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tric polytope MP, is defined by the triangle inequalities z;; — 2 — 2 < 0

+ @it + zjx < 2for 4,5,k €V ={1,...,n}. A graph G is called }-integral
rogram max(cTz : ¢ € MP,) has a solution whose coordinates belong to
{2 < d} for every objective function supported by G. For %-integral graphs,
©0 between the optimum solution over MP,, and the maximum cut in G is
d by 4/3. We study several operations preserving %-integrality, in particular,
im operation for 0 < k < 3. We present several minimal forbidden minors for
rality. In particular, we characterize the %-integra.l graphs on 7 nodes. We
1at series parallel graphs are characterized by the following stronger property.
>gram max(cTz : ¢ € MPy,£ < < u) has a 3-integral optimizing vector
1y objective function ¢ supported by G and every %-integra.l bounds £, u
1 on the edges of G.
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luction
polytope MP,, C 2 () given by the system of inequalities

zi; — @i — 25 <0
i+ Tie + 256 < 2

{i,7,k} CV = {1,...,n}. The polytope MP,, is called the metric polytope,
aalities (1) and (2) are called the triangle inequalities. We study several

the metric polytope, in particular the fractionality of its vertices.
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M. LAURENT AND S. Poriax

1ention that a closely related object, the metric cone which is defined only by
ties (1), has been studied by Avis (1980a,b) and Grishukhin (1989).

'e several reasons that motivate our study of the metric polytope. The main
comes from the polyhedral description of the max-cut problem. The metric
a very natural and simple relaxation of the cut polytope, since every triangle
i a facet of the cut polytope. We recall that the cut polytope P(K,) is defined
:x hull of the characteristic vectors of all cuts of the complete graph K.

he optimum of the linear program

maxc’z, 2 € MP, (3)

ides an upper bound on the optimum of

maxcle, z € P(K,). (4)

e max-cut problem is NP-hard, it is important to study for which objective
the linear program (3) provides a good approximation for (4).
G is called integral, if the linear program (3) has an integral solution for every
nction ¢ supported by G. Such a solution is also optimum for (4), because
not have any other integral vertices than those of P(K,). Barahona and
986) proved that a graph is integral if and only if it is not contractible to K.
that a graph G is }-integral if the optimum solution of (3) is achieved at a
ector for every objective function ¢ supported by G. In particular, we are
| 3-integral graphs, because then (3) provides a 4/3 approximation of (4) for
gative objective function supported by such a graph. Moreover, %-integra.l
the “first” non integral graphs, in the sense that 3 is the smallest possible
r for a fractional vertex of the metric polytope.
:mnt several results on --integra.l graphs. We show in Section 3 that this class is
r sum operations: the 0-sum and 1-sum of two -mtegra.l graphs is -integral
m and 3-sum, with some restriction in the la.tter case, ofa —-mtegral graph and
raph is z-mtegral In consequence, the class is closed also under subdivisions
1, with some restriction, under the AY -operation.
s of -—-integral graphs is closed under minors. We present in section 4 four
bldden minors for —-mtegra.hty In particular, all subgraphs of K¢ are 5-
we characterize the 1-integral graphs on 7 nodes. We also include the full
f MP,, for n < 6.

n 5 we study a more constrained linear program

maxcle, 2 € MP,, Lo < 2. < ue (e € E) (5)
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where ¢ is supported by a graph G, and the bounds £, and u., e € E, are -}.;-integral. We
prove that this program has a %-integral optimum for every ¢,{,u if and only if G is a
series-parallel graph.

Section 2 contains some tools and operations. We recall the description of the pro-
jection S(G) of the metric polytope MP,. We point out that a graph G is }-integral if
and only if the polytope S(G) has only %-integral vertices. We consider some operations
on the vertices of S(G) which are intensively used later, namely the 0- and 1-extension,
switching, and the union operation. In general, a projection of a vertex of the metric poly-
tope MP,, is not a vertex of MP,,_;. We give a combinatorial characterization of those
vertices ¢ of MP,, which admit a projection to a vertex y of MP,_;. In consequence, if
y has denominator d, then ¢ has denominator either d or 2d.

Let us briefly mention some other works on the metric polytope. The metric polytope
enjoys a lot of interesting geometrical properties which have been investigated by Deza,
Laurent and Poljak (1992). The metric polytope *wraps’ the cut polytope very tightly, as
the following properties indicate.

e every face of dimension d = 0,1,2 (i.e. vertices, edges, and 2-faces) of the cut
polytope is also a face of the metric polytope, and moreover, this property holds for
most faces of dimension d up to d = logyn.

e The triangle inequalities are the facets of P(K,,) which are very close to its barycen-
trum; they are proved to be closest among all facets with coefficients in 0, +1, and
they are conjectured to be the closest among all facets.

Several classes of vertices, mainly arising from graphs, have been constructed and
studied by Laurent (1991). It has been confirmed that all the vertices considered in that
paper are adjacent to integral vertices (cf. our conjecture in Section 5).

The relation between the linear programs (3) and (4) has been studied also by Poljak
(1991) and Poljak and Tuza (1992) in the case when the objective function is given by
ce = 1if e € E(G), and ¢, = 0 otherwise where G is a graph. In the latter paper it is
shown that the expected value of the ratio between (3) and (4) tends to 4/3 for a random
graph with fixed edge probabilities. However, the ratio can be arbitrarily close to 2 on a
class of sparse graphs, as observed in Poljak (1991).

Some notation.

Alternatively, we will use K(V') to denote the complete graph on a vertex set V, and
MP(V) the corresponding metric polytope. If z € R is a yector indexed by the edges of
a graph G = (V, E), we denote its coordinates alternatively by z., z(e), z;;, or z(4,5), for
an edge e = (%,j) of G.
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Let G¢ = (V;, Ey) be a graph, for t = 1,2. When the subgraph induced by V; NV, is
a clique on k nodes in both G and G2, we define the k-sum of G, and G, as the graph
G=(V,E)withV =V, UV, and E = E; U E,.

2 Operations

A vector is said to be integral if all its coordinates are integers. Given an integer d > 2, a
vector z is called %-integml if dz is integral; if d is the smallest such integer, we also say
that z has denominator d. A vector z is called fully fractional if none of its coordinates
is integral. In particular, the terminology will be used in connection with the vertices of
a polytope, i.e. we will speak about %-fractiona.l vertices, fully fractional vertices, integral

vertices etc. We say that a vector ¢ € 20 is supported by a graph G = (V, E) (or, with
support in G) if ¢;; = 0 for all ij ¢ E.

DEeFINITION 2.1 A graph G = (V, E) is called 1-integral if, for every objective function ¢
supported by G the program max(cTz : ¢ € MP,) admits a %-integml optimizing vector.

2.1 The cycle relaxation of the cut polytope.

Let G = (V, E) be a graph with node set V and edge set E. Given a subset S of V, §g(5)
denotes the cut in G determined by §, i.e. the set §c(S) = {ij € E:i € 5,5 ¢ S}.
The cut polytope P(G) C RF is defined as the convex hull of the incidence vectors of the
cuts of G. The following inequalities are valid for the cut polytope P(G) (Barahona and
Mahjoub 1986):

z(F)—2(C - F)<|F|—-1for F CC,|F|odd,C cycle of G (6)
0Lz, <lforec E )

The polytope defined by the inequalities (6) and (7) is denoted by S(G) and called the
cycle relazation of the cut polytope P(G).

It is easy to see that the non redundant inequalities (6) are for C' chordless cycle of
G and the non redundant inequalities (7) are for the edges e that do not belong to any
triangle of G. In particular, the polytope S(K,) coincides with the metric polytope MP,,.
In fact, in general, the polytope S(G) is the projection of MP,, on the space ¥ (Barahona
1983). More precisely, the following holds.

LeEMMA 2.2 Let G = (V, E) be a graph and let e be an edge of K (V) which does not belong
to G. Let G + e denote the graph obtained by adding the edge e to G.

(1) If £ € MP(V), then the projection zg of = on RE belongs to S(G).
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(i) If y € S(G), there exists ¢ € S(G + e) whose projection zg on RE coincides with
y. Moreover, if y is a L-integral vertez of S(G), then there exists such = which is a
L-integral vertez of S(G + e).

PRrOOF. (i) can be easily verified. We show that (4¢) holds. Let y € S(G). In order to
define an extension z of y to S(G + e), we set z; = y; for all edges f of G and we choose
the value z. on the new edge e satisfying:

()0<Lz <1

(ii)ze <|F|-1+4+y(C—F)—y(F—e)forallec F C C, where Cisacyclein G +e
and |F| is odd

(iii) 2e > —|F'|+1—y(C' - F'U{e}) + y(F') for all F' C C',e € C' — F', where C' is a
cycle in G + e and |F'| is odd.

The fact that such z. exists follows from the fact that y € S(G). If y is a vertex of S(G)
and if we choose z. satisfying one of the above inequalities (i)-(iii) as equality, then z is a
vertex of (G + e). Moreover, if y is %-integral, then 2. is clearly ;}-integral too. 0

COROLLARY 2.3 A graph G is %-integml if and only if all the vertices of the polytope S(G)
are %-integml.

Proor. The proof is based on Lemma 2.2 and the following observations:
e max(cl'z: z € MP,) = max(cTz : z € S(Q)),

e If z € MP, is an optimizing vector for max(cTz : z € MP,,), then its projection zx
on RZ optimizes max(cTz : z € §(F)),

o If z € S(G) optimizes max(cTz : z € S(G)), then any extension of z to MP,
optimizes max(cTz: z € MP,,), where ¢ is supported by G.

O

We present two properties of %-integral graphs. The proofs of Propositions 2.4 and 2.5
will be given in subsection 2.3 as an application of the extension operation.

ProposiTiON 2.4 IfG is %-integml, then any minor of G is also %-integral.

PrOPOSITION 2.5 Assume G is %-z’ntegml. Then, for every objective ¢ € §Rf,
4
max(cTz : 2z € S(GQ)) < gmc(G, e),

where mc(G, ¢) denotes the mazimum cut of the graph G with the weights c.
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2.2 The switching operation

Given a cut §¢(5), we define the switching reflection T5o(S) Of REbyy = 54(5)(2), where:
Yi; = 1 — a5 if ij € §¢(S5) and Yij = 245 if i € E — 6@(5). The switching reflection
preserves the cut polytope (Barahona and Mahjoub 1986); indeed, 75g(s) Mmaps the cut
6c(T') on the cut §g(SAT). In particular, the switching reflection T54(S) Preserves faces
and facets of the cut polytope P(G). Given v € RE, vy € R, suppose that the inequality
vT2 < vy defines a face of P(G). Define v° € 23 by v = —wvy; if i € §(S) and
vfj = v;; otherwise. By applying the switching reflection 754(S), We obtain the inequality
(v5)Te < vy — > ecbq(s) Ve Which defines a face of the same rank of P(G). Clearly, the
inequalities (6) are preserved under any switching. Therefore, the switching reflections
preserve the polytope S(G). Thus we have

LEMMA 2.6 If z € S(G), then y = r55)(2) € S(G); moreover, y is a vertez of S(G)
whenever z is a vertez of S(G).

O

In the case of the complete graph G = K,,, it was proved that the switching reflections
together with the permutations of the nodes are the only symmetries of the cut polytope
P(Ky) (Deza, Grishukhin and Laurent 1991) and of the metric polytope (Laurent 1991).

2.3 Extension and projection of vertices in S(G)

If z € S(G) and G' = (V, E') is a subgraph of G, i.e. E' C E, then the projection zg of
z on RF' belongs to S(G"); we also say that z is an extension of zp.

In general, vertices are not preserved by projection. However, a nice feature of the
polytope S(G) is that, essentially, we may always assume to deal with fully fractional
vertices, since a vertex of S(G) with some coordinate 0 or 1 is the extension of a vertex
z' of §(G"), where G’ comes from G by contracting the edge corresponding to the integral
coordinate of z.

Let G = (V, E) be defined on the n nodes 1,...,n and suppose that e = (1,7) is an
edge of G. Let G' = (V', E') denote the graph obtained by contracting the edge e in G;
s0, V! =V — {n}. Let ;,V, denote, respectively, the set of nodes of V — {1,n} that are
adjacent to the node 1, n. Then, E' = E — {(n,¢): i € V,} U{(1,7): i € V,, — V1}. Given
2’ € R¥', we define its O-extension z € R by:

2, fori=1,jeN
fori=n, jeV,
0 fori=1,j7=n

z}. elsewhere

(8)

Ti; =



ic POLYTOPE 7

f 2z € S(G) with z1, = 0, then, by the triangle inequalities (1), z;; = Tpj
j € Vi NV,,. Hence, defining &’ € RE' as the projection of z on E' , we have
0-extension of 2’ as defined by the above relation (8).

, we define the I-extension y of z' by

21; fori=1,jeWn
1-2{;, fori=mn, jeV,
= 3 ) n
Yis 1 fori=1,j=n )
i elsewhere.

, if y € S(G) with 41, = 1, then y is the 1-extension of its projection z’ on

N 2.7 Letz € R be the O-eztension of 2' € RF', i.e. , 2 satisfy (8). Then,
mnd only if ' € S(G'); moreover, z is a vertez of S(G) if and only if 2’ is a
#'). The same holds also for z' and its 1-extension y.

easy to check that 2 € §(G) if and only if 2’ € S(G").

a vertex of S(G"). Let B’ be a family of | E’| linearly independent inequalities
hat are satisfied at equality by z’. The inequalities 1, > 0 and Ty — L1p —
J £ m — 1, are satisfied as equality by z. Together with B’, we obtain a set
ies for  which are linearly independent. Therefore, z is a vertex of S (@).
ow that z is a vertex of S(G). Let B be a family of | E| linearly independent
»sen among (6) and (7) satisfied by . We can suppose that B contains the
. = 0 and #1; — 21, — 2n; = 0 for j € V1 NV,,. Then, the remaining equalities
se the edge (1,n); hence, they yield equalities for /. Therefore, 2’ is a vertex

ment about y follows by applying switching and using Lemma 2.6.
]

sequence, for many questions, we may restrict ourselves to fully fractional
easy application of the above proposition is that S(G) has no fractional
tices.

2.8 The metric polytope has no fractional %-z’ntegral vertices.

AP, has a fractional %-integral vertex, then there would exist a vertex of
me m < n, with all coordinates equal to % But such vector satisfies none of
es (6) at equality. ]
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Two other applications are the statements formulated in Propositions 2.4 and 2.5, that
We prove now.

PROOF OF PROPOSITION 2.4. Let G be a }-integral graph and let e = (1,n) be an edge
of G.

It is obvious that the graph G — e obtained by deleting the edge e is }-integral.

We show that the graph G/e obtained by contracting the edge e is %—integral. We take
the same notation as above for V4, V,, and G’ = G/e. Let w' be an objective function with
support in G'. Define the objective w with support in G by:

wy; fori=1,jen

wy; fori=n, jeV,

-M fori=1,j=n
')

w}: elsewhere

(10)

Wi; =

By assumption, the linear program max(w%z : z € MP,) admits a L-integral optimizing
vector z. If we choose the constant M large enough, then #;,, = 0. Let 2’ denote the
projection of z on RE'. Hence, 2’ is L-integral. It is easy to check that z’ is an optimiz-
ing vector for the linear program max(wfz : z € MP,_1). Therefore, the graph G' is
%-integral. |

Proor oF ProrosiTION 2.5. The proof is by induction on n, the number of nodes of
(. The statement holds trivially if n < 2. Let G be a %-integral graph on n > 3 nodes
and let ¢ be a non-negative objective function supported by G. Let z be a vertex of S(G)
which optimizes the program max(c’z : z € S(G)).

If 2 is fully fractional, then z, = % for all edges. Therefore, cTz = %—Eee ECe. On
the other hand, a trivial lower bound for the maximum cut in G is me(G,¢) > 3 Y .cx C-
Therefore, Proposition 2.5 holds.

Suppose that 2, = 0 for some edge e = (1,n). Let z’ denote the projection of = on
RE', where E' is the edge set of G' = G/e. Consider the objective ¢’ € RE' defined by:

c1; fori=1,jeVi-V,
ol = Cnj fori=mn,jeV,-W (11)
7 cijten; fori=1,j€ViNY,

Cij elsewhere

It is easy to see that ' optimizes the objective function ¢’ over §(G'). By the induction
hypothesis, the following inequality holds:

max(cTz: z € 8(G")) < %mc(G’, ).
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But, me(G’, ¢') < me(G, ¢) holds. Therefore, Proposition 2.5 holds.

Suppose now that 25 # 0 for all edges f of G, but z. = 1 for some edge e = (1, n)
Let G' = G — {1,n} with edge set E'. Let ¢/, 2’ denote the projection of ¢, z on RZ'
respectively. Since G/ is —-mtegral by the induction hypothesis, we have

max(c¢Tz: 2z € 8(G") < %mc(G’, ).

This implies ¢z’ < $me(G', ¢'). Let §gi(S) be an optimizing cut in G” for the weights c'.
We have me(G, c) > 1(ch‘sG(‘s"U{l})+x5‘9(‘m{"})) =me(G', ') +e1n+ 3 Tus1 nlCru+cnu).
But, 14, Zn < 5 for all nodes u # 1,7 and me(G', ¢’) > 2cT2!. Therefore, me(G,c) >

3 ’T:c +e1n+ 2 Eu;ﬂ n(C1u®1u + Cruny). We deduce that mc(G c) > §c z. Therefore,
Propos1t10n 2.5 holds |

Finally we observe how a new vertex of the cycle polytope S(G) can be constructed
by ’gluing’ together two given vertices of smaller cycle polytopes.

Let G; = (V;, E;) be a graph for i = 1,2 and assume that the subgraph induced by
ViNnVzisacliqueon k= |V1 N V2| nodes in both G; and G;. Let G = (V, E) denote the
k-sum of G; and G3. Let 2; € RFi i =1,2, such that z; and 2, coincide on the edges of
the common clique K (V3 NV3). We can define z € R¥ by concatenation of z; and z,, i.e.
z(e) = z;(e) for e € E;, i = 1,2. The vector 2 is called the k-union of z; and z,.

ProOPOSITION 2.9 We have
(i) = € S(G) if and only if z; € S(G;) for i =1,2.
(%) If z; is a vertez of S(G;) for i = 1,2, then z is a vertez of S(G).

Proor. The part (i) is clear. We verify (ii). Let z; be a vertex of S(G;), i = 1,2. We
show that z is a vertex of §(G). Assume z = ay + (1 — a)z for some 0 < a < 1 and
¥,z € S(G). Denote by y;, z; the projection of y,z on E; for i = 1,2. We obtain that
z; = ay; + (1 — a)z;, implying that 2; = y; = z; fori = 1,2. Hence 2 = y = 2 holds,
yielding that z is a vertex. O

In particular, if 2; is a vertex of the metric polytope MP(V;), for i = 1,2, such that
21 and 2, coincide on the edges of K (V1N V%), then their k-union z is a vertex of S(@), @
denoting the k-sum of K(V1) and K (V). By Lemma 2.2, = can be extended to a vertex
y of the metric polytope M’P(V1 U V2). Moreover, if 2; and z, are z-mtegral then y can
be chosen 1-integral. Such y is a common extension of both z; and z,.
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2.4 Extension and projection in the metric polytope

It is convenient to specify the extension operation defined previously for S(G) to the metric
polytope. Actually, it was already considered in (Laurent 1991).

Givenz' € ?R(z) we define its 0-extension z and I-eztensiony, z,y € ®("3 ) as follows.

2}, for1<i<j<nm
gij=4q 2y; fori=1,2<j<n

0 fori=1 j=n+1.

gl; forl<i<j<n
y‘ij: 1'—3'1]- fori=1,2s.'i$n

1 fori=1, j=n+1.

Clearly, y = r,g({n+1})(a:) and the extension of an integral vertex is again an integral vertex.
By Proposition 2.7, 2’ is a vertex of MP,, if and only if 2 and y are vertices of MPoy1.

So, the 0- or 1-extension of any vertex is always a vertex; we shall refer to such an
extension as a trivial extension. We are interested in studying some conditions for the
existence of nontrivial extensions.

In the following we represent every triangle inequality a’# < a from the system (1),
(2) by the vector a. Given a family B of triangle inequalities and a node i € V, define
B(i) as the set of triangle inequalities of B that go through node i. Clearly, if z is a
vertex of MP, and if B is a base of triangle equalities for z (i.e. B consists of (}) linearly
independent triangle equalities satisfied by ), then |B(¢:)| > n— 1 holdsforallz € V.

LeMMA 2.10 Let z be a vertex of MP,. Then, » admits a projection that is a vertex of
MP,_1 if and only if there exists a base B of triangle equalities for ¢ and a nodei € V
such that |B(i)| = n — 1.

Let us introduce some definitions. Let F be a family of triangle inequalities on V all
going through a given node, say n. We define the graph G(F) with F as nodeset where
two triangle inequalities are adjacent if they share a common non zero coordinate. We
also define the matrix M(F) as the k X k matrix (k = |F|) whose rows are the projections
on the set {(,7) : ¢ € V covered by some triangle of F} of the triangle inequalities of F.
Assume that G(F) is a cycle, say G(F) = (T1, T2, . . ., Tk), where T; is based on the triple
(vi, viy1,n) for some nodes vy,vs,...,v € V — {n} (setting vg1 = v1). Denote by a;, b;
the component of T; on the edge (v;,n), (v;41,n), respectively. Then, the determinant of
M(F) is equal to a1a3...ax — (—1)*by1bs. .. b which takes value 0, -2 or 2. We call F an
odd signed cycle (resp. even signed cycle) if G(F) is a cycle and det(M(F)) # 0 (resp.
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det(M(F)) = 0). Hence, when all triangle inequalities of F are of type (2), then F is an
odd signed (resp. even signed) cycle if and only if G(F) is an odd (resp. even) cycle.

We give a combinatorial characterization of those vertices of MP,, admitting a pro-
jection which is a vertex of MP,,_;.

THEOREM 2.11 Given z € MP,, let B be a family of triangle equalities satisfied by = and
assume that |B| = () and |B(n)| = n — 1. The following statements are equivalent.

(i) B is linearly independent

(i) B — B(n) is linearly independent and B(n) — F, is the disjoint union of odd signed
cycles, where F, is constructed by the following iterative procedure.

Set F, = {(i,n) : 1 < i < n—-1} and X,, = F, = 0 initially. If there exists an edge
e € F, — X, at which a unique triangle equality of B(n) — F, has non zero coordinate,
then replace X,, by X, U {e} and F, by F,, U {T}. Stop when no such edge erists.

Proor. Set B, = {(¢,7j) : 1< i< j < n} and E,_y = E, — F,. Let M denote
the incidence matrix of B, let M, denote the (*;) x (";') matrix whose rows are the
projections on E,_; of the triangle equalities from B — B(n) and let M; denote the n —
1 x n—1 matrix whose rows are the projections on F,, of the triangle equalities from B(n).
Then, M is nonsingular if and only if M;, M, are nonsingular and M; is nonsingular if
and only if B — B(n) is linearly independent.

Assume first that (i) holds. Then, B(n) = F,, UB; U...U B, where each B; is an odd
signed cycle. Then, M; has a block diagonal form with one block for each of F,,B;. By
construction of F,,, the corresponding block is triangular with all ones on its diagonal and
so is nonsingular. Each block corresponding to B; is nonsingular since B; is an odd signed
cycle. Hence, M; is nonsingular.

Assume that (i) holds. By construction of F,, for every edge of F, — X,, at least
two triangle equalities from B(n) — F, have a nonzero coordinate indexed by this edge.
A simple counting argument shows that, at each edge of F,, — X, exactly two triangle
equalities of B(n) — F, have a nonzero coordinate. Hence, the graph G(B(n) — F,) is a
disjoint union of cycles and each cycle must be odd signed, since M; is nonsingular. O

As a consequense of the proof of Theorem (2.11), we obtain that:
PrOPOSITION 2.12 Let z be a vertez of MP,, and suppose that z is fractional with de-

nominator d. Then, any extension of ¢ which is a vertezx is fractional with denominator
d or 2d.
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EXAMPLE 2.13 We give an ezample of a vertez = that is (1,2)-valued and admits an
eztension that is fractional with denominator 6. Take z € M7Ps with Ty = % ezcept
z;; = % for the following pairs (1,2),(1,4),(1,6), (2,3), (4,5), (6,7), (i,8) for 1 < i < 7.
Take y € MPy the extension of z defined by y;9 = % fori=2,3, yp = % fori=1,4,5,8
and y;g = g— for i = 6,7. It can be checked that both z,y are vertices.

ExAMPLE 2.14 We give an ezample of a vertex of MP, whose projections are all not
vertices of MP,_1. Take 2 € MP7 defined by z;; = % except z;; = % for the pairs
(2,3),(2,4),(3,4),(3,6),(5,6),(5,7),(6,7). It can be checked that z is a vertex of MP while

any projection of ¢ is not a vertex of MPsg.

On the other hand, for any fractional vertex z with denominator d, we can construct
a nontrivial extension of # that is a vertex with the same denominator d. Assume z is a
vertex of MP,,; define the extension y € MP, ;1 of z by Yint1 = 215 for 2 < 1 < n and
Yint+1 = Milp<icn (2214, 2 — 221;). Then, y is a vertex of MP,,;; with same denominator
as . (y is obtained from z by duplication of a node, see subsection 2.5.)

However, not every vertex with denominator d admits an extension with denominator
2d. (Every vertex of MPg is such a counterexample, because MPg has no vertex with
denominator 6.)

Let z € MP,, such that some projection of z is a vertex of MP,_;. In general, z is
not a vertex, but we have the following result.

LeMMA 2.15 Take z € MP,,. If there exist three distinct nodes i,j,k € V such that the
projections z*,z7,2* of z on the sets V — {i},V — {i},V — {k}, respectively, are vertices
of MPp_1, then z is a vertez of MP,,.

PrOOF. Let 0 < @ <1 and y,2 € MP, such that z = ay + (1 ~ a)z. We show that
¥y = z =z holds. Let h € {4,j,k}. Denote by y*, 2, respectively, the projection of y, z
on V — {h}. Then, z* = ay® + (1 — a)z" holds, implying that y* = z* = z". We deduce
that y = z = z holds. |

3 Sums with integral graphs

In this section, we study %—integrality with respect to the k-sum operation for graphs; d
is an integer, d > 3. We prove the following results. :

o l-integrality is preserved by 0- and 1-sums.
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¢ The 2-sum of a -integral graph and an integral graph is 1-integral.

e The 3-sum of an integral graph and a rich %l--integral graph (for the definition of a
rich graph, see Definition 3.5 below) is 1-integral.

THEOREM 3.1 The 0- and 1-sum operations preserve %-integmlity.

PrOOF. Let G; = (V;, E;) be a },-integra.l graph, for i = 1,2. We suppose first that G
and G; have no common node and let G = (V, E) denote their 0-sum. Let = be a vertex
of S(G) and let zp; denote the projection of z on R% for i = 1,2. Let B be a system of
| E| linearly independent inequalities from the system (6), (7) that are satisfied at equality
by z. Let B; denote the susbset of B consisting of the equations supported by Gj;, for
i =1,2. Then, |B| = |E| = |B1| +|B;| = | E1| + | E;|, implying that |B;| = |E;| fori =1, 2.
Therefore, 2; is a vertex of §(G;) and thus is L-integral, for 4 = 1,2. This shows that z is
1-integral. '

The proof is identical when Gy and G, have one node in common. O

THEOREM 3.2 Let Gy and G be two graphs having an edge in common. IfGy is };-integml
and G, is integral, then their 2-sum is ;li--integml.

Proor. Take G; = (V;, E;), for i = 1,2, and let f denote the common edge of G; and G,.
Let G = (V, E) denote the 2-sum of G; and G,. We show that G is L-integral, i.e. that
every vertex of S(G) is J-integral.

Let z be a vertex of S(G) and let zg, denote the projection of z on RF: ,fori=1,2.
If 2y = 0 or 1, then we can contract the edge f. Namely, then z is a trivial extension of
a vertex y of S(G/f). But, the graph G/f can be seen as the 0-sum of the graphs G,/ f
and G3/f. By Theorem 3.1, y is %-integral. Therefore,  is ;1{—-integra.l.

We can now assume that z; # 0,1. Let B be a family of |E| linearly independent
equalities from the system (6), (7) satisfied by z. Let B; denote the subset of B consisting
of those equalities that are supported by G, for i = 1,2. Since 0 < z4 < 1, the families
B and Bj are disjoint and, thus, |E| = |B| = |By| + |Bs| = |Ey| + |Ey| - 1. Therefore,
|EBi| -1 < |B;| < |Esf, for i =1,2. We distinguish two cases.

First, suppose that |By| = |E,|. Then, zg, is a vertex of S8(G2) and, thus, since G is
integral, zg, is 0,1-valued, in contradiction with the assumption that z;5 # 0, 1.

Suppose now that |B;| = |E,| — 1. Then, By = |Ei|; hence, zp, is a vertex of §(G)
and, thus, is %—integral. On the other hand, since it satisfies | E3| — 1 linearly independent
equalities, g, can be written as the convex combination of two vertices of S (G2). Hence,
zp, = ax’4) 4+ 8*(B) where a,8 >0, a+p = 1 and §(A4), §(B) are two cuts in G,. Then,
zy = a, or 25 = f; hence, a, 8 and, thus zg,, are ﬁ-integra.l. Therefore, z is %—integral. O
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CoROLLARY 3.3 Every subdivision of a %-integml graph is ‘li-integml.

ProoF. Let e be an edge of G which should be subdivided. Consider the 2-sum of G with
a triangle along the edge e. Then delete the edge e from the 2-sum. The resulting graph
is the required subdivision of G. It is %-mtegral by Theorem 3.2 and Proposition 2.4. O

REMARK 3.4 The 2-sum operation does not preserve %-integmlity in general.

As counterexample, consider the graph G obtained by taking the 2-sum of two copies of
Ky; Kg is 1-integral, but we construct a 3-integral vertex of S(G).

We use the following notation. If K57 denotes the complete bipartite graph with node
sets 5, T, then z(Ksr) takes the value 1 on the edges of Ksr and the value £ on the
other edges. Recall that z(Ks) is a vertex of MPy,, n = |S| + |T| > 5 (Avis 1980a).

Consider two copies G and G of K5 defined, respectively, on the node sets {1,2,3,4,5}
and {1,2,6,7,8}. G is their 2-sum along the edge (1,2). We define y € S(@) as follows:
its projection on the edge set of Gy is (K {1,5}.{2,3,4}) and its projection on the edge set of
G2 is 3(2(K{1,2,8}.46,7) + x*{128D). So, y takes the values 32,3, 3. It is easy to check
that y is a vertex of S(G). Indeed, there are altogether 19 triangle equalities satisfied by
¥ (10 on G4 and 9 on G;) and they are linearly independent. ]

We say that a triangle (2, j, k) supports a triangle equality for a vector z if at least one
of the four inequalities (1) or (2) is satisfied as equality by z.

DeriniTION 3.5 Call a graph G rich if, for every vertez z of S(G), each triangle of G
supports at least one triangle equality for z.

Clearly, every subgraph of a rich graph is rich. For example, Kj is rich (see section 5).
Therefore, every graph on at most 6 nodes is rich.

Also, every integral graph is rich (in fact, for every vertex, each triangle supports three
triangle equalities !). '

Note that a %-integra.l graph G is rich if no vertex z of §(G) satisfies Bij = Tip = Tjp =
%, or zi; = ziq = 2,25 = %, for some triangle (%, 7, k) of G. '

REMARK 3.6 It follows easily from the proofs of Theorems 3.1 and 3.2 that the 0- and 1-
sums of rich 3;—-integral graphs are %-integml and rich, while the 2-sum of a rich %-integml
graph and an integral graph is };-integml and rich.

We see below that Theorem 3.2 can be extended to the 3-sum éase, if we make the
additional assumption that the graphs are rich.
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" Let Gy and G5 be two graphs having a triangle in common. If Gy is %-
ch, and if G, is integral, then their 8-sum is %-integml and, moreover, rich.

G; = (Vi, E;), for i = 1,2, and denote by A = (1,2, 3) the common triangle
Let G = (V, E) denote the 3-sum of G; and G2. We show that every vertex
itegral.

vertex of S(@) and let zz; denote the projection of z on R5, for i = 1,2. If
: some edge of A, then, by contraction of this edge, we can apply Theorem
m and deduce that 2 is %-integra.l. Hence, we can now assume that z. # 0,1
2 € A,

\ family of |F| linearly independent equalities for # and let B; denote the
aqualities in B that are supported by G;, for ¢ = 1,2. We distinguish two
1g whether A supports a triangle equality for z or not.

ippose that A supports a triangle equality for z. W.l.o.g. we can assume
t 223 = 2 (if not, apply switching). We suppose that this equality belongs to
= |B| = |B1|+|Bs| ~1 = | E1| + | E2| - 3, implying that | E;| -2 < |B;] < | Eil,
1t |Bz| # | Ey|, else zg, would be a vertex of S(G) and, thus, g, would be

|E2| — 1, then zg, is the convex combination of two vertices of S(Gj),
+ Bx*B), where a,8 >0, a+ 8 = 1 and 8(A),8(B) are two cuts in G,.
), 6(B) satisfy the triangle equality: z;3+ 213 + 223 = 2. Hence, at least one
longs to both cuts §(A4), §( B), implying that z. = 1, a contradiction.

%2| — 2, then |By| = |Ey|; hence, 2, is a vertex of §(G1) and, thus, zp, is
. the other hand, zg, is the convex combination of three vertices of S(G?),
+ Bx*®) + yx*(©), where a,B8,7 > 0, a + f +7 = 1 and §(4),6(B),(C)
.. From the fact that the three cuts §(A4),(B),(C) satisfy the equality:
3 = 2 and that 2. # 0,1 for each edge e € A, we deduce that §(4)N A =
NA = {12,23} and §(C)N A = {13,23}. Hence, z1 = a+ B, 213 =a+7
Y. Setting 212 = %, 213 = %, Tog = 2 — %:9 for some integers a, b, we obtain
-1,8=1- % and v = 1 — §. Therefore, zg, and, thus z, are %—integra.l.

ppose that A does not support any triangle equality for z. Hence, |E| =

'2| = |E1| + | E2| — 3, implying that |E;| — 3 < |B;| < | B4, for i = 1,2. But,

ice 2, # 0,1 for each edge e € A, and |B;| # | B|, since G is rich (else, 2,

‘tex of S(G1) with the triangle A supporting no equality for zg, ). Hence,
or |E,| — 2.

Ea| — 1, then zg, is the convex combination of two cuts in G, implying

= 0 or 1 for some edge e € A.
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= |Eg| — 2, then zg, is the convex combination of three vertices of S(G5),
4 + BXP(B) 4 4x4(C) where @, 8,7 > 0, a+ B +7 = 1 and 6(A), 6(B), §(C) are

Since z. # 0,1 for each edge e € A, no edge of A belongs to all three cuts,
dge belongs to at least one of them. Hence, we have (up to permutation) only
1g two possibilities:

L6(ANA =0, §(B)n A = {12,13}, §(C)N A = {12,13}; then, 212 = B + 7,
B, 223 = v, implying that 215 — 213 — 233 = 0.

A)NA = {12,138}, §(B)NA = {12,23}, §(C)N A = {13,23}; then, 215 = a+4,
a+7, 223 = § +7, implying that 212 + 213 + 223 = 2.

es, we have a contradiction with our assumption that A supports no triangle
‘2. This concludes the proof that G is 1-integral.

we verify that G is rich, i.e. that, for each vertex z of S(G), every triangle
1 equality for . Take a vertex z of S(G). Looking through the above proof,
, either z is some trivial extension, or 2, is the convex combination of three
while 25, is a vertex of S(G1). Hence, each triangle of G supports an equality
2 first case, apply Remark 3.6 and, in the second case, check it directly.

a

tivation for the notion of rich graphs comes from the 3-sum operation. Namely,
1 following result.

ON 3.8 Let G be a %-integral graph. If G s not rich, then the 3-sum of G with
-iniegral.

G is not rich, then there exists a vertex z of S(G) and a triangle A = (1,2, 3)
supports no equality for z. Up to switching, we can suppose that 215 = 2,3 =
onsider K4 on the node set {1,2, 3, uo} where ug ¢ V(G). Let H denote the
and K4 along A. Let y € S(H) be defined by: y. = z. for every edge e of G
Yuo2 = Yups = 5. Then, y is a vertex of S(H) which is not 1-integral. O

pplication of the 3-sum operation, we obtain that the AY -operation preserves
ich graphs. The AY-operation consists of replacing a triangle A = (1,2,3) in
a claw, i.e. deleting the triangle A from G and adding a new node ug to G
the nodes 1,2 and 3.

r 3.9 The AY -operation preserves the class of i-integral rich graphs.
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PRrOOF. Let G be a 1-integral rich graph and let A = (1,2, 3) be a triangle of G. Consider
K4 defined on the node set {1,2,3,uo}. By Theorem 3.7, the 3-sum of G and K, along
the triangle A is a——mtegral and rich. Then, delete the edges (ug,%) for i = 1,2,3. The
resulting graph is -mtegral and rich; it is precisely the AY -transform of G. a

4 Forbidden minors for %-integrality

The purpose of this section is to present some minimal forbidden minors for ——mtegra]ity
As a consequence, we can classify the -mtegra.l graphs up to seven nodes. We also give
the full description of the metric polytope MP, for n < 6.

4.1 small metric polytopes

We recall the description of the metric polytopes of small dimension.

For n = 4, MP,4 has 8 = 23 vertices, all of them integral.

For n = 5, MPs has 32 vertices consisting of 2% integral vertices and 2% —-mtegra.l
vertices obtained by switching of (%,..., 3)

For n = 6, MPg has 544 vertices consisting of 2% integral vertices, 25 1 5-integral vertices
obtained by switching of (2 Srevey 3) and 480 vertices which are the tnv1al extensions of the
—-mtegra.l vertices of MPs.

For n = 7, Grishukhin (1989) has computed all the extreme rays of the metric cone
MC+. He found that there are 13 distinct classes (up to permutation and switching) of
extreme rays. We do not know the complete description of the vertices of MP-.

Clearly, every extreme ray of the metric cone MC,, determines a vertex of the metric
polytope MP,, which is the intersection of the ray with some triangle facet (2). In (Lau-
rent and Poljak 1992), we conjecture that every vertex of M7P,, can be obtained, up to
switching; in this way. Equivalently, we conjecture that every fractional vertex of M7P,, is
adjacent to some integral vertex. This conjecture holds for MP,,, n < 6, and for several
classes of graphical vertices of MP,, constructed in (Laurent 1991).

It follows from the explicit description of MP,, n = 5,6, that Kz and Kg are %-
integral and rich. Therefore, every graph on at most six nodes is -—-integra.l and rich. As
a consequence, any graph on 7 nodes which has a node of degree at most 3 is —-mtegra,l
and rich (from Remark 3.6 and Theorem 3.7). K7 is not rich; many examples of vertices
of MPr, for which some triangle exists which supports no equality, can be found in the
list of vertices from (Grishukhin 1989).

By Corollary 3.9, using the AY operation, new examples of rich l—mtegral graphs can
be constructed, starting, for example, from Kg. One such graph is the Petersen graph.
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We conclude with a remark on the possible denominators for the fractional vertices
of the metric polytope. By Corollary 2.8, no vertex of AMP,, has denominator 2. On the
other hand, vertices can be constructed with arbitrary denominator d > 3.

PROPOSITION 4.1 For every d > 3 and for every n sufficiently large, e.g. n > 3d — 1,
there ezists a vertez of MP,, with denominator d.

ProoOF. We first recall a construction due to Avis (1980a). Let G = (V, E) be a graph
and G' = (V', E') be a copy of G, where V = {1,...,n} and V' = {1/,.. .,7'}. Consider
the graph G* with node set VUV’ U {u, : e € F} constructed as follows. The edge set
of G* consists of the edges of G, the edges of G’ and the following new edges. Join each
node ¢ € V to its twin ¢’ € V. For each edge e = (4, §) of G with i < §, join i and j' to u,.

Let dg denote the path metric of G, where dg(%, j) is the length of a shortest path from
itojin G, fori,j € V. Set 7(G) = max(da(i, 5) + da(s, k) +de(f, k) : 1 < i < j < k< n).
Define similarly dg+ and 7(G"*). It is easy to check that 7(G*) = 7(G) + 2 holds.

Define the vector zg+ € MPx, N = 2n + |E|, by zg. = ?('?’;’")‘dG" Then, it follows
from (Avis 1980a) that zg+ is a vertex of MPy. Its denominator is 7(G) + 2 or T-(%H—z,
according to the parity of 7(G).

Let d > 3 be an integer. Let G be a path on d nodes, then 7(G) = 2(d — 1) and,

therefore, zg+ is a vertex of MP34_; with denominator d. Trivial extensions of 2ge are
vertices of MP,, with denominator d for all n > 3d — 1. o

For instance, the polytope MPy has vertices with denominators 3, 4, 5, 6 and 7.

4.2 Forbidden minors

‘We have shown in Proposition 2.4 that %-integra]ity is preserved by taking minors. Robert-
son and Seymour have proved that, for every minor closed class of graphs, there are only
finitely many minimal forbidden minors. Thus arises the problem of finding minimal for-
bidden minors for the class of %-integra.l graphs. We present four of them. This yields the
classification of %—-integrality for graphs up to 7 nodes.

We first give some preliminary results.

LEMMA 4.2 Let G be a graph and let ¢ be a fully fractional %-integml vertez of S(G). The
only inequalities (6) which are satisfied as equality by = are for C triangle of G.

Proor. Let F, C be such that the inequality (6) is satisfied as equality by z. Let a (resp.
b) denote the number of edges e € F (resp. e € C' —F) for which z, = 3. From the equality
2(F)—2(C—F) = |F| -1, we deduce that }a+ 2(|F|—a)—1b—2(|C|~|F|-b) = |F|-1.
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t |F| =2|C|+a—b-3. But,a > 0 and b < |C|—|F|, from which we deduce
i.e. C is a triangle. ]

‘et G be a graph and let © be a fully fractional vertez of S(G). For each cycle
)5t one of the inequalities (6) supported by C is satisfied as equality by =.

? be a cycle of G and let F, F' be two distinct subsets of C of odd cardinality.
satisfy the equalities z(F)—2(C—f) = |F|-1 and 2(F')—2(C—F') = |F'|-1.
 [FNF|—2(FNF)+ L(|FAF'| - 2) + «(C — FU F') = 0. Therefore,
FNF), |FAF'| = 2 and (C — FU F’') = 0. This implies that z, = 1
"and 2z, =0 fore € C — F U F'. ¥ 2 is fully fractional, then F N F' = 0,
mplying that |C| = 2, a contradiction. a

t.4 Let G = (V,E) be a %-z’ntegral graph on 7 nodes. If G has at most |E|
les, then G is rich.

: be a vertex of S(G). We show that each triangle of G supports an equality
: first that 2, = 0 or 1 for some edge e € E. Let A be a triangle of G. If A
dge e, then A trivially supports an equality for z. Otherwise A is a triangle
7/e, obtained by contracting the edge e. Since G/e is on 6 nodes, it is rich.
»orts an equality for the projection of z on G/e. Therefore, A also supports
r 2. We suppose now that z is fully fractional. From Lemmas 4.2 and 4.3,
% G has exactly |E| triangles and each of them supports an equality for .
at G is rich. : o

»wing result, we classify the graphs on 7 nodes that are i-integral. If E is a
s of K7, K7 — E denotes the graph obtained by deleting from K the edges of
le, K7—(Cs+ Ps) is K7 — E where E is the disjoint union of a cycle of length
m 3 nodes; K7 — (Cy + P3) is obtained by taking the 3-sum of two copies of
angle and then deleting two edges of this triangle. Also, Ks— (K33+ K») is
E is the disjoint union of K33 and an edge; so Kg — (K3 3+ K3) is obtained
2-sum of two copies of Ky along an edge and then deleting this edge.

» (i) The graphs Ky — Cy, K7 — Cs, K7 — (C4 + P3) and Kg— (K33 + K3)
mal forbidden minors for the class of %-z’ntegml graphs.

aph on 7 nodes not containing K7 — C7, K7 — Cs, or K7 — (Cy + P3) is
il and, moreover, rich.
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Proor. The proof of () relies partly on computer check. Namely, we checked by computer
that

¢ K7—Cq, K7 — Cs, K7 — (Cs + P3) are, respectively, 1, §, }-integral
o K;—Cs3is %-integral.

For each of the graphs K — C7, K7 - Cs, K7 — (C4+ P3), Ks — (K33 + K3), we give a
vertex = of §(G) which is not }-integral.

Let z € R() such that z14 = 315 =236 = Tar = L, T13 = T4 = Tar = Tae = Tpr = Z,
Tig = Tag = %, Z95 = Z26 = 47 = . Then, z is a vertex of S(K7 — C7) where C7 is the
cycle (1,2,3,4,5,6,7).

Let T19 = 23 = 234 = Py = 15 = g7 — %,2,‘6=Z,’7=%f01‘1SiS5. Then,a:isa
vertex of S(K7 — C;) where Cj is the cycle (1,2,3,4,5).

Let 213 = 214 = 9325 = 236 = T48 — 1, Ti2 = T34 = 2gr = z and @15 = 223 = g4 =
Tyy = Tyy = Tyy = - . Then, 2 is a vertex of S(K7 — (C4 + Ps)), where C} is the cycle
(1,7,2,6) and P; is the path (3,5,4).

The graph Kg— K3 3 is obtained by taking the 2-sum of two copies of K5 along an edge
e. We gave in Remark 3.4 a %-integra.l vertex z of the polytope S(Ks — K33). In fact,
if we project out the edge e, the projection of z remains a vertex of S(Ks — (K33 + ¢€)).
Therefore, Kg — (K3,3+ €) is not }-integral. On the other hand, it is easily seen that every
minor of K — (K33 + €) is }-integral.

We now verify that, for each of the graphs G = K7 —C+7, K7—Cs, K7—(C4s+ Ps3), every
minor of G is }-integral. This is clear for every contraction minor, since it is a subgraph
of Kg. Let G — e be a deletion minor. If the deleted edge e is adjacent to a node of
degree at most 4 in G, then G — e has a node of degree at most 3 and, hence, is -},;-integral.
Therefore, every minor of Ky — C is %-integral, since K7 — C'7 is regular of degree 4. All
nodes of K7 — Cs have degree 4 except two adjacent nodes which have degree 5. If e is
the edge joining them, then K7 — (Cs + €) is planar and, therefore, is 3-integral. All the
nodes of K7 — (C4 + P3) have degree 4 except two adjacent nodes which have degree 5. If
e is the edge joining them, then K7y — (C4+ P; + €) is contained in K7 — C3 and, therefore,
is }-integral. This shows the part () of Theorem 4.5.

We prove (iz). Let G be a graph on 7 nodes that does not contain any of K7 — Cv,
K7 — Cs, K7 — (C4 + P3) as a subgraph. If G has a node of degree at most 3, then G is
i-integral and rich. So we can suppose that all the nodes of G have degree at least 4 in
G. Hence, all nodes have degree at most 2 in the complement G of G, i.e. G is a disjoint
union of cycles. Since G ¢ Cr, G contains a cycle If G contains a cycle of length 3, then
G is contained in K7 — C3 and, therefore, G is 5-mtegra.l If G contains a cycle of length
4, then G = C4+ C3, since G is not contained in Cy + P3. Therefore, G is again contained
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in K7 — C3. If @ contains a cycle of length 5, then G = Cs + K. Therefore, G is integral
since it is planar. If G contains a cycle of length 6, then G = K. 7—Cég is }-integral. Indeed,
K7 — Cg has 14 chordless cycles (including 11 triangles and 3 cycles of length 4) and 15
edges. By Lemma 4.3, every vertex of S (K7 — Cé) has some integral coordinate and thus
is %-integral, since it is the trivial extension of a vertex of the cycle polytope of a graph
on 6 nodes. :

In order to conclude the proof of (ii), we must show that G is rich. By the above
argument, it suffices to verify that both K7 —C3 and Ky — Ce arerich. The graph K7 —Clg
has 11 triangles; therefore, it is rich, by Corollary 4.4. We cannot apply Corollary 4.4 for
showing that K — Cj is rich since this graph has 22 triangles and 18 edges. But it can
be checked directly as follows.

Let G = K7 — (3 be defined on the nodes {1,2, 3,4, 5,6, 7} and the deleted triangle Cs
be (5,6,7). Let z be a vertex of S(G). If z has some integral component, then every triangle
of G supports an equality for z. Let = be fully fractional, so its components are %, % Call
a triangle A of G bad if it supports no equality for z, i.e. z takes the values ( %, %, :1;), or

2,2,3) on the edges of A. At most 4 triangles of G are bad. There are 4 triangles on the
nodes {1,2,3,4}. Among them, the number of bad triangles can be 0, 2 or 4. If the 4 trian-
gles on {1,2,3,4} are bad, then 23 = 213 = 214 = o3 = Tag = Tz4 = % (up to switching).
Clearly, no such z exists for which all the remaining 18 triangles of G support an equality.
If two of the triangles on {1, 2, 3,4} are bad, then 8. T12 = P13 = 14 = Tz = Bag = %,
234 = 2 (up to switching). It is again impossible to find such z for which at most two
of the remaining 18 triangles are bad. Let the four triangles on {1,2,3,4} support an
equality for z, i.e. 215 = 213 = 214 = T2 = 294 = T3g = % (up to switching). We look
at the possibilities for #;;, 1 <i<4,5<j < 7. Fix j € {5,6,7}. If z;; = % for exactly
one of the edges 17, 27, 37,47, say zy; = %, then no triangle equality covers the edge 17,
contradicting the fact that 2 is a vertex. The same holds if #;; = 1 for three of the edges
15,2j,35,45. If 2;; = } for two (resp. four) of the edges 17,27, 37,45, then four (resp. six)
of the six triangles going through node j are bad. This contradicts the fact that z is a
vertex since the equalities supported by triangles on {1,2, 3, 4,5,6, 7} — {7} have rank at
most 14, ‘ (|

5 Box j-integral graphs

We have seen that the 2-sum operation does not preserve %-integrality. This led us to
the study of a stronger notion, box %-integra.]jty, which is preserved by 2-sums. Box %-
integrality is a stronger property than %-integrality. Namely, we ask not only that the
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polytope S(G) has all its vertices 1-integral, but also that each slice of & (@) determined
by adding the box constraints: I, < z. < u, for e € E, has only —-mtegra.l vertices, for all
choices of 3 -mtegra.l bounds ! and .

DEFINITION 5.1 The graph G is boz §-mtegml if the polytope S(G)ﬂ{:c le<z.<u,ec€
E} is empty or has only 1 3-integral vertices, for all 1, u € {0, 1, 2,1}5.

Equivalently, the graph G = (V, E) is box }-integral if, for every I,u € {0,1 52,1}F
such that MP, N {z:1l. < z. < u.} # 0, and for every objective function ¢ supported by
G, the linear program: max(cTz : ¢ € MP,,l. < 2. < u, for e € E) admits a —-mtegra.l
optimizing vector.

We are able to characterize the class of box }-integral graphs. Recall that a graph G
is called series parallel if G is a subgraph of a graph which can be obtained by iterated
2-sums of a collection of copies of K3. Equivalently, G is series parallel if G does not
contain any K4 minor.

THEOREM 5.2 A graph G is boz %-integml if and only if G is series parallel.

The proof of Theorem 5.2 consists of the following steps:
e box %-integra.lity is preserved by 0-, 1- and 2-sums.
¢ Kjis box %-integral, but K4 is not box -;—-integral.

The fact that 0- and 1-sums preserve box —-mtegra.hty is proved in the same way as
for §-mtegrahty The result about the 2-sum needs two preliminary lemmas.

In the next lemma, we show that every point in a slice of the metric polytope can be
rounded to a %-integral point of the slice.

LEMMA 5.3 Take Lu € {0,1,2,1}() such that MP,n{z:1 <z < u} £ 0. Given
z € MP,N{z:1<z < u}, there exists y € MP,N{z:1 < z < u} such that y satisfies:

(7') Ye = Te if T € {013a311}
(i) ye =% if0<ze < }
(i) ye=2ifi<e. <1

(w)ye€{3,2} ifi<z. < 2.
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Proor. We will proceed by induction on n > 2. The statement holds trivially if n = 2.
Let n > 3 be given. We distinguish two cases.
Assume first that 0 < z, < 1 for all edges. Then, we define y by:

Wi

if0<:ce5%

wire

Ye = if%gze<1

% or % if % <z < %
Clearly, y € MP,, and satisfies I < y < u.

Assume now that z, = 0,1 for some edge e; we can consider only the case of z, = 0
due to switching. Let e = (1,n). Since z1, = 0, 21; = @;, for all 2 < i < n. Set
li; = max(ly;, lin) and uj; = min(uy;, win) for 2 < i < m, and I; = I;;, u}; = u;; otherwise.
Let 2’ denote the projection of z in MP,_;. Clearly, 2’ satisfies I < z' < u'. By the
induction hypothesis, there exists y’ satisfying the statement for 2’ and the bounds I’ and
u'. Let y be the O-extension of y’. Then, y satisfies the statement for  and the bounds I
and u. O

The following lemma deals with sensitivity of optimization over slices of the metric
polytope when the objective function varies on a single edge.

LeMMA 5.4 Take l and u € {0,%,%,1}(3) such that MP,N{z : 1 < 2 < u} # 0 and

ce RG). Forte R, define c(t) € ®() by c(t)e = ce for all edges e except c(t); = cy + 1t
for a fized edge f. For a € {0,%,2,1}, we define the set M,, consisting of the scalarst € R
for which the linear program max(c(t)Tz : 2 € MP, and I < z < u) admits a -integral
optimizing vector z satisfying ¢y = a. Then, the set M, is a closed interval.

Proor. We show that M, is convex. Let ¢,t+ s € M, and 0 < A < 1 be given. We show
that t + As € M,.

Let Co (respectively, Cy, C) denote the maximum value for the objective function
c(t)Tz (respectively, c(t + s)T=, ¢(t + As)Tz) optimized over MP,N{z: I <z < u} and
let zq (respectively, 21, ) denote the corresponding optimizing vectors. By assumption,
we can suppose that zo(f) = z1(f) = a.

First, note that, for any y € .’R(;), e(t+ As)Ty = ¢(t)Ty + Asyys, and c(t + As)Ty =
e(t+3)Ty — (1 - X)syy.

In particular, c(t 4+ As)Tzo = Co + Asa, and c(t + As)T2; = C; — (1 — A)se, implying
that (1 — A)Co + ACl S C.

On the other hand, we have that: C = c(t + As)Tz = ¢(t)Tz + Az < Co + Azy, and
C = c(t+M)Tz = c(t+5)T2—(1-A)zs < C1~(1—A)zy, implying that (1—A)Co+AC; > C.
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re, the equality (1 — A)Cp + AC; = C holds and, in consequence, each of the
ind z, is an optimizing vector for the program max(c(t+ As)Tz 12 € MP,, I <
nce, t + As € M,.

ompactness of the set MP, N {z:1< z < u, 2(f) = a}, it is easy to see that
is closed. 0

5.5 The k-sum operation, k = 0,1, 2, preserves boz -};-integmlity.

it k = 0,1, the proof is identical to that of Theorem 3.1.
r show that the 2-sum operation preserves box %-integrality. Take two graphs
%), ¢ = 1,2, having a common edge f and denote their 2-sum by G = (V, E).
: that G} is box %-integfal, for < = 1,2, and we show that G is box }-integral.
{0, %, %,I}E such that MP, N{z :l. <z < ue,e € E} # § and ¢ € RE. Let
;imizing vector for the program:
x(cT:c 12 € MPy,l. < 2. < u.,e € E).
, first, that we may assume that each interval [l., u.] is tight for v, i.e. satisfies:
te if ye € {0,1,2,1} and u — I = 3 otherwise. Indeed, if it is not the case,
by the above conditions; then, y is also an optimizing vector for the program
et € MP,,l. <2, <ul,e € E), and the bounds V', ' are tight for y.
1 € R by: ¢;(e) = c(e) for all edges e € E;, except ¢1(f) = ¢(f) and ¢c5(f) = 0.
irst suppose that Iy = uy := a. By assumption, the program max(cfz : z €
< 2, £ U, e € E;) admits a %-integral optimizing vector z;, for ¢ = 1,2, Since
f) = a, we can construct the 2-union z of z; and z;. Then, 2 is a %—integral
vector for the program (P).
now assume that (Ig,uy) is (0,1), or (3,2), or (£,1). For t € R, we consider
te ¢;(t) of the objective function ¢; defined by: c;(t)(e) = c;(e) for all edges
cept c1(t)(f) = ai(f) + ¢t and ca(t)(f) = ca2(f) —t. For i = 1,2, and for
2,1}, we define the set M., consisting of the scalars t € R for which the
ax(ci(t)Tz : 2 € MP(Vi), 1. < 2, < e, e € E;) admits a 1-integral optimizing
1g the value a on the edge f. Hence, M = @ if & # lf,u; and, by Lemma 5.4,
l[f‘( #) are two closed intervals covering R, for 2 = 1, 2.
r the program max(c1(t)Tz : 2 € MP(W1),le < Ze < e, € E,) for large ¢,
wnd for small £, t —» —o0, respectively. Hence, if MP(Vi))N{z : I < z. <
2(f) = U(f)} # 0, then M,y # 0 and, if MP(Vi)N{z : L. < 2. < w,e €
u(f)} # 0, then Mi(f) # @; in fact, any ¢ small enough belongs to Mll(f)
arge enough belongs to Mj(f). In the same way, if MP(Vo)n{z : l. < z. <

z(f) = I(f)} # 0, then M,%f) # @ (it contains any ¢ large enough) and, if
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MPWV)n{z: Il < 2. < Ue,e € Ey,2(f) = u(f)} # 0, then Mf(f) # @ (it contains any
t small enough) Therefore, we can always find some ¢ € M 1N MZ for a = I(f) or u(f),
except in the cases when M} uf) = Mz( n= =0, or Ml(f) = u(f) = Q) But these two cases
cannot occur; to see it, we use Lemma.%

Indeed, if (If,us) = (0, ), then, by Lemma 5.3, we can find y € M‘P(V) N {z 1<
z < u} such that yy = 1 . By the above observations, we deduce that M} u() and M2 «(f) are
both nonempty. Slmﬂa.rly, if (Ig,ug) = (3, 1), then Lemma 5.3 produces y with yf = %
and, thus, both sets M,(f) and Ml(f) are nonempty Also, in the case (Iz,uz) = (3, 2), we

have such y with, say, y; = 3 1 and, then, M, l( £) and Ml(f) are nonempty.

In consequence, we can always find some ¢t € M2 N M2, for a = I(f) or u(f). Then,
for such ¢, there exists a }-integral optimizing vector z; for the program max(c;(t)Tz : z €
MP(V;),le < ze < U, € € E;) and satisfying z;(f) = a. Therefore, we can construct the
2-union z of z; and z, which is a }-integral optimizing vector for the program (P). O

LEMMA 5.6 K3 is box %-integml.

Proor. We show that the polytope MP3N {z : | < @ < u} has only i-integral vertices
for every l,u € {0,3%,2,1}3. Let = be a vertex of the polytope MP3N{z:1 < z < u}
and let B be a set of three linearly independent active constraints at z. B contains some
triangle equalities and some bounding equalities: z. = I, or z. = u,.

o If B contains three triangle equalities, then z is a vertex of MPj3 and, thus, z is 0-1
valued.

e If B contains two triangle equalities, then we deduce that z, = 0 or 1, for some
edge e; but B contains another bounding equality, say on edge f, f # e. Then, two
coordinates of z are %—integral and, thus, the third one too.

e If B contains only one triangle equality and two bounding equalities, or if B contains
three bounding equalities, then z is clearly %-integral. '

REMARK 5.7 The graph K, is not boz -mtegml For example, consider the vector z €
MPy defined by: 219 = 213 = :c14 = % and Loz = Boq = Tzq = % Then, z is a vertez of
the polytope MPsN{z:0<2; < L 1<i<j<4}.
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