1992

J.A. Hoogeveen, S.L. van de Velde, B. Veltman

Complexity of scheduling multiprocessor tasks with prespecified processor allocations

Department of Operations Research, Statistics, and System Theory Report BS-R9211 June

CWI is het Centrum voor Wiskunde en Informatica van de Stichting Mathematisch Centrum
CWI is the Centre for Mathematics and Computer Science of the Mathematical Centre Foundation

is the research institute of the Stichting Matherr
founded on February 11, 1946, as a non-profit i
otion of mathematics, computer science, and t
sored by the Dutch Government through the N
sientific research (NWQ).

ight © Stichting Mathematisch Centrum, Amsterd

“which
| at the
5. It is
lization

Complexity of Scheduling Multiprocessor Tasks
with Prespecified Processor Allocations

J.A. Hoogeveen

Department of Mathematics and Computing Science
Eindhoven University of Technology
P.O. Box 513, 5600 MB Eindhoven, The Netherlands

S.L. vande Velde

School of Management Studies, Technology and Innovation
University of Twente
P.O. Box 217, 7500 AE Enschede, The Netherlands

B. Veltman

cwi
P.O. Box 4079, 1009 AB Amsterdam, The Netherlands

Abstract: We investigate the computational complexity of scheduling multiprocessor tasks with
prespecified processor allocations. We consider two criteria: minimizing schedule length and
minimizing the sum of the task completion times. In addition, we investigate the complexity of prob-
lemswhen precedence constraints or release dates are involved.

1980 Mathematics Subject Classification (1985 Revision): 90B35.
Key words & Phrases: Multiprocessor tasks, prespecified processor allocations, makespan total
completion time, release dates, precedence constraints.

1. Introduction

We address a class of multiprocessor scheduling problems. A dollection of r tasks has to be executed
by m processors. TaskJ; (j = 1,..., n) requires processing during a given uninterrupted time p ;. Each
task requires the simultaneous use of a set of prespecified processors for its execution; each processor
can execute at most one task at a time. Such tasks are referred to as multiprocessor tasks. Sometimes,
for each task J; a release date r; on which it becomes available for processing or precedence con-
straints, indicating the set of tasks that have to be completed beforeJ j may start, are specified; we will
state explicitly whether this is the case. We have to determine a schedule, that is, an allocation of each
task J; to a time interval of length p; such that no two tasks on the same processor overlap. The com-
pletion time of task J; in schedule o is denoted by C; (o) or shortly by C;, if no confusion is possible as
to the schedule we refer to. We are interested in two objectives. The first one is to find a schedule that

Report BS-R9211

ISSN 0924-0659

cwi

P.O. Box 4079, 1009 AB Amsterdam, The Netherlands

2

minimizes the makespan C ,x = max;C;. The second objective concerns the minimization of the fotal
completion timeZC;=3" G

In this paper, scheduling problems are denoted using the three-field notation scheme that was pro-
posed by Veltman, Lageweg, and Lenstra [1990] as an extension of the terminology of Graham,
Lawler, Lenstra, and Rinnooy Kan [1979]. In the notation scheme a|B |y, o specifies the processor
environment, B the task characteristics, and y the objective function. Accordingly, the value of y of a
schedule o and the minimal value with respect to y are denoted by (o) and y”, respectively. For
instance, P | fixj,rj | C max refers to the multiprocessor problem of minimizing the makespan, where
for each task a fixed processor allocation and a release date are specified; Pm | ﬁxj Pj=1] 2C; denotes
the multiprocessor problem of minimizing the total completion time, where all processing times are
equal to 1, processor allocations are given, and the number m of processors is specified as part of the
problem type.

In the literature, little attention has been devoted to the complexity of scheduling multiprocessor
tasks. Two branch and bound approaches for P | fix; | € max have been proposed. Bozoki and Richard
[1970] concentrate on incompatibility; two tasks are incompatible if they have at least one processor
in common. Bianco, Dell’Olmo, and Speranza [1991] follow a graph-theoretical approach, and they
determine a class of polynomially solvable instances that corresponds to the class of comparability
graphs. We will investigate the complexity of a class of problems related to P | fix j | € max- The outline
of the paper is as follows.

Section 2 deals with the makespan criterion. The general problem with a fixed number m of proces-
sors is polynomially solvable if m is equal to 2, but NP-hard in the strong sense for m = 3. There are
two well-solvable cases. The first one concerns the case of unit processing times; the problem is then
solvable in polynomial time through an integer programming formulation with a fixed number of vari-
ables. The second one concerns the three-processor problem in which all multiprocessor tasks of the
same type are decreed to be executed consecutively, the so-called block-constraint; this problem is
solvable in O (n Zp;) time. If the number of processors is part of the problem instance, then the prob-
lem with unit processing times is already NP-hard in the strong sense. In general, the introduction of
precedence constraints or release dates leads to strong NP-hardness, with one exception: the problem
with unit processing times in which both the number of processors and the number of distinct release
dates are fixed is solvable in polynomial time through an integer programming formulation with a
fixed number of variables. The computational complexity of the problem Pm | fixj,rj,pi=1 | C max 18
still open. .

Section 3 deals with the total completion time criterion. In general, this criterion leads to severe
computational difficulties. The problem is NP-hard in the ordinary sense for m =2 and in the strong
sense for m =3. The weighted version and the problem with precedence constraints are already NP-
hard in the strong sense for m =2. The problem with unit time processing times is NP-hard in the strong
sense if the number of processors is part of the problem instance, but still open in case of a fixed
number of processors. Another open problem is Pm | fix;,r;,pj=1|2C;.

2. Makespan

In this section, we investigate the computational complexity of minimizing the makespan. If no pre-
cedence relation is specified, then we may discard the tasks that need all the processors for execution,
since they can be scheduled ahead of the other ones. Hence, the two-processor problem without pre-
cedence constraints is simply solved by scheduling each single-processor task on its processor
without causing idle time.

2.1. The block-constraint and pseudopolynomiality on three processors

The block-constraint decrees that all biprocessor tasks of the same type are scheduled consecutively.
As this boils down to the case that there is at most one biprocessor task of each type, we replace all
biprocessor tasks of the same type by one task of this type with processing time equal to the sum of the
individual processing times. The biprocessor task that requires M, and M5 is named a task of type A
and its processing time is denoted by p, . Correspondingly, the biprocessor task that requires M, and
M 3 and the biprocessor task that requires M ; and M, are said to be of type Band C, respectively; their
processing times are denoted by pg and p¢.

M, B
_______________ c
M,
A b
M; B

Figure 1. A schedule satisfying the block-constraint.

Theorem 1. The problem P3| Jix; | C max subject to the block-constraint is NP-hard in the ordinary
sense.

Proof. We will show that P3| fix; | C max subject to the block-constraint is NP-hard by a reduction
from the NP-complete problem Partition.

Partition

Given a multiset N ={a,...,a,} of n integers, is it possible to partitioﬁ N into two disjoint subsets
that have equal sum b =3 cya;/2?

Given an instance of Partition, define for each jEN a task J ; that requires M; for execution and has
processing time p;=a;. In addition, we introduce five separation tasks that create two time slots of
length b on M ;. The tasks J4, Jp, and J, each with processing time b, are of the type A, B, and C,
respectively. The two single-processor tasks J,,,; and J,,,, each with processing time 2b, have to be
executed by M, and M 5, respectively.

Note that each processor has a load of 4b, which implies that 4b is a lower bound on the makespan of
any feasible schedule. We will show that Partition has a solution if and only if there exists a schedule

4

for the corresponding instance of P3| fix; | C ymay With C pay s4b.

Suppose that there exists a subset SCN such that Z;e5a;=3;ey_ga;=b. A schedule of length
C max = 4b then exists, as is illustrated in Figure 2.

Conversely, notice that only four possibilities exist to schedule the tasksJ,, .1,/ 42,J4,J/5,andJ¢ in
atime interval of length 4b. Each of these possibilities leaves two separated idle periods of length b on
processor M 1, in which the tasks J; with jEN must be processed. Thus, if there exists a schedule of
length C 5, = 4b, then there is a subset.S CN such that 3;eqa; =2 jen _sa;.

We conclude that P3| fix; | C pax is NP-hard in the ordinary sense. [

S B N-S

Jn+1

B Jn+2

A

0 b 2b 3b 4b

Figure 2. A schedule with partition sets .S and N -S.

Theorem 2. The problem P3| fix; | C ynax subject to the block-constraint is solvable in pseudopolyno-
mial time.

Proof. We propose an algorithm for this problem that requires O (nZ;ey p;) time and space. For
i=1,2,3, let T; denote the set of indices of tasks that require only M; for processing, and n;=|T;|. In
addition, we define p(S) =Z g p;-

Using an interchange argument, we can transform any optimal schedule into an optimal schedule
with some biprocessor task scheduled first and some other biprocessor task scheduled last. Suppose
for the moment that these tasks are of type A and C, respectively; a B-type task is then scheduled some-
where in between. Any feasible schedule of this type, referred to as an ABC-schedule, is completely
specified by the subsets Q1 CT'; and Q3CT '3 scheduled before the B-type task; see Figure 3.

Q1 B T-01
T,
03 B T3-Q;

Figure 3. Structure of an ABC schedule.

For an ABC-schedule with given subsets O and Q 3, the earliest start time of the task of type B is
Sp(Q1,Q3)=max{p(Q1), pa +p (Q3)}.

rt time of the task of type C is then

(Q1,03)=max{Sp(Q1,03) +ps +p(T1-01), pa +p(T2)}

ngth of such a schedule is therefore

1ax(Q 1,Q3) =max{Sc(Q1,Q3) +pc, Sp(Q@1,03) +pp +p (T3-03)} ¢))

iimal length of an ABC-schedule is determined by p(Q;) and p (Q3). In other words,
n optimal ABC-schedule is equal to the minimum of C ,,,(Q1,0Q3) over all possible
1) and p(Q3). Due to symmetry, we can transform any ABC-schedule into an CBA-
same length. The only other types of schedules of interest to us are therefore the BAC
lules. Similar arguments show that the length of an optimal BAC-schedule is equal to
if C max (Q2,Q3) over all possible values of p(Q5) and p (Q3), and that the length of an
chedule is equal to the minimum of C . (Q1,Q>) over all possible values of p(Q)

, we compute all possible values that p (Q;) can assume in O (n;p (T;)) time and space
ynamic programming algorithm of the type also used for the knapsack and the subset-
see e.g. Martello and Toth [1990]. If these values are put in sorted lists, then all possi-
- Sp(Q1,0Q3) can assume are computed in O (p(Q;)+p(Q3)) time and space. The
nax(Q1,Q3)overp (@) and p (Q3) is then determined by evaluating expression (1) for
»mbination of p (Q) and p (Q 3); this takes O (p (T'1)+p (T3)) time.

of the optimal BAC and ACB-schedules are determined similarly. The overall
follows immediately, and an optimal schedule is determined by backtracing. Since
)< X ey pj for each i, it takes O (n2;enp;) time and space to find an optimal schedule.

r allocation processing time
1 My & M5 (typeA) ' Pa
] M & M5 (type B) DB
] My &M, (type C) Pc

M, pa+b
i M, pa+b+p,
! M 1 ~— Py
) M, Dz
14 M 2 DPr +b +py

M3 Pcpy

M; PcDyp:

Table 1. Separation tasks for P3| fix; | C max-

6

2.2. Strong NP-hardness for the general 3-processor problem
Theorem 3. The problem P 3| fix; | C pay is NP-hard in the strong sense.
Proof. The proof is based upon a reduction from the strongly NP-complete problem 3-Partition.

3-Partition

Given an integer b and a multiset N ={ay , ..., a3,} of 3n positive integers with b/4 < a; <b/2 and
2iaa j =nb, is there a partition of N into n mutually disjoint subsets N1, . .., N,, such that the elements
inN;adduptob,forj=1,.

Given an instance of 3-Partition, we construct the following instance of P3| fix; | C ax. There are 3n
single-processor tasks J; that correspond to the elements of 3-Partition; these tasks have to be exe-
cuted by M3 and their processing time is equal to a;, for j =1,..., 3n. In addition, there are 3 bipro-
cessor separation tasks and Sn -1 single-processor separation tasks; there processing times and pro-
cessing requirements are defined in Table 1. Here we define

p=(n+1)b,

py =(n+1)(b+pg),
=(n+1)(b+pp+p,),

Pc =(n+1)(b+pp+py+p,),

pa =(n+1)(b+pp+py+p,+pc).

Note that each processor has a processing load equal to Y = (ps +pp+pc+py+p,+b)-p,, which implies
that y is a lower bound on the makespan of any schedule. We will show that 3-Partition has an
affirmative answer if and only if there exists a schedule with makespan at most y for the corresponding
instance of P3| fix; | C ya.

If 3-Partition has an affirmative answer, then a schedule with makespan C ,, <7 exists, as is illus-
trated in Figure 4.

patb | B | p, c patb+p, | B \p, | e c pat+bip, | B | p, c
A pe+b+p, Pz 4 pptbip, | oo Dz 4 pe+b+p,

b | B | pctpytp, b |B| - PcPy+P; b | B | pctp,
0 Y

Figure 4. Structure for P3| fix; | C may: ABCAB - - - CABC.

Conversely, suppose that C ., <7. Note that a schedule with makespan y has no idle time. To avoid
idle time at the start of a biprocessor task, both processors on which it has to be executed must have

7

equal load. Hence, at the start of a task of type A, there exist integers
K1,K2,Kq,Ks5,K6 ,K7 €(0,...,n}, k30, ..,n-1},kg&{0,1}, and a set TCN such that

K1PA+K2PCHK3P+K4 (Dp+b+Dy) =Ks pa+Kepp+K7(PC+py+p)+ s(Pe+py 4 Zjerpy. (2)

Due to the choice of the processing times of the separation tasks, we draw the following conclusions:
- the sum %;erp; is a multiple of b, since p,, pg, pc, py, and p, are multiples of b,
- Zjerpj =K4b, since all other terms are multiples of (n +1)b,
- Ki =Ks, since ps >n(pc+p,+py+pp+b),
- Kp =K7+Kg, Since pc>n (p,+p,+pg+b),
- K3 =Ky, since p,>n(p,+pp+b),
- K4 =K7+Kg, since p,>n (pg+b), and
- K4 =Kg,since Z;crpj=K4b.
It follows that

K1 =Ks5, Ky =K4 =K¢ =K7+Kg, K3 =K7, K4b =Zerp;. 3)

Analogous computations lead to similar relations that should hold at the start of a task of type Band C,
respectively.

We will make extensive use of these relations in our analysis of the form that a schedule with mak-
espan y should have. Using an interchange argument, we see that there exists an optimal schedule in
which a biprocessor task starts at time 0. We analyze the case that the first biprocessor task is of type B
and that the next biprocessor task of another type is of type A; this case will be denoted as case BA.
Hence, we have that no tasks of type A and C and at least one task of type B have been executed at the
start of the first task of type A: k; =%, =«5 =0 and k¢ = 1. Expression (3), however, decrees that
K3 =Ks5, which yields a contradiction. Therefore, case BA cannot occur. A continued application of
this argument shows that any schedule with makespan y should have the form as displayed in Figure 4,
or its mirror image. A schedule with this structure determines n separate periods of length b on proces-
sor M 3, in which the remaining single-processor tasks have to be scheduled. These tasks correspond
to the 3n elements of 3-Partition. We conclude that, if a schedule of length y exists, then a solution to
3-Partition is obtained by taking the partition of N as defined by the schedule. We conclude that
P3| fix; | C pmay is NP-hard in the strong sense. [

2.3. Unit execution times, release dates, and precedence constraints

In this section, we show that the Prm | fix;,pj=1|C may problem is solvable in polynomial time by pro-
viding an integer linear programming formulation with a fixed number of variables; a problem that
allows such a formulation is solvable in polynomial time [H.W. Lenstra, Jr., 1983]. A similar
approach is given by Blazewicz, Drabowski and Weglarz [1986].

Consider an arbitrary instance of the problem. There are at most M =2"-1 tasks of a different type;
let these types be numbered 1, . .., M. We can denote the instance by a vectorb=(b 4, . . ., bys) in which
component b; indicates the number of tasks of type j. A collection of tasks is called compatible if all
these tasks can be executed in parallel; hence, a compatible collection of tasks contains at most one
task of each type. A compatible collection is denoted by a {0, 1}-vector ¢ of length M with ¢ ;=1if the

8

collection contains a task of type j and zero otherwise. There are at most K =21 different compati-
ble collections; this number is fixed, as M is fixed. Let the collections be numbered 1, ...,K; let the
vectors indicating the collections be denoted by ¢4, ...,ck. The problem of finding a schedule of
minimal length is then equivalent to the problem of finding a decomposition of this instance into a
minimum number of compatible collections. Formally, we wish to minimize ZK -1%; subject to
Zf_l cjx;=b, x; integer and nonnegative. As the number of variables in this integer hnear programmmg
formulation is fixed, we have proven the following theorem.

Theorem4. The Pm | fix;,p; = 1| C oy problem is solvable in polynomial time. [

If the number of processors is specified as part of the problem type, implying that this number is no
longer fixed, then things get worse from a complexity point of view. This is stated in the following
theorem.

Theorem 5. The P | fix;,p; = 1| C oy problem is NP-hard in the strong sense.

Proof. The proof is based upon a reduction from the strongly NP-complete problem Graph 3-
Colorability. A similar approach is used by Blazewicz, Lenstra, and Rinnooy Kan [1983].

Graph 3-Colorability
Given a graph G=(V,E), does there exist a 3-coloring, that is, a function f:V->{1,2,3} such that
f (u)=f (v) whenever {u,v}EE?

Given an arbitrary instance G =(V,E) of Graph 3-Colorability, we construct the following instance of
P | fix;,pj=1|C max- There are |V | tasks Jy,...,J |v| and |E | processors M, ... Mg . AtaskJ,
has to be processed by M, if u€e. We claim that there exists a 3-coloring for G if and only if there
exists a schedule of length at most 3. Suppose that a 3-coloring of G exists. Since no two nodes u and v
with the same color are adjacent, the corresponding tasks J,, and J, require different processors.
Hence, all tasks that correspond to identically colored nodes can be executed in parallel. This gen-
erates a schedule with length no more than 3. Conversely, in a schedule with length at most 3 we have
that the nodes corresponding to tasks scheduled in time period ¢ (¢ = 1,2,3) are independent; therefore,
these nodes can be given the same color. This leads to a 3-coloring of G. Thus, P | fixj,pj=1 | C max 18
NP-hard in the strong sense. [

Corollary 1. For P | fixj,pj=1 |C max> there exists no polynomial approximation algorithm with per-
formance ratio smaller than 4/3, unlessP =NP. [

The introduction of precedence constraints ieaves little hope of finding polynomial-time optimization
algorithms. Even the two-processor problem with unit execution times and the simplest possible pre-
cedence relation structure, a collection of vertex-disjoint chains, is already NP-hard in the strong
sense.

eP2|chain,fix;,p; = 1| C pax problem is NP-hard in the strong sense.

of is based upon a reduction from 3-Partition and follows an approach of Blazewicz,
nnooy Kan [1983]. Given an arbitrary instance of 3-Partition, we construct the follow-
P2|chain,fix;,p;=1|C na. Each element a; corresponds to a chain K; of 2a; tasks;
1sists of a; tasks that have to be executed by M; and the second part also consists of a;
‘0 be executed by M. In addition, there is a chain L of 2nb tasks; groups of b tasks have
rexecutedby M, and M ;.

there exists a partition of N into N ¢, ..., N, that yields an affirmative answer to 3-
sible schedule with makespan no more than 2nb is then obtained as follows. The chain
ccording to its requirements; the execution of L is completed at time 2nb. Now M ; and
he intervals [2(-1)b, (2i —1)b] and [(2i -1)b, 2ib] (=1, .. .,n), respectively. For each
is now possible to schedule the three chains corresponding to the elements of N; in
)b}and [(2i -1)b, 2ib].
suppose that there exists a feasible schedule with makespan no more than 2nb. It is
chedule contains no idle time. Let N; be the index set of the chains K; that are com-
erval [(2i -1)b, 2ib]. It is impossible that Z;cx, a; > b due to the definition of N;. The
» cannot occur either, since this would lead to idle time in [b, 2b]. Therefore, we must
aj=b. Through a repetition of this argument, it can be easily proven that Ny, ..., N,
lution to 3-Partition. [

n of release dates has a similar inconvenient effect on the computational complexity.
e P2|fix;,r; | C max problem is NP-hard in the strong sense.

of is again based upon a reduction from 3-Partition. Given an arbitrary instance of 3-
nstruct the following instance of P2 | fix;,r; | C max. For each element a;, we define a
:aj and r; =0 that has to be executed by M . Furthermore, there are n tasks K; with pro-
and release date r; =(j~1)(b+€), for j=1,...,n and ¢ sufficiently small; these tasks
suted by M. Finally, there are n—1 biprocessor tasks L; with processing time € and
=jb+(j-1)g, for I=1,...,n-1. It is easy to see that 3-Partition has an affirmative
Wly if there exists a feasible schedule for P2| fix;, r; | C max With C oy snb+(n-1)e. O

ase Pm | fix;,rj,pj=1|Crax Where the number s of distinct release dates is fixed.
o our analysis of Pm|fix;,pj=1|Cpa, we can transform any instance of
=1|C nax into an integer linear programming problem with a fixed number of vari-
proven the following theorem.

ePm | fixj,rj,pj=1 | C max problem with a fixed number of distinct release dates is solv-
al time. OJ

1pletion times

, we investigate the computational complexity of our type of scheduling problems when
\nimize total completion time. Our main result is establishing NP-hardness in the ordi-
P2| fix; |=C ;- The question whether this problem is solvable in pseudopolynomial time
the strong sense still has to be resolved. The weighted version, however, is NP-hard in
se. We start with an easy observation. Given an instance, let the maximal processing
*d by p max=max;p;.

. There is an optimal schedule for P | fix; | 2C; in which the tasks that require all proces-
tion during p max time are scheduled last, if they exist. [1

ler a schedule o for P | fix;|=C ; in which the task J that needs all processors for execu-
ME pmax is not scheduled last. The interchange illustrated in Figure 5 generates a

rith 2C;(0*) = ZC;(0)+p (B)-{p (B)/P max] P max < ZC;(0), where p (B) =3jepp;- O

A -J B — A B J

o o*

Figure 5. The interchange.
ess for the 2-processor problem.
he P2| fix;| =C; problem is NP-hard.
»of is based upon a reduction from the NP-complete problem Even-Odd Partition.

tition

iet of 2n positive integersA ={a1,...,as,} suchthata; <a;,; (i=1,...,2n-1), is there
7 into two disjoint subsets A ; and A , with equal sum b =2?"4;/2 and such thatA ; con-
neof{ay;_y,a4}, foreachi=1,...,n?

istance of Even-Odd Partition, define p =(n2+1)b, g=n?(n*+1)(n+1)p, and
1)(aj_1+a;)y+n*(n+1)b. We construct the following instance of P2| fix;| =C;. Each
responds to a partition task J; with processing time p; =nb +a; that has to be executed
tion, we define n2+3 extra tasks. There are n2 identical tasks Q; G =1,...,n%) withpro-
p (n+1) that have to be executed by M5, a task K with processing time p that has to be
1,, a biprocessor task L with processing time p, and a task P with processing time

has to be executed by M;. We will show that Even-Odd Partition is answered
f and only if there exists a schedule for the corresponding instance of P2 | fix; | 2C; with
n time no more than the threshold ‘

11
y =(2n2+4n+8)p +q+r.

Suppose that there exist subsets A ; and A , that lead to an affirmative answer to Even-Odd Partition.
Then there exists a schedule o* with total completion time no more thany, as is illustrated in Figure 6:
the completion times of the extra tasks add up to (222+2n +8)p +g, the sum of the completion times of
the partition tasks is equal to 2np +r.

A, A, P
K ’ Q 1 e Qn 2
0)/ 2p 3p (n+4)p

Figure 6. The schedule o* with partition sets A and A ,.

Conversely, suppose that there exists a schedule o with total completion time no more than y. We
first show that the extra tasks in o must be scheduled according to the pattern of Figure 6.

A straightforward computation shows that task P and the O-tasks must be completed after all other
tasks in 0. Suppose that task L precedes task K, and that m partition tasks are completed before L starts.
Note that m = n; otherwise, task K could be scheduled parallel to the m partition tasks, without increas-
ing the completion time of any other job. If we compare this schedule with o*, then task L turns out to
be the only task with smaller completion time; this gain is more than offset by the increase of comple-
tion time of task K. Hence, in order to satisfy the threshold, the extra jobs must be scheduled according
to the pattern of Figure 6.

We now show that, if 2C; (o) sy, then the partition tasks must constitute an affirmative answer to
Even-Odd Partition. First, suppose that the partition tasks before L in o have total processing time
smaller than p, implying that at most » partition tasks are scheduled before L. Then the total comple-
tion time of the partition jobs amounts to at least r +2np, the total completion time of the Q-tasks, task
K, and task L is equal to the total completion time of these tasks in o*, and the completion time of task
P is greater than 3p+(2n +2)p, implying that the threshold is exceeded. Hence, the total processing
time of the partition tasks before task L amounts to at least p.

Now suppose that m partition tasks with total processing time p +x precede task L. Comparing o
with o* shows that the total completion time of the extra jobs in o is x(n%+1) greater and that the
difference in total completion time of the partition tasks is no more than 2p (n —m)+x(2n ~m) in favor
of 0. If m =n, then the difference in total completion time between o* and o is at least equal to
x(n?+1) -xn in favor of o*; x > 0 then clearly implies that the threshold will be exceeded. In case
m >n, we wish to show that x(n2+1) > 2p (n -m)+x(2n-m), which boils down to showing that
x(n%+1-2n+m) > 2p (n-m). As the left-hand-side of the inequality is positive and the right-hand-
side negative, we have that the case m > n leads to an excess of the threshold. Hence, exactly n parti-
tion tasks with total processing time equal to p must precede task L in o. The total completion time of
the partition tasks is equal to 2np +n (P +P[1)2) + *** + (P [)1+P [n 2, Where ppy and py;, denote
the processing time of the [i]th partition task before L and after L, respectively. It is easy to see that the
threshold can only be met if {p ;1 ,p[ijp} ={P2i-1 P2l Tori=1,...,n Define A | andA , as the set of

12

partition tasks before L and after L in o, respectively. As the total processing time of the tasks in A
amounts to n2b+3, aj=p=(n 2+1)b, we have that the corresponding subset of partition elements has
sum equal to b. Furthermore, A ; contains exactly one element from every pair {@;_; ,a,;}; hence, the
subsets A | and A , lead an affirmative answer to Even-Odd Partition. [J

Theorem 10. The P2 | fix; | Zw;C; problem is NP-hard in the strong sense.

Proof. The proof is based upon a reduction from 3-Partition. Given an arbitrary instance of 3-
Partition, we construct the following instance of P2 | fix; | 2w;C;. Each element a; corresponds to a
task J; with processing time a; and unit weight that has to be executed by M ;. In addition, there are n
tasks K; with processing time b and weight 2(j +a.—1)p that have to be executed by M, and n;, bipro-
cessor tasks L; with processing time b and weight (2j-1)B, where a=3n(2n-1), B=ab, and
ny =a+n-1.

Suppose that there exists a partition of N into N,...,N, that yields an affirmative answer to 3-
Partition. A feasible schedule with sum of weighted completion times no more than
y =B+ZE 1w (2(n —k)+1)b+2f wi(2n +a-D)b+2 4.y wi(2n -2(] —a))b is then obtained by schedul-
ing the tasks as illustrated in Figure 7.

Conversely, suppose that there exists a schedule o with sum of weighted completion times no more
than y. Straightforward computations show that the K-tasks and the L-tasks have to be scheduled as
indicated in Figure 7 and that the tasksJ; have to be scheduled in the time slots parallel to the K-tasks.
Let N; denote the set of J-tasks that are scheduled parallel to K j; thesets Ny, ..., N, constitute a solu-
tion to 3-Partition. [J

N, Not | | e Ny |] e
Ly, LnL—l Lo Loy L,

L

K, Ky | | K, | T |
0 b 2b 2nb
Figure 7. A schedule for P2| fix; | Ew;C; with Zw;C; sy.

3.2. Strong NP-hardness for the general 3-processor problem
Theorem 11. The P3| fix; [=C j problem is NP-hard in the strong sense.

Proof. The proof is based upon a reduction from the decision version of the P3| fix; | C yay problem,
which was shown to be NP-complete in Section 2.2. The decision version of P3 | fix; | C max is defined
as the following question: given an instance of P3| fix; | C max and a threshold b, does there exist a
schedule o with makespan no more than b?

Given an arbitrary instance of P3| fix; | C max and a threshold b, we construct the decision instance
of P3| fix;|=C ; by adding nb +1 identical triprocessor tasks K; with processing time p .. The
corresponding threshold is equal to y = b +Z23! (b +kp max)-

13

f Proposition 1 shows that there is an optimal schedule with the K-tasks executed last.
K-tasks is such that the threshold will be exceeded if the first K-task starts later than b.
sion variant of P3| fix; | 2C; has an affirmative answer if and only if the decision vari-
C max has an affirmative answer.

: number of tasks needed in our reduction is pseudopolynomially bounded. We con-
ix; | =C; is NP-hard in the strong sense. [J

ion times and precedence constraints .

ve address the complexity of minimizing total completion time in case of unit process-
show that P | Jix; ,pj=1 | ZC; is NP-hard in the strong sense; the complexity of this
ixed number of processors is still open.

1¢ P | fix; ,pj = 1| 2C; problem is NP-hard in the strong sense.

of of this theorem is based upon a reduction from P | fix; ,pj = 1|C pa; it proceeds
lines as the proof of the previous theorem. Given an instance of P | fixj,pj=1 | € maxs
‘hat require all processors for execution; application of Proposition 1 shows that these
umed to be executed after all other tasks. By choosing w suitably large, we obtain the
he threshold of P |fix;,p;=1|ZC; is exceeded if and only if the threshold of
~ max i8 exceeded. As the decision variant of P | fixj,pj=1 | € max is NP-complete in the
1as w is polynomially bounded, we conclude that P | fixj,pj=1 |=C j is NP-hard in the
I

sected, the addition of precedence constraints does not have a positive effect on the
omplexity. We show that even the mildest non-trivial problem of this type, with two
:hain-type precedence constraints, is NP-hard in the strong sense.

1e P2| chain, fix;,p;=1| ZC; problem is NP-hard in the strong sense.

f is based upon the same reduction as used in the proof of Theorem 6, only the thres-
the number of tasks is equal to 2nb, and as each task has unit processing time, an obvi-
d on the total completion time is equal to y =2nb (2nb +1); this bound can only be
1edule without idle time in which both processors execute nb tasks. Hence, there exists
total completion time no more than y if and only if there exists a schedule with mak-
han b. We conclude that P2 | chain, fix;,pj=1| ZC; is NP-hard in the strong sense. []

nent
h to express their gratitude towards Jan Karel Lenstra for his helpful comments.

14

References

L. Bianco, P. Dell’Olmo, M.G. Speranza (1991). On scheduling independent tasks with dedicated
resources. Program and Abstracts, 14th Internat. Symp. Math. Programming, Amsterdam.

J. Blazewicz, M. Drabowski, J. Weglarz (1986). Scheduling multiprocessor tasks to minimize
schedule length. IEEE Trans. Comput. C-35,389-393.

J. Blazewicz, J.K. Lenstra, A.H.G. Rinnooy Kan (1983). Scheduling subject to resource constraints:
classification and complexity. Discrete Appl. Math. 5,11-24.

G. Bozoki, J.P. Richard (1970). A branch-and-bound algorithm for the continuous-process task shop
scheduling problem. AIIE Trans. 2, 246-252.

M.R. Garey, D.S. Johnson (1979). Computers and Intractability: a Guide to the Theory of NP-
Completeness, Freeman, San Francisco.

R.L. Graham, E.L. Lawler, J.K. Lenstra, A.H.G. Rinnooy Kan (1979). Optimization and approxima-
tion in deterministic sequencing and scheduling: a survey. Ann. Discrete Math. 5,287-326.

H.W. Lenstra, Jr. (1983). Integer programming with a fixed number of variables. Math. Oper. Res. 8,
538-548.

J.K. Lenstra, A.H.G. Rinnooy Kan, P. Brucker (1977). Complexity of machine scheduling problems,
Ann. Discrete Math. 1,343-362.

S. Martello, P.Toth (1990). Knapsack Problems: Algorithms and Computer Implementations, Wiley,
Chichester.

B. Veltman, B.J. Lageweg, J.K. Lenstra (1990). Multiprocessor scheduling with coramunication
delays. Parallel Comput. 16,173-182.

