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Abstract. Let s,t be vertices of a graph G, and let each edge e have a “capacity” c(e) € R,
We prove a conjecture of Cook and Sebd, that for every k € R, the following two statements ar

equivalent:

i) there is a “fractional packing” of value k of the odd s — ¢ paths, so that no edge is used mor
g

than its capacity,

(ii) for every subgraph H of G with s, € V(H) in which there is no odd s — ¢ path,

D~ D (c(e) :e € E(G) — E(H), and e is incident with v) > 2.
vEV(H)
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1. INTRODUCTION

All graphs in this paper are finite and undirected, and may have loops or multiple edges. The vertex- and edg;.a-
sets of a graph G are denoted by V(G) and E(G). A path in a graph G is a non-null connected subgraph P with
|EP)| =|V(P)| -1 and with no vertex of valency > 3. Thus, paths have no *‘repeated’’ vertices. The ends of a
path are defined in the natural way, and a path with ends s, ¢ is called an s — ¢ path. A path P is odd or even
depending whether | E(P)| is odd or even. The sets of non-negative real numbers, rationals and integers are
denoted by R,,Q, and Z,. If H is a subgraph of a graph G and c € RE©® we denote Y(c(e): e € E(H)) by

c(H).

Let s, t be distinct vertices of a graph G, and let ¢ € QF©), How can we determine the minimum of ¢ (P)
taken over all odd s —¢ paths P? J. Edmonds (see [2]) gave a polynomial algorithm for this, by reducing the
problem to a minimum weight perfect matching problem, as follows. Take the disjoint union of two copies Gy, G,
of G, and for each v € V(G) and e € E(G) let v;, ¢; denote the corresponding vertex or edge of G; (i =1, 2). For
each v € V(G) add a new edge e, say with ends v,, v,, and delete s, and ¢,. Let H be the graph we obtain. For

eachf € E(H), let

cle)if ee E(G)andf =e;ore,
4f)=1 0 ifveV(G)andf =e, .
Then it is easy to see that the desired minimum of ¢ (P) over all odd s — ¢ paths of G equals the minimum of d(F)

taken over all perfect matchings F of H, and the latter is a well-solved problem from matching theory.

However, there remain some problems about odd s —¢ paths which resist solution by this approach. In
particular, let IT ¢ RE©) pe the polyhedron defined by ¢ e IT if and only if ¢ € RE and ¢ (P) 2 1 for every odd
s—t path P of G. Edmonds® method gives us a polynomial time algorithm to test if an arbitrary ¢ € QE©@

belongs to I, but it tells us little about the vertices of I1, as was observed by M. Grétschel [1].

Not all the vertices of IT need be integral. For instance, let G have six vertices s,7,u,v,w,x and edges

11

25 0) is a vertex of I, with the obvious notation. But we

SU, v tu, tw, tx,uv, vw, wx; then (0, %,o,o,o,

shall show that in general, every vertex of IT is (0, -;—, 1)-valued, thereby proving an unpublished conjecture of W.

Cook and A. Sebd.



Lets,r € V(G) be distinct. A subgraph H of G is odd-free if s,t € V(H) and there isno odd s — ¢ path in H .
A function h € ZF@ is called a slice if there is an odd-free subgraph H such that for each e € E(G) with ends

u,v,

2ifu,veV(H)ande ¢ E(H)
h(e)=31 ifexactlyoneof u,v belongstoV(H)
0 otherwise .

In this situation 4 is called the slice defined by H. The following is our main result.

(L.Y) Lets,t e V(G) be distinct, let k € Z,, and let ¢ € ZE®, such that c(P) is even for every circuit or s — t
path P. Then the following are equivalent:

(i) c(P) 22k for every odd s —t path P of G

(ii) there are k slices h ..., by suchthat hy +..+ h Sc.

If h is the slice determined by an odd-free subgraph H, and P is an odd s — ¢ path, then since P is not a
subgraph of H and s, t € V(H), there are at least two vertices of P in V() incident with edges of P not in E (H).
Consequently, h(P) 22, and so that (ii) implies (i) in (1.1) is obvious. We prove the converse implication in the
next section.

From (1.1), it follows (by scaling) that an arbitrary ¢ € QF‘®) dominates a convex combination of slices if and

only if c(P)22 for every odd s ~¢ path. In particular, every vertex of 2IT (where II is as defined earlier)

dominates a convex combination of slices. Since each slice belongs to 211, it follows that every vertex of 211 is a

slice, and so every vertex of IT is (0, é—, 1)-valued.
In section 3 we discuss the *‘blocking’” problem, that of packing odd s — ¢ paths.

2. THE MAIN PROOF

The goal of this section is to prove that (i) implies (ii) in (1.1). The method of proof is, given ¢ and k 21
satisfying (1.1)(i), we shall construct a slice h so that ¢ 2 h and so that ¢ — h, k — 1 still satisfy (1.1)(i); then, by
induction on k, ¢ — A dominates the sum of k — 1 slices, and so ¢ dominates the sum of k slices, as required. First,

we need the following. If X ¢ E(G ), a subgraph P of G is X -odd if | E(P) n X | is odd, and is X -even otherwise.



If G,H are graphs we write H ¢ G to denote that H is a subgraph of G; and if H,, H, are subgraphs of G, the

subgraphs Hy U Hq, Hy N H, have the natural definition.

@.1) Lets,t € V(G) be distinct, let X cE(G), let c € RE©, and let P, Q be X-even s — t paths of G. If P U Q
has an X-odd circuit then there is an X-odd s— t pathR < P u Q such thatc(R)S—;—(c(P)+c(Q)).

Proof. By adding paralle]l edges to G and X we may assume that E(P N Q)=@. We define anarcof P tobe a
subpath of P with distinct ends both in V(Q), and with no internal vertex in V(Q). Thus each edge of P belongs to

a unique arc. For each arc A of P its fundamental circuit is the unique circuitin A w Q. We say that A is a special

arc if its fundamental circuit is X -odd. We define the arcs and special arcs of @ similarly.
(1) For each X-odd circuit Cof P U Q, C N Q includes a special arc of Q.

For let the arcs of Q included in C N Q be B, ..., B,, and let the fundamental circuit of B; be C; (1<i <n).
Then the modulo 2 sum of E (C), E(C) ..., E (C,) is a subset of E (P) with an even number of edges incident with
every vertex, and hence is empty. Since | E(C) nX| is odd it follows that | E(C;) N X| is odd for some i, and
hence B; is special, as required.

For each arc A of P, define d(A)=c(A) + -;— ¢(Q), and for each arc A of 0, define d(4)=c(A)+ —;— c(P).

Now there is an X -odd circuit in P U @ by hypothesis, and so by (1) there is a special arc. Let A be a special arc of
either P or 0, chosen with d(A) minimal. From the symmetry we may assume that A ¢ P. Let R be the s —¢
path different from Q in Q U A, and let C be the fundamental circuit of A. Since C is X -odd and Q is X -even it

follows that R is X -odd, and we claim it satisfies the theorem.
For by (1), there is a special arc B of Q withB ¢ C nQ. ThenE(B) NnE(R) =, and so
cRYSc(@Q)-c(B)+c(A).

But from the choice of A, d(A) <d(B), that is

c(A)+ —;- c(@)<c(B)+ % c(P).

It follows that c (R) < —;— (c(P)+c(Q)). asrequired. W



(2.1) has the following corollary.

22) Lets,t € V(G) be distinct, let c € RE?), and let P, Q be s — t paths. Let L be a path of G with ends u, v,
such that V(L AP)={u} and V(L U Q)= (v). Let e, f be edges of the subpaths of P between u and s, t

respectively. Then there is an s ~ t path R ¢P U Q UL such that exactly one of e, f belongs to R, and

c(R)S—;-(c(P)+c(Q))+ clL).

Proof. Let G’ be obtained from P  Q U L by contracting all -edges of L, thereby identifying the vertices of L
into one new vertex w say. Now u #s,¢ and V(L nP)={u}, so 5,1 ¢ V(L). Since only one vertex of L
belongs to V(P), there is an s~¢ path P’ of G’ with E(P)=E(P). Define Q’ similarly, and let
X ={e.f}CE(G"). Now P’ U O’ has an X -odd circuit, since the closed walk formed by following P’ from s to
w and then O’ from w to s has exactly one edge in X . Moreover, P’ and O are both X -even s — ¢ paths in G’. By

(2.1) applied to G’, P*,Q’, X ,there isan X-odd s — ¢ path R c P’ U Q* with
c(R')s%(c(r')+c<g'»=%(c(r)+c@».

Since R’ is X-odd, exactly one of e,f belong to E(R). Let R be the s—¢ path of G with

ERYCER)CER)VE(). Then
cRYScRNY+c(L)S % CP)+c@)+cl),

as required. W

Throughout the remainder of this section, s and ¢ are distinct vertices of a graph G, ¢ € ZE® is such that ¢ (P)
is even for every circuit or s — ¢ path P, and k € Z, is such that c (P) = 2k for every odd s — ¢ path P. We define
J to be the subgraph of G formed by s, ¢ and the union of all s —¢ paths P with ¢ (P) < 2k. Thus, J is connected

unless ¢ (P) 2 2k for every s — ¢ path.
(2.3) Everys-—tpathofJ is even.

Proof. We may assume that J is connected. Define A (respectively B) to be the set of all v € V(J) such that there
isan s —¢ path P with ¢ (P) <2k and v € V(P), where the subpath of P between s and v is odd (respectively,

even). Since J is connected it follows that A U B =V (J). Moreover, for every edge e of J with ends u, v say, e



belongs to some s —~ ¢ path P with ¢ (P) < 2k, and so one of u,v belongs to A and the other to B. We claim that
A N B =@. For suppose not; then there are s — ¢ paths P, Q with ¢ (P), c(Q) < 2k, such that P U Q has an odd

closed walk and hence an odd circuit. Then P, Q are even, since ¢ (R) 22k for every odd s — ¢ path R. By (2.1)
(with X = E(G)) there isan odd s — ¢ path R ¢ P U Q such that c(R)S—;-(c(P)+c(Q))<2k,acomradiction.

ThusA N B =@. It follows that (4 , B) is a 2-colouring of J, and so J is bipartite. SinceJ is connected there is an
s —t path P with ¢ (P) < 2k, and hence P iseven. ButsinceJ is bipartite, all s — ¢ paths inJ have the same parity
as P, and the resuit follows. W

(24) Ifk 21 andL is a path of G with distinct ends, both in V(J), and with no edge or internal vertex in J, then

c(L)22.

Proof. Let L have ends u,v. If {u,v}=(s,t} thenL isans—¢ pathand L ¢ J, and so c(L)22k 22 as
required. We may assume then thatu # s, ¢. Consequently V() # {s,¢) and so J is connected. LetP beans —¢
path with 4 € V(P) and with c(P) < 2. Since J is connected, there is also an s — ¢ path @ with v € V(Q) and
with ¢(Q) < 2k. Since c(P), c(Q) are even it follows that ¢(P), c(Q) <2k — 2. Suppose first that u € V(Q).
Let O be the s—¢ path in Q UL different from Q. Since Q'¢ J it follows that c(Q)=2k. But
c@)<c(@)+c(L)and c(Q) <2k ~2, and s0 c (L) 22 as required. We may assume then that u ¢ V(Q), and
similarly thatv ¢ V(P).

Let e, f be the edges of P incident with u. By (2.2) there isan s —¢ path R ¢ P U Q UL such that exactly

one of e,f belongs to R, and c(R) < -;— (cP)+c({@))+c(L). Since exactly one of e,f belong to R and

u ¢ V(Q), it follows that u has valency 1 in R nJ, and since u #s5,¢ we deduce that R ¢ J. Consequently

c(R)22. Sincec(P),c{Q) <2k -2 we have
2% Sc(R)S-;— CP)+c@)+cL) 2% -2+ ¢(L)

andsoc(L) 22 asrequired. W
Let G’ be the subgraph of G with V(G )= V(G) and

E(G)=E(J)ule € E(G):c(E)=0}.



Let H be the union of the (one or two) components of G’ that intersect {s,¢}. Then J ¢ H, and for every

ve V(H)thereexistu € V(J)andau — v path L such thatc(e)=0foralle e EL)and V(L NJ)={u}.
(2.5) Ifk 21,H is odd-free.

Proof. Suppose that P c H is an odd s — ¢ path. Since P ¢ J by (2.3), there is a subpath L of P with distinct
ends both in V(J) and with no edge or internal veriex in J; and consequently c(e)=0 for all e € E(L). This

contradicts (2.4), and so there is no such P, as required. H
Let h be the slice defined by H. Letc’=c - h.
(2.6) Ifk 21then c’(e) 20 for every edge e of G.

Proof. Since c(e) 20 we may assume that h(e) 2 1. Hence e ¢ E(H), and at least one end of e belongs to V(H).
From the definition of H, ¢ (¢) > 0, and so we may assume that 4 (e) = 2, and both ends u, v of e belong to V(H).
Let P, Q be minimal paths of H from V(J) to u, v respectively. Then c(f)=0 for e&ery edge fof PUQ. If
V(P nQ)=0,let L be the path formed by P, Q and e. By (2.4),c(L)22,and so c(e) 22, and hence c'(e) 20
as required. On the other hand, if V(P N Q)+ @ there is a circuit C of G with e € E(C), such that ¢ (f) =0 for
every edge f #¢e of C. Since ¢(C) is even by hypothesis it follows that ¢ (e) is even, and so c(e) 2 2; and hence

again c’(e) 20, as required. W
Q.7 Ifk 21thenc’(P) =2k —2 for every s—tpath P withP ¢ H .

Proof. If possible, choose an s —f path P with ¢’(P) <2k —2and P ¢ H, with P U H minimal. Since P & H it
follows that P N H has at least two components, one containing s and the other ¢. If it has exactly two components
then A(P)=2 from the definition of h, and so ¢’P)=c(P)—-2,and c(P)<2k; yet P J since P¢ H, a
contradiction. Consequently, P n H has at least three components. Let D be one of them with s,t ¢ V(D). LetL
be a minimal path of H between V(D) and V({J) (thus, if V(D nJ )# @ then E(L)=2). Let L have ends

ueVD)andve V(). ThenV(L nD)={u}andV({L NnJ)=(v},andc(e)=0foralle € E(L).

Suppose that V(L NP ) # {u}, and let L’ be a minimal subpath of L between u and V(P) -V (D), with ends

u,w say. Let P’ be the s — ¢ pathin P u L’ different from P. Then

c'PYSc'PY+c'LN=c"P)<2%-2.




Moreover, since P N H has at least three components and L’ meets only two of them, it follows that P’ A H has at
least two components, and so P’¢ H. Butu,w are in different components of P n H, and so the subpath of P
between them is not included in H. Since no edge of this subpath belongs to P it follows that P’ U H is a proper

subgraph of P U H , contrary to the choice of P.

We deduce that V(L nP) = (u]. Sinces,t ¢ V(D), there are edges ¢, f of the subpaths of P between u and
_ 8t respectively, such that e,f ¢ E(H). Let Q be an s —¢ path with v € V(Q) and c(Q) <2k - 2. By (2.2)
applied to P, Q,L,c’, there isan s —¢ path R ¢ P U Q UL such that exactly one of e, f (say ¢) belongs to R,

and
c’R) < -;— €' (P)+c"@Q)) +c'L).

Now c’(P) <2k ~2,¢c(Q)=c(Q)<2k ~2,and c’(L)=0,and so c’(R) <2k —2. ButR ¢ H since e € ER),
and R U H is a proper subgraph of P U H since f ¢ E(R). This contradicts the choice of P. Consequently there

is no such P, and the result follows. B
Proof of (1.1).

We prove that (i) implies (ii) by induction on k. We may assume that k 2 1, for if k =0 the result is trivial.
Define h, ¢’ as earlier in this section. Then ¢’ € Z£‘“) by (2.6), and if P is a circuit or s — ¢ path of G, then ¢’(P)
is even, because i‘(P) is even by hypothesis and & (P) is even because & is a slice. For every odd s — ¢ path P,
P ¢ H by (2.5), and so ¢‘(P) 2 2k — 2 by (2.7). From the inductive hypothesis, there are k — 1 slices Ry ey i

such thath; +..+ by <c’. Butthenh + hy 4.+ by < ¢, as required. W

3. PATH PACKING

By standard linear programming duality techniques (for instance the theory of blocking polyhedta), (1.1) implies

the following, which was conjectured in private communication by W. Cook and A. Sebd.
(.1) Lets,t € V(G) bedistinct, let c € RF©), and let k € R,. Then the following are equivalent:
(i) for each odd s — t path P there exists q(P) € R,, so that 2q(P)=kandY,(q(P):E(P)> e)<c(e)for
P

each edge e




(ii) 3, (h(e) c(e) : e € E(G)) 2 2k for every slice h.

Now (1.1) yields that, for suitably nice functions ¢, there is an integral packing of slices, but (3.1) only yields
fractional packings of odd paths. It is natural to ask if there is an integral strengthening of (3.1). There are several
ways in which this might be formulated, but what seems to us the most natural way is false. To see this, let G be
the simple graph with seven vertices, s,¢,u,v,w,x,y, and with edges su,sv,uv,uw, ux,w,vx,
wx,xy,wy,yt. Let c(e)=1for every edge e, except that c (¢) =2 if e = y¢; and let k = 2. Then the function ¢ is
“Eulerian’’, meaning that it is integer-valued and for each veriex v, the sum of ¢ (e) over all edges e incident with

v iseven. Yet there is a unique function ¢ satisfying (3.1)(i), and it is not integer-valued.

Incidentally, we do not know whether there is such a counterexample which can be drawn in the plane with s

and ¢ both on the infinite region.

A variation: what about even s — ¢ paths instead of odd? There are corresponding versions of (1.1) and (3.1) for
even s —¢ paths (using ‘“‘even-free’ instead of odd-free graphs H to define slices). These may easily be derived
from (1.1) and (3.1) by adding a new vertex s’ adjacent only to s, giving the new edge capacity zero (for (1.1)) or

infinity (for (3.1)) and applying the corresponding odd paths theorem to s*, ¢ in this enlarged graph.

But finally, there is a more surprising extension of (3.1) to even s — ¢ paths. Lets, ¢ € V(G) be distinct, and let

¢ € R¥©. For ky, ks € R,, we say that (k,, k) is feasible if for each s — ¢ path P there exists ¢ (P) € R,, so that

2 (@®P):P odd) =k,
3. (g(P):P even)=k,

2@@P):E(P)= e)sc(e) (e € E(G)).

(3.2) (ki1,k2) is feasible if and only if (ky, 0), (0, k) are feasible and (k1 , k3) is feasible for some k1 , k4 =0 with

kl' +k£ =ky+k,.

The third condition here merely asserts that there is a flow of value k; + k, from s to ¢, so that the flow in any
edge e is at most c (). (3.2) is easily deduced from (3.1) by adding two new vertices r, s’ and three new edges

rs,rs’, 55’ to G, with capacity k,, k, and infinity respectively, and applying (3.1).
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