(u) =z < f(u). |

each iteration | f(u)| increases for some vertex u, after 20|V|? iterations (7) is

us the subroutine is polynomial-time.

um for the cohomology feasibility problem for free groups

t D = (V, A),r,¢,I for the cohomology feasibility problem for free groups (4)
ain assuming (6). We find a feasible function f as follows.



For every a = (u,w) € Alet f, be the function defined by: f,(u):= - ¢(a) and fo(v) :=0
for each v # u. Let E be the set of pairs {a,a’} from A for which f, V f,,: is finite and
pre-feasible. Let E' be the set of pairs {a,a™'} with a € A and ¢(a) ¢ I'(a).

We search for a subset X of A such that each pair in X belongs to E and such that X
intersects each pair in E’. This is a special case of the 2-satisfiability problem, and hence
can be solved in polynomial time.

Proposition 4. If X ezists then the function f := V fa is feasible. If X does not ezist

a€X
then there is no feasible function.

Proof. Since f,V f, is finite and pre-feasible for each two a, a' in X, f is finite and f(r) =1.
Moreover, suppose f(u)"1 - ¢(a) - f(w) ¢ T(a) for some arc @ = (u,w). Let f(u) = fu(u)
and f(w) = fon(w) for a’,a" € X. As fui V fou is pre-feasible, fy(u) = fou(w) = 1. So

¢(a) ¢ I'(a), and hence a or a™! belongs to X. By symmetry we may assume a € X. Then
#(a) = fa(u) < fa(u) < far(u) = 1, a contradiction.

Assume conversely that there exists a feasible function f. Let X be the set of arcs
a = (u,w) with the property that ¢(a) < f(u). Then X intersects each pair in E’. For
suppose that for some arc a = (u,w) with ¢(a) ¢ I'(a), one has a ¢ X and o' ¢ X, that
is, ¢(a) £ f(u) and ¢(a™') £ f(w). Hence f(u)'- ¢(a)- f(w) contains ¢(a) as segment,
contradicting f(u)~! - ¢(a) - f(w) € I'(a).

Moreover, each pair in X belongs to E. For let {a’,a"} be a pair in X. We show that
{d',d"} € E, that is, f' := f, V fon is pre-feasible. As f,; < f and fon < f, ' is finite
and f'(r) = 1. Consider an arc a = (u,w) with y := f'(u)"! - ¢(a) - f'(w) ¢ I'(a). We may
assume f'(u) = fu(u) and f'(w) = fun(w) (since f, and f,» are pre-feasible). To show
£(u) = F(w) = 1, by (2) we may assume f(w) £ ¢(a~?) - F'(u).

Suppose f'(u) £ ¢(a) - f/(w). Then the first and the last symbol of y are equal to the
first symbol of f/(u)~! and the last symbol of f/(w), respectively. Since f' < f this implies
that y is a segment of f(u)~! - ¢(a)- f(w) € T(a). This contradicts the hereditarity of I'(a)
as y € I'(a).

So f(u) < #(a) - f'(w). As fun(u) < f(u) and y ¢ T(a) it follows that fom(u)t -
$(a) - fan(w) € T(a). As fou is pre-feasible, fon(u) = fon(w) = 1; so f(w) = 1. Hence
f'(v) < ¢(a) and therefore, since y ¢ T'(a), f'(u) = 1. |

Thus we have:

Theorem 1. The cohomology feasibility problem for free groups is solvable in time bounded
by a polynomial in |A|+ o + k. |

7. Directed planar graphs and homologous functions

Let D = (V, A) be a directed planar graph and let (G, -) be a group. Let R be one of the
faces of D. We call two functions ¢,9 : A — G R-homologous if there exists a function
f:F — G such that



@ f(BR)=1

(i) f(F)'- ¢(a)- f(F') = 9¥(a) for each arc a, where F and F’ are the
faces at the left-hand side and right-hand side of a, respectively.

ation to cohomologous is direct by duality. The dual graph D* = (F, A*) of D
ex set the collection F of faces of D, while for any arc a of D there is an arc a*
the face of D at the left-hand side of a to the face at the right-hand side. Define
ction ¢ on A the function ¢* on A* by ¢*(a*) := ¢(a) for each a € A. Then ¢
R-homologous (in D) if and only if ¢* and ¢* are R-cohomologous (in D*).

rating homology types

ut D = (V,A),r,81,...,7k, 8k € V for the k disjoint paths problem for di-
ar graphs (1) be given. We may assume that D is weakly connected and that
k> S are distinct and each of them is incident with exactly one arc. For any
= (P1,...,P) of (1) let ¢yr : A — Gy, be defined by: ¢p(a) := g; if path P;
(#=1,...,k), and ¢n(a) := 1 if a is not traversed by any of the P;. Let R be
\ded face. Now:

on 5. For each fized k, we can find in polynomial time ¢4,...,0n : A — G
or each solution II of (1), ¢n is R-homologous to at least one of ¢1,...,Pn.

: may assume that each vertex has degree at most 3. (We can ‘decontract’
et A' be an inclusion-wise minimal set of arcs that contains (undirected) paths
\y pair of points among 7y,81,...,7, 8. So A’ forms a tree, with exactly 2k
legree 1 and with each vertex having degree at most 3. Hence the arcs of D’ fall
— 3 series classes (paths).
for each solution II of (1) there is a unique function g that is R-homologous
that ¢p(a) = 1 for each a ¢ A’. Now 951 can be determined from the numbers
a € A'. Indeed, replace any arc a € A’ by |¢r(a)| parallel arcs, resulting in
). Then there is a unique partition of A" into pairwise noncrossing and nonself-
ths Q1,...,Qk such that each @; is an r; — s; path not traversing two arcs in
arallel class consecutively, except at any r; or s; where @; turns round the start
);. (The uniqueness of the partition follows from the fact that each vertex has
10st 3. At any vertex v the arcs (except for one if v € {ry, s1, ..., 7, 8¢ }) incident
be paired up in at most one way so as to possibly form paths as required.) It is
1 this partition from the numbers |¢(a)|. We obtain ¥ by ‘assigning’ symbol

b(a)| < |A] for each a € A’ and since |¢¥n(a)| = |¢n(a’)| if a and o are in the
class, there are at most (|A| + 1)**~2 choices for the |¢n(a)|. So for fixed k this
ynomial-time procedure. I

sjoint paths problem

2. For each fized k, the k disjoint paths problem for directed planar graphs (1)
in polynomiel time.



Proof. By Proposition 5 we can find in polynomial time (fixing k) a list of functions
$1,...,8N : A — G such that for each solution II of (1), ¢y is R-homologous to at least
one of the ¢;.

Consider the dual graph D* = (F, A*) of D. We construct the ‘extended’ dual graph
D* = (F, A*) by adding in each face of D* all chords. (So D* need not be planar.) More
precisely, for any F, F' and any (undirected) F— F' path 7 on the boundary of any face of D*,
extend the graph with an arc a, from F to F'. For any ¢ : A — G define ¢* : AT — G
by ¢t(a*) := ¢(a) and ¢t(as) := ¢(a1)** - ... ¢(as)* for any path = = (a?)=t...(a})"
with 1,...,6; € {+1,-1}. (Here (a})~" means that = traverses a} in backward direction.)
Moreover, let T'(a*) := {1,41,...,gx} and I'(a,) := {1,91,97 %, .. .,gk,g;I}.

By Theorem 1 we can find, for each j = 1,..., N in polynomial time a function ¥ that
is R-cohomologous to ¢}' in D*, with ¢(b) € I'(}) for each arc b of D, provided that such
a 9 exists. If we find one, for i = 1,...,k let P; be any directed r; — s; path traversing only
arcs a satisfying ¥(a*) = g;. If such paths exist, they form a solution to the disjoint paths
problem. (They are automatically disjoint, as if a and b are arcs of D both incident with a
vertex v and ¥(a*) = ¢! and p(b*) = gjil then i = j, since |¢(a,)| < 1 for each a,.)

If for none of j = 1,..., N we find such paths we may conclude that problem (1) has no
solution. For suppose II := (P,..., P) is a solution. Then there exists a j € {1,..., N}
such that ¢y and ¢; are R-homologous. However, for this j there exists a 1 as above,
viz. ¥ := (¢u)*. Moreover, for any ¢ R-cohomologous to (@y)* there exists for each
¢ =1,...,k a directed r; — s; path P/ traversing only arcs a satisfying ¢'(a*) = g;. This
contradicts our assumption. |

Quite directly one can extend the method to the following problem:

(9) given: a directed planar graph D = (V, A), k pairs (r(,81),...,(Pk, 8k) of
vertices of D, and subsets A;,..., A of 4;
find: k pairwise vertex-disjoint directed paths P,..., P, in D, where P; runs
from r; to s; and uses only arcs in A; (i =1,...,k).

The polynomial-time solvability of this problem (for fixed k) follows by restricting in the
proof of Theorem 2 each I'(a*) to those g; for which A; contains a.
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