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Abstract
zan square sense linear interpolator for a stationary random field is constructed in
igonal polynomials associated with the spectral distribution function of this field.
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on

iort useful formulas are presented for interpolating a random field, say
:xed by a d-dimensional integer-valued parameter u = (uy, ..., ug). The

n the random field in question are carried out within a certain set U & Z¢
>w). However, only observations within a certain subset U\J are
the rest of the observations is missed. It is required to restore the missed
jey by using the given values of {Xi }icuy.

onal task consists of finding the best (in the least squares sense) linear
it {X;};ep- 1.€. the linear approximation of each X; with j € J by the

of type
X;= Z Cik X

ke U _
Ticients cy are chosen so that the least squares criterion is satisfied: for

(complex) numbers {&;};c5
LY, & (X; - X2 = min.
jel
riable Xj so defined is called the best (in the least squares sense) linear
r XJ’J e J.

on to the above problem is sought under the assumption that the first and
er characteristics of the random field in question are known. This allows
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ume, without loss of generality, that the field is centered by its expectation,
xpress the least squares criterion (1.2) in terms of the known covariance
of the field (cf. section 2.1). It is well-known (see, e.g. Ripley (1988)) that
icients Cjin (1.1), expressed in terms of the covariances, are then the roots of
of linear equations which is typically large, as large as the number of points in
:fore, even the numerical solution of this system is rather involved. As is
:low under the additional stationarity assumption, however, the difficulties are
t mitigated by making use of the Toeplitz character of the covariance matrix to
ed. Extending, namely, the methods of Grenander and Szego (1958) we will
i problem to minimizing certain Toeplitz forms associated with the spectral
ion function of the field in question; cf. also Rosenblatt (1985). The
nts Cyx in (1.1) then will be expressed in terms of the coefficients of the
al polynomials associated with this distribution function.

>tion 2 we formulate the minimization problem of Toeplitz forms mentioned
id indicate the relationship with the original interpolation problem. In section 3
an easy solution; see theorem 3.1 which can be viewed as an extension of
2.2(a) in Grenander and Szeg6 (1958).

nization Problem

1ssume, as was said in section 1.2, that the random field {X},ezd in question
d
B{X,} =0forallue Z4

sense stationary: the covariance function

Yo =B(X Xy}
>nly on the lag u. Notice that complex-valued observations are allowed.
vill use throughout the following multi-index notation: for a d-dimensional
z = (%, ..., Zg) and a collection of integers u = (u, ..., Uy

zh= M .. zgud,
elationship between the spectral distribution function of the random field in
. denoted by F(A) where A = (Aq, ..., Ag) € A = [-n, ]9, and its Fourier
1ts ¥, (cf. (2.1)) can be written as follows:

Yo =120 dFQV), z= (i, k=1, .. d) = e,
A
iplying first (2.1) and then (2.2) to the left-hand side of (1.2) we can express

iquares criterion (1.2) in spectral terms:



2.3) J‘IZ & (2 - Z Cx Z9P dF(A) = min, z = ek,

A jel keUV

2.2. Let N = (Ny, --» Ny) € Z,9 with certain non-negative integers Ny, +» N4 With
each N € Z,9 we associate the set N of form
N =[0, N] = [0, N ] x - x [0, Ny].
A polynomial in a complex d-dimensional variable z = (zy, ..., zy) of degree N is
then defined by

PN =), ana

neN
Let N, M e Z,9 be such that if N = (N}, -» Ng) and M = (M, ---» M), then N; 2
M; foralli=1, ..., d. For such N and M we write M < N, and define the set
M, N] = [M;, NyJ X «.e X [Mg, Ng]
We assume that the sets U and J introduced in section 1.1 are of form
24) U=[0,U] andJ=[m, M]
where U2=M 2 m, and consider the following

Minimimization Problem. Let {pg)(z) } jer be a system of polynomials of degree
U, with

(2.5) pS)(Z) =z Ay Z

uelU
Look for a special system of polynomials which renders the (generalized) Toeplitz
form

2.6 J Y & @R AR, 2=t

A jel
as small as possible, for any system of (complex) numbers {€; i je1, under the
Jollowing constraints:
(2.7) ajk = Ojk» j,, kel
Here 6 is the usual Kronecker symbol: Sjk = 1if j = k and = 0 otherwise.
The relationship to the interpolation problem is obvious: if

@8 @)=, a2, jeI
ueU

are the minimizers of (2.6), subject to (2.7), then Cik = - &k in (2.3). Hence the best
linear interpolator for X,jelis



%;=- Z 3 Xy

ke OV

n

he spectral distribution function F(A), A € A = [-x, ®]9, we associate the
olynomials

(0N Inezd
'nsional complex variable z which are orthonormal on a unit d-dimensional
A with respect to the weight dF(A): they satisfy the following conditions.
a polynomial of degree n with a real and positive coefficient of zN,

J On@ O (z) AFL) = By, z = €t
A

stem is uniquely defined by conditions (i) and (ii). The well-known
n the density f(A) = dF(A) / dA, sufficient for (i), is

jlog f(A) dA > - oo
A

latt (1985).

that §y(2) = Yo~1/2. Further, for 1y = (0...010...0) with the kth coordinate
r instance, we have ¢, (z) = (g - y, 12/ Y V2 (7. - Yy, / Yo)-

:fficient in Pp(z) of 2" will be denoted by @y, i.e.

on(2) = Z ONn Z™
ne [O,N]

N]¢ we set @, = 0.

: now in position to formulate

3.1. (i) The system of polynomials {p_g)(z) }iex with
2@ = D, x0,2)

ne [m,U]

minimization problem in section 2.2, where the weight& Xjy are determined
the following system of linear equations:

zq)kj in= P k€J, ne[m, U]

jel



Dy = Z Ouk Pj-
ne[m,U]
ting the solution to (3.2) in the form

Xjn=z¢jk¢nk, jEI, ne [m’ U]’
ke J

ress the error of approximation as follows:

[ & s0amaray = 2, 0% £ E,, 7= o

A jel j.kel
By (3.2)- (3.4)

Xjn X = D, j k€T,
ne[m,U]
) can be written alternatively:

jlz @R dFO) = D, 1D Eixpl, z= e,

A jel ne[mU} jeT
theorem 3.1. The system of polynomials defined by (3.1) satisfies (2.7).
th the notation (2.8) we have

Be= Y, Xp0u= D, W Oy=8y jkel,
ne{m,U] leJ
(3.4).
imate the expression (2.6) by presenting first the polynomials (2.5) in the
orm:

2@ =), v b(2).

uwelU
= ell)
|3 ep0rarny -3 tvaee 3 13 Ev,b.
A jel veU jel ne[m,U}] jel

sients Vi, in (3.9) are restricted by condition (2.7) to

z Vin Oni = O, o k€T
ne [m,U]
be shown now that under the restrictions (3.8) inequality (3.7) can be

s follows:

D D gz Y 1Y &i Xl = 2, o & e

ne[mU] jeJ ne[m,U] jeJ jkeJ



6

which in view of (3.5) implies the desired assertions of the theorem.
To this end, consider the Hermitian kernel {K,;,},, nefm,u; With

(3.10) Ky = Oyn -.;I@* B o
jike
By (3.2) - (3.4) it satisfies
Z Kun(pnj=0, j€J, uem,U].

ne{m,U]
Therefore

Z Kun Kny =Ky, 8, v € [m, U]
ne[m,U]

For any system of complex numbers {1} qefm,uj the last identity implies

2 Kun Mu My = Z I z K, Mg2 20,

u,ne[m,U] ue [m,U] ne [m,U]
which by definition (3.10) means that

3.11) Y P22 oy, y;

ne[m,U] jke¥
where
Y= z ﬁn¢nj’ jel
ne [fm,U]
For the special choice of

ﬁn=2 g_] vjrp ne [m, U]
jel
(3.11) reduces to the desired inequality (3.9), since by (3.8) we have

Yk = Z Z & Vin P =& k €T

ne[m,U] jeJ
The proof is complete. <>
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