1992

R.T.P. Fernando

Provably recursive programs

Computer Science/Department of Software Technology Report CS-R9212 Marcl-l

i

>entrum voor Wiskunde en Informatica van de Stichting Mathematisch Centrum
entre for Mathematics and Computer Science of the Mathematical Centre Foundation

CWI is the research institute of the Stichting Mathematisch Centrun
was founded on February 11, 1946, as a non-profit institution aimin
promotion of mathematics, computer science, and their applicatior
sponsored by the Dutch Government through the Netherlands orge
for scientific research (NWO).

Copyright © Stichting Mathematisch Centrum, Amsterdam

Provably Recursive Programs

Tim Fernando
fernando@cwi.nl

CWI, P.O. Box 4079, 1009 AB Amsterdam, The Netherlands

Abstract. The “absoluteness” of the recursion-theoretic notion of compu-
tation is contrasted with the “relative” character of formal proofs. Certain
cracks in the correspondence, relativized to a (single) formal theory, between
proofs and programs (of bounded complexity) are exposed, and linked to
(in-)completeness for I7{-sentences.

1991 Mathematics Subject Classification: 03B70.

1991 Computing Reviews Categories: D.3.1.

Key words and phrases: absoluteness, Church’s thesis, incompleteness, prov-
ably recursive functions, proofs as programs.

Note: The present paper is a revision of {(and supersedes) the conference
paper Fernando [7]. The author is gratefully indebted to Prof, S. Feferman
for supervision, to CWI for refuge, and to the Netherlands Organization for
Scientific Research (NWO project NF 102/62-356, ‘Structural and Semantic
Parallels in Natural Languages and Programming Languages’) for funding.

The present paper is, very broadly speaking, about the relationship between logical
notions of computation and of deduction. The standard recursion-theoretic account
of (finitary) computation (in terms, say, of Turing machines) is, as Godel [10] re-
marked in 1946, “absolute” in that it does not depend “on the formalism chosen.”
By contrast, the notion of a deduction (i.e., proof) takes on a definite meaning only
when relativized to a formal theory, at which point the notion then becomes sub-
ject to (Godel) incompleteness. Church’s thesis, on the other hand, asserts that the
recursion-theoretic notion of computation! is stable and robust. So, from a formal
logical perspective, computation and deduction differ fundamentally.

Another point of view, common in so-called constructive mathematics, is that
proofs and programs come to the same thing. Typically, the programs considered
under such a view terminate on all inputs — i.e., are total. This is because the view
is often based on some scheme for extracting programs from proofs of IT-sentences
— programs that ever since Kleene’s 1945 realizability interpretation (Kleene [11])
have been required to be total —, or on a Curry-Howard-de Bruign isomorphism be-
tween a certain system of natural deduction and a typed A-calculus, both of which
enjoy normalization (see, for example, Girard, Lafont and Taylor [8]). Inasmuch as

1 There is some vagueness here as to whether functions or programs are meant. Rigorous
statements refer to functions, although a stronger assertion concerning a notion interme-
diate between that of functions and (a particular system of) programs could be made, if
only that notion could be spelled out precisely.

Report CS-R9212

ISSN 0169-118X

CWi

P.O. Box 4079, 1009 AB Amsterdam, The Netherlands

 basis of such a view can be formalized, it is natural to test the correspondence
ween proofs and programs relativized to some formal theory 7. A minimal re-
rement on a program captured under such a correspondence is that T prove its
ality. Indeed, a standard proof-theoretic measure of the computational content
a formal theory T is the collection of its so-called provably recursive functions,
., the functions computed by programs T proves total. An investigation of the
)grams behind such functions, however, reveals defects in the correspondence be-
:en proofs and programs that can be traced to the conflict between “absoluteness”
1 “relativeness” mentioned above.

Basic definitions and facts

be precise, fix a standard enumeration {¢,}¢<, of unary partial recursive func-
as, for example, the Godel numbers of Turing machines. (The choice of basic
nputational mechanisms is inessential.) Let

L be some formal predicate language (given say by {+, X,0,1} and/or symbols
for all primitive recursive functions) from which formal theories T are drawn?,
T be an L-formula expressing (the appropriate analog for the enumeration to)
Kleene’s Ty-predicate, where recall that the intuition is that

Ty (e, n, m) iff m codes a computation of e on input = ,

and
Tot(z) be YuIvT (z,u, v).

e provably recursive functions of T form the class

Fen(T) := {p. | T |- Tot(é)}

1ere é is the L-numeral of e), while the provably recursive programs of T form the
38

Pgm(T):={e | T} Tot(¢)} .
kt, for every program e, let

ce be the partial recursive function that returns computations (in the sense of

T;)
ce(n) >~ pm Ty(e,n,m) ,

and

“he logic of the theories considered below is assumed to be classical, the point being that
ince all intuitionistic proofs are classical, limitations on classical proofs carry over to
atuitionistic proofs. (Furthermore, it is well-known that for various theories the choice
f logic is immaterial, See, for starters, Godel [9], and A.S. Troelstra’s accompanying
atroductory note.)

» the partial recursive function that gives the running time of e
te(n) ~ number of steps before e halts on input = .

that t. and c. are primitive recursively related — i.e., t, = hoc, and ¢, =
primitive recursive functions h and g.. Define the class Er of programs (with
tions) bounded by T as the collection of programs e such that ¢, € Fen(T),
alently, if T contains primitive recursive arithmetic (PRA), t. € Fen(T).
i a program e for a function in Fen(T) need not belong to Er since c.
t be in Fen(T'). Some basic relationships between the notions are given by

tion 1. Let T be a theory containing PRA.

T)C Er.

omputes a total recursive function with t, < t. a.e. for some ' € Pgm(T),
e € Erp.

: Eq then ¢, € Fen(T).

: For every program e, ¢, is computed by the program that on input n looks
rst m such that T;(e,n,m). The latter program belongs to Pgm(T') when
7).

7e that there is an (increasing) primitive recursive function g such that for

ce(n) ~ um < g(tz(n)) T1(é,n,m) .

e compute a total function with t.(n) < to(n) + N, for some €' € Pgm(T)
. N < w. Then ¢, is computed by the program that on input n finds the
g(ter(n) + N) such that T1(e,n,m). This program is provably total in T'.
E'r, then . is the composition of a function in Fen(T') (namely, c.) with
output extraction function (also, in Fen(T')). 4

that, in accordance with practice, Fen(T") forms a (time-)complexity class
contains PRA) in the sense that

() whenever T |- Tot(e) and t.r < ., pes € Fen(T).

sts that perhaps there is a nice match between computation and deduction
s bounds on computation are imposed. But computation has to do with
, and the question arises as to whether (*) can be strenghtened to

(x*) whenever T |- Tot(e) and to < t., T |- Tot(e').

ately, (**) in general fails. An easy counter-example is provided by the
definitions (where L is some contradiction such as 0=1) pointed out to the
r 8. Feferman and also S. Buss

e' : on input n, check if n codes a T-proof of L;

return 0 if it does, and loop, otherwise.
e : on input n, check if n codes a T-proof of L;

in either case, return 0 after calculating 1 + 1.

Note that T |- T'ot(e), but that if T is consistent, T |¢ Tot(e') (by Godel’s second
incompleteness theorem), even though t./ < t,.

As pathological as the above counter-example may seem, let us try to understand
what is going on here. Toward this end, call a theory T downward closed (d.c.) if for
every e it proves total, every e’ computing . with £, < t. is also proved total.

Theorem 2. For consistent extensions T' of PRA, the following are equivalent:

1. Pgm(T) = Er.
2. Tisd.c.
3. T proves every true II?-sentence.

Proof. 1 = 2: An immediate consequence of Proposition 1.

2= 3: The idea is contained in the counter-example above: given a decidable predi-
cate x(z) for which Vzx(z) is true, build padded programs for the constant function
0 that on input n checks if x(n) holds

/

e :on input n, check if x(n) holds;
return 0 if it does, and loop, otherwise.
e : on input n, check if x(n) holds;
in either case, return 0 after calculating 1 + 1.

(A somewhat more elaborate argument that brings out the notion of a “d.c. reduc-
tion” is given in Fernando [7].)

3 = 1: For Pgm(T') to contain Er, it suffices that T' prove the true IT-sentences
VuYv T(e',u,v) AVw < v=T (', u,w) D T(é,u,U(v)),

(where U expresses Kleene's output extraction function) for all pairs (e, €') such that
e € Er, ¢’ € Pgm(T), and for every n < w, T1(e,n, per(n)). -

Theorem 2 establishes a tight connection between bounded computation and I9-
sentences, showing, in particular, that no r.e. extension of PRA can be d.c.

Since not all primitive recursive functions may be deemed “feasible”, it would be
natural to try to push down the assumed strength of T' in Theorem 2 below prim-
itive recursive arithmetic (say to a system whose provably recursive functions are
the Kalmar elementary functions adequate for elementary recursion-theoretic results
such as the Kleene normal form theorem). Alternatively, the notion of downward clo-
sure can be refined to focus, for instance, on programs of a certain complexity.

Theorem 3. Assume T is a consistent theory that proves total some program é with
quadratic running time. Suppose further that for every e € Pgm(T) with quadratic
running time, if ¢’ computes p. with running time a.e. less than that of e, then
¢' € Pgm(T'). Then T is I1?-hard.

Proof. Let f be the total recursive function that on input e returns the code of a
program that on input n does the following:

run program e on input e for at most (length of) n steps; if this computation
(of ¢e(e)) terminates within (length of) n steps, loop forever; otherwise, run
€ on input n.

Now, it is easy to construct a “padded” copy of ¢é in Pgm(T') with quadratic running
time greater (a.e.) than that of every program f(e) that is total. Hence, it follows
that for every e < w,

@e(e) 1 T |- Tot(f(e)) ,

as required. -

Theorem 3 (the proof of which is essentially that of the Rice-Shapiro theorem) dra-
matizes the futility of introducing fast growing functions to obtain an r.e. theory
whose provably recursive programs include all programs of a modest complexity.
The argument behind it and 2 = 3 in Theorem 2 depend crucially on “reduction
through padding” (explained in detail in Fernando [7]). That is, an appeal is made to
programs that are easily recognized to be non-optimal. It is natural to ask whether
such programs can be abstracted away or whether padding is an intrinsic (unavoid-
able) feature of computation. This question is taken up in the next section.

2 Optimizability and speed-ups

Contrasting (*) with Theorems 2 and 3, an obvious moral to draw is that care must
be exercised when passing from a program e to the function .. Complexity is a prop-
erty of programs, and is only indirectly defined for functions. A fundamental result
in complexity theory, Blum’s speed-up theorem [1], states that there are functions,
every program for which can be sped up. By contrast, a diagonalization argument
yields an “anti-speed-up theorem” for programs extracted from specifications.

2.1 A limit on provable speed-ups relative to specifications

Fix Godel numberings # of L-formulas and finite sequences of L-formulas, writing
d(n) and D(n) respectively for the L-formula and the finite sequence of L-formulas
coded by n. Assuming this is carried out reasonably (in say polynomial time), the
complexity of membership in

A:={(e,s,p,t) | D(p) is a proof from d(t) of d(s)(€)}

can be bounded by some primitive recursive function g (e.g., a polynomial); more
precisely, for all e,s,p,t < w, the question “(e, s, p, t) € A?” can be decided within
time g(maz{e, s, p, t}).

Theorem 4. There is a total recursive function r(k), greater than 0 on all k, such
that for every consistent, finite L-theory T, and every e such that e 18 total, there
is a program é computing . such that for every €' for which T b “pe = pa”

ta(k) < T(k) X tel(k) a.e.

H

Proof. Given a finite L-theory T, and an e for which ¢, is total, define € as follows:
on input &,

calculate E; := {¢' <k | 3p < k (¢',#x,p,#A\T) € A} and then
interleave simulations of e and every €' € Ej on input k, halting as soon as
one of the computations stops.

Observe that for every €' for which T |- “po = ,”,
ta(k) < k? x g(k) x to(k) a.e.
_.I

Since all r.e. theories can be finitely axiomatized (if necessary by expanding the
language), the theorem easily generalizes from finite 7’s to r.e. T”s.

It should be emphasized that Theorem 4 is a result about specifications — the
assumption that T' |- “po = ¢.” is crucial (although natural when studying the me-
chanical extraction of programs). Without this restriction, one can argue as follows.
Given a program e and a function f € Fen(T), build the program ey € Pgm(T') that
on input n simulates f(n) steps of e on input n. (In terms of the Kleene normal form
theorem, the idea can be depicted roughly as

fe€Fa(T) : e~ U(um < f(-) Ti(e,-,m)) € Pgm(T) .)

J. Mitchell has described this as a “positive result”, noting that a simulation of a
program suggests that “essentially the same algorithm” is implemented. It is unlikely,
however, that a programmer would equate, on the one hand, writing some program
e with, on the other hand, writing (a description of) e and a program that simulates
e some pre-determined number of times. It is not even possible to determine that the
same function is computed without the knowledge that enough steps of simulation
are allowed — which is just the information needed when extracting a program from
a proof of a II9 specification!

2.2 Non-optimality of normalization

An example of a problem that can be sped-up infinitely often is normalization of
a type system rich enough under “propositions as types” to prove Blum’s speed-up
theorem. More precisely, in the specific case of system F (e.g., see Girard, Lafont,
Taylor [8]) and second-order Peano arithmetic PAs,

Proposition 5. For every program e that reduces a lambda term typable in F to
its normal form, and for every (say increasing) g € Fen(PAy), there is a program e’
computing the same function as e with g(t..(A)) < t.(A) for infinitely many lambda
terms A typable in F.

Proof. Recall that Fen(PAj) consists exactly of the functions representable in F via
Church numerals. Now, because Blum'’s speed-up theorem can be proved in PAj,
there is for any g € Fcn(PA3), some function f also provably recursive in PAs
admitting g-speed-up. The “infinitely many lambda terms” mentioned above can be
obtained by fixing some lambda term representing f and applying that to Church
numerals. -

In retrospect, Proposition 5 is hardly surprising, given the difficulty in optimizing a
simulator for a sufficiently rich collection of programs. The result does suggest, how-
ever, that some notion of “metaprogramming” may be useful. Equating a simulator
(for certain programs) with the inference engine of a (fixed) formal system, the propo-
sition displays an advantage in working with different formal systems (over a single
formal system, or program for normalization). The “infinitely often” improvement
roughly parallels certain classical results (going back to Godel) on “abbreviating
proofs by adding new axioms” (Ehrenfeucht and Mycielski [3]).

3 Discussion

There is something appealing about identifying (or in some way unifying) notions
of computation, deduction and truth that is difficult to resist, whatever obstacles
may stand in the way of such a unification. And so, in intuitionistic logic, truth
is equated with the existence of a proof, and, under the “propositions as types”
paradigm, proofs are, in turn, identified with programs. This viewpoint has led
to various schemes for extracting programs from proofs. On the one hand, it has
become clear that extracting “feasible” programs from proofs is a non-trivial task
(suggesting that the notion of a proof is richer than that of a program). On the
other hand, proof-theorists talk about the bounds on the complexity of computations
extracted from proofs in formal theories wherein such schemes can be formalized.
The point emphasized in the present paper, however, is that Godel incompleteness
stands in sharp contrast to the “completeness” of the recursion-theoretic analysis
of computation (although here again a careful distinction must be made between
interpreting Church’s thesis as a statement narrowly about computable functions or
more broadly about “algorithms”). The question arises as to whether the very idea
of extracting a program from a proof makes sense, or whether, in fact, programs
precede proofs (and types, introduced to reason about a pre-existing collection of
programs).

A number of “semantic” investigations into programming languages have moved
away from recursion theory (and its untyped character), replacing talk of Turing ma-
chines by (extensional) functions subject to all manners of type structure. Whether
or not the programmer finds such abstractions helpful, he or she must eventually face
the reality of compilation to machine code. Inasmuch as the (untyped) recursion-
theoretic picture of computation is an adequate abstraction of machine code, and
inasmuch as Church’s thesis is accepted, it is proper to base one’s semantic concep-
tion of programming languages ultimately on this “absolute” reality described by
recursion theory. There is, under Church’s thesis, no way (in practice) to escape this
core, but rather the question is how fully does a particular structured (higher-level)
programming language cover this core. What are the costs of the discipline that it
imposes? The present paper exposes holes left by programs of bounded complex-
ity that are excluded in a programming language that guarantees termination. Can
these holes be filled in a systematic fashion? In other words, is there a “natural”
way to bridge the gap between Pgm(T') and Er for an r.e. theory T?

An old result of Turing’s described in Feferman [4] (and to which the reader is
referred for background for the present paragraph) is that the “progression” {T,} of

ies starting with some effectively presented theory T, and continuing according

Toy1 :=T+ Con(T)

Ty:=|J To for limit A
a<A

re Con(T) says “T' is consistent”) proves all true II{-sentences. Theorem 2
'sts that such a progression provides an “absolute” notion of proof that coincides
bounded computation, but that goes beyond strictly “constructive” (in the
se sense of r.e.) means. (See also Parson’s introductory note to Godel [10].) The
bove, however, are not actually ordinals, but ordinal notations in some IT}-
lete subset O of w. The structure of O represents a formidable challenge in proof
y — in particular, the characterization of a “natural path” in ©. A fundamental
; in this field (due to Feferman and Spector [6]) is that II} paths through ©
naming every recursive ordinal) are incomplete for IT{-sentences, and that
paths exist. (Turing’s completeness result mentioned above depends heavily
dinal notations that encode information extraneous to the ordinal named.)
ling the intuition that programs correspond to proofs, programs in Er not
d total in such a II}-path might, perhaps, safely be dismissed as pathological.
generally, one might associate the problem of characterizing natural paths in
th the problem of characterizing “natural programs” in Er (for instance, by
ifying natural programs with those obtained by natural paths). The question
ether such an association would shed any light on either problem.

nother approach to filling in Er is to allow the introduction of programs outside
- (Kreisel [12] pointed out some time ago that adding true IT?-sentences, such as
stency, does not yield new provably recursive functions.) Proofs of consistency
proceed by normalization arguments which bring in new provably recursive
ions are examples of such. To the extent that these are to be preferred over
s that consist simply (as in the progression above) of asserting the conclusion
consistency), there is nothing wrong with stepping outside Er (in an attempt
it). In this vein, Colson [2] isolates a natural primitive recursive fragment of
I's system T that he shows excludes an optimal algorithm (living in the larger
n) for a primitive recursive function. (The necessity in this case, however, of
1g to a system whose provably recursive functions exceed the primitive recursive
is disputed in Feferman [5].)

rences

lanuel Blum. A machine-independent theory of the complexity of recursive functions.
. Assoc. Computing Machinery, 14, 1967.

oic Colson. About primitive recursive algorithms. In G. Ausiello et al, editor, Proc.
JALP ‘89, LNCS 372. Springer-Verlag, Berlin, 1989.

ndrzej Ehrenfeucht and Jan Mycielski. Abbreviating proofs by adding new axioms.
ulletin of the American Mathematical Society, 77(3), 1971.

>lomon Feferman. Turing in the land of 0(z). In R. Herken, editor, The universal
uring machine. Kammerer and Unverzagt, 1988.

ymon Feferman. Logics for termination and correctness of functional programs, II.
ds Proof Theory ‘90, to appear.

ymon Feferman and Clifford Spector. Incompleteness along paths in progressions
heories. Journal of Symbolic Logic, 27, 1962.

. Fernando. Provably recursive programs and program extraction. In
each Albert et al, editor, Proc. ICALP ‘91, LNCS 510. Springer-Verlag, Berlin,
L.

1-Yves Girard, Yves Lafont, and Paul Taylor. Proofs and Types. Cambridge Uni-
ity Press, Cambridge, 1989.

t Gddel. Zur intuitionistischen arithmetik und zahlentheorie. In S. Feferman et al,
or, Collected works, volume 1. Oxford University Press, 1986.

t Godel. Remarks before the Princeton bicentennial conference on problems in
hematics. In 8. Feferman et al, editor, Collected works, volume II. Oxford Univer-
Press, 1990.

Kleene. On the interpretation of intuitionistic number theory. J. Symbolic Logic,
1945.

rg Kreisel. On the interpretation of non-finitist proofs, 1. Journal of Symbolic
¢, 16, 1951.

:le was processed using the IATEX macro package with LLNCS style

