
Centrum voor Wiskunde en Informatica

REPORTRAPPORT

Formal Specification of Manifold: a preliminary study

E.P.B.M. Rutten, F. Arbab, I. Herman

Computer Science/Department of Interactive Systems

CS-R9215 1992

Formal Speci�cation of Manifold�

a Preliminary Study

E�P�B�M� Rutten� F� Arbab� I� Herman

CWI� Department of Interactive Systems

P�O� Box ����� NL�	��� AB Amsterdam� The Netherlands

e�mail
 rutten�cwi�nl� farhad�cwi�nl�ivan�cwi�nl

Abstract

This report is an initial version of a formal speci�cation of the Manifold language�
A detailed informal speci�cation of Manifold already exists and has been used as
the basis of its �rst implementation� The work on formal speci�cation of Manifold

overlapped this implementation e�ort and they both a�ected the details of the informal
speci�cation of the language� In this report� we present an operational semantics of the
event�driven mechanism of the Manifold language�

Manifold is a parallel programming language where processes called manifolds use
an event�driven control mechanism to coordinate the communications among other
processes �manifolds as well as external�� Inter�process communication in Manifold

is through broadcast of events and a dynamic data�	ow network� built out of streams
carrying units of data�

In this report we consider only the event mechanism of Manifold� which handles the
control aspect of the language� The aspect of the language concerning the exchange of
data� i�e�� its streams and units� is not covered in this paper� The behavior ofManifold

is formally de�ned using transition systems at di�erent structural levels� These transi�
tion systems de�ne the control behavior of the Manifold language constructs� from
primitive actions to entire applications involving multitudes of concurrent processes�

This formal speci�cation is intended as a preliminary study� Analysis of the properties
of this model has not yet been carried out� The present formal speci�cation constitutes
a basis for further work on abstract models of Manifold� Continuation of this work
includes clari�cation of the complete behavior of Manifold� development of program�
ming assistance tools for analysis of Manifold programs� further development of the
Manifold model� and possibly better models for its future implementations�

���� Computing Reviews Classi�cation� C����� C����� C���m� D����� D����� F����� I�����

���� Mathematics Subject Classi�cation� ��N�	
Software�� Programming Languages
��Q�	� ��U���

Key Words and Phrases� formal speci�cations� parallel computing� models of computation� pro�
gramming language semantics� coordination languages�

Note� This work was supported� in part� by the ERCIM �European Research Consortium in Infor�
matics and Mathematics� CNR �Italy�� CWI �The Netherlands�� GMD �Germany�� INESC
�Portugal�� INRIA �France�� RAL �U�K����

Contents

 Introduction �
� An overview of Manifold

��
 Manifold De�nition �
��� Event Handling �
��� Event Handling Blocks �
�� Visibility of Event Sources �
��� Manners �

� A subset of Manifold
�
��
 The constructs and processes structure

��� Intuitive semantics of the actions

��� Grammar
�

 Operational semantics
�
�
 A formal speci�cation methodology

�� The actions level
�

���
 The Primitive Actions Level
�
���
�
 DO
�
���
�� RAISE
�
���
�� BROADCAST
�
���
� IGNORE
�
���
�� SAVE
�
���
�� GUARD
�

���� Processes in pipelines
�
�����
 ACTIVATE
�
������ DEACTIVATE
�
������ GETUNIT
�
����� Breakup of a pipeline
�

���� Pipelines
�
��� Groups ��

�� The Handler Level ��
���
 Event handling �

���� Reactionary actions ��
���� Manner calls ��
��� Manner returns ��

� The Process Level ��
��
 Atomic processes ��
��� Manifold processes �
��� Search of the handling block for an event ��
�� The circular search ��

�� The Application Level ��
���
 Concurrency of processes ��
���� Di�usion of events and �de��activation of processes ��

�� Global Network ��
� Results and Current Activity ��
� Conclusions and Future Work ��
� References ��

�

� Introduction

This report is a preliminary version of a formal speci�cation of theManifold language� It presents
the operational semantics of its event�driven control mechanism� Starting with the original informal
speci�cation ofManifold�
�� we extracted the basic elements relevant to its event mechanism� and
restricted the language to a simpli�ed subset that corresponds to this mechanism� We then modelled
the resulting kernel language using a set of transition systems�

A short presentation of Manifold and its intuitive semantics appear in this report� However�
the original speci�cation must be consulted for a full description �
��
Manifold is a parallel programming language� derived from a more general computational

model� It is designed for the management of dynamic communication networks among concurrent
processes� using two orthogonal control mechanisms� data�	ow and broadcast of events� All commu�
nication inManifold is asynchronous� The event mechanism is used to sequence through di�erent
states� which imply di�erent connection patterns in the data�	ow network� The management of
these connections �building them up� and breaking them down� is distributed between manifold
processes� each concurrently controlling a sub�net of the global network�
The Manifold language and its model have been described in a detailed informal speci�ca�

tion �
�� On this base� an implementation of Manifold �a compiler and a run�time system� is
being �nalized� Also� studies are currently underway on a visual programming interface and visual
debugging tools for Manifold programs�

One major motivation for developing a formal speci�cation ofManifold was to clarify the basic
structures and constructs of the language as de�ned in its informal speci�cation �
�� Manifold

is a full�sized programming language� As such� it is more complex in its structures and behaviors
than �toy� languages used to examplify formal speci�cation techniques� This� of course� adds to
the complexity of the structure of the semantic model itself� Our formal semantics must eventually
de�ne all possible states of a Manifold application� and all permissible transitions between these
states�

The choice of the formalism for de�ning the semantics of Manifold was motivated by the
operational character of its original informal speci�cation� We intended to remain closer to the
intuitive semantics of the language�

This formal speci�cation is an operational semantics in the form of transition systems� in the
style of Plotkin �

�� Di�erent states of a Manifold application� of its individual processes� of
their internal states� and� �nally� each primitive action� are described� Transition relations de�ne
how it is allowed to go from one state to another� at each level of detail� Induction rules specify
under which conditions a transition can be made� allowing an interpretation of the semantics of a
program� describing its possible executions�

Inspiring examples of the application of this formal speci�cation method can be found among
the synchronous real�time programming languages ���� The languages in this family are all founded
on well�de�ned mathematical semantics� which gives a formal basis for their compilation� Compi�
lation itself is a proof process in this formal system� and results in an implementation of compiled
programs in the form of deterministic automata� This formal basis can also be exploited to de�
velop powerful program analysis tools� Speci�cally Esterel ��� �� uses communication through
broadcast events and its formal speci�cation of sequencing control structures is a good example
for formal speci�cation of some of the constructs in Manifold� Other synchronous real�time pro�
gramming languages have a more declarative� data�	ow character ��� ��� However� Manifold is
not a synchronous language� and data�	ow oriented languages do not have the same notion of
events� Nevertheless� the methodology used in the formal speci�cation of these languages is useful
for Manifold too�

Other more abstract approaches to formal semantics may be used in future stages of this work to
de�ne and study the properties of Manifold at a higher�level� The present operational semantics
will still be useful and meaningful as a �rst formalization of Manifold� from which other formal
models can be drawn� alleviating the need to go back to the original informal speci�cation�

One of the applications of the formal model presented here is in the implementation of a prototype
interpreter� The transition systems that comprise this operational semantics can be used rather
directly to build an interpreter in Prolog that simulates the parallelism of Manifold� and its

�

Incoming
Streams

Outgoing

input ports

Streams

Raised Events

Manifold

Received Events

output ports

Figure
� The model of a process in Manifold�

e�ects on an abstract model of an application� We have in fact built such an interpreter� Using this
interpreter enables us to represent and compute all possible executions of a Manifold program�
It also allows us to experiment with the properties of the language� and� easily investigate the
behavior of alternative language constructs by changing the interpreter�

Another application of this formal model is as a basis to build tools for analysis of Manifold

programs using a �nite state automaton representation� Such a representation re	ects the transi�
tions among the various states of an application� It can be used� for example� to detect inaccessible
states� or states from which no terminal state is accessible�

The rest of this paper is organized as follows� The next section� �x��� is a general overview
of the Manifold model and programming language� In section �� we de�ne the subset of the
Manifold language that we have considered in our work on formal semantics� In section we
give the operational semantics of this part of the Manifold language� Finally� in section �� we
present the results of this preliminary study on the formal speci�cation of Manifold� describe our
ongoing work on this subject� and our plans for its continuation�

� An overview of Manifold

In this section we give a brief and informal overview of theManifold language� The sole purpose of
the Manifold language is to describe and manage complex communications and interconnections
among independent� concurrent processes� As stated earlier� a detailed description of the syntax
and the semantics of the Manifold language and its underlying model is given elsewhere �
��
Other reports contain more examples of the use of the Manifold language ��� ���
The basic components in the Manifold model of computation are processes� events� ports� and

streams� A process is a black box with well de�ned ports of connection through which it exchanges
units of information with the other processes in its environment� The internal operation of some
of these black boxes are indeed written in the Manifold language� which makes it possible to
open them up� and describe their internal behavior using the Manifold model� These processes
are called manifolds� Other processes may in reality be pieces of hardware� programs written in
other programming languages� or human beings� These processes are called atomic processes in
Manifold� In fact� an atomic process is any processing element whose external behavior is all that
one is interested in observing at a given level of abstraction� In general� a process in Manifold

does not� and need not� know the identity of the processes with which it exchanges information�

Figure
 shows an abstract representation of a Manifold process�
Ports are regulated openings at the boundaries of processes through which they exchange units

of information� The Manifold language allows assigning special �lters to ports for screening and
rebundling of the units of information exchanged through them� These �lters are de�ned in a
language of extended regular expressions� Any unit received by a port that does not match its
regular expression is automatically diverted to the error port of its manifold and raises a badunit

event �see later sections for the details of events and their handling in Manifold�� The regular
expressions of ports are an e�ective means for �type checking� and can be used to assure that the
units received by a manifold are �meaningful��
Interconnections between the ports of processes are made with streams� A stream represents a

	ow of a sequence of units between two ports� Conceptually� the capacity of a stream is in�nite�
Streams are dynamically constructed between ports of the processes that are to exchange some
information� Adding or removing streams does not directly a�ect the status of a running process�
The constructor of a stream �which is a manifold� need not be the sender nor the receiver of the
information to be exchanged� any third party manifold process can de�ne a connection between the
ports of a producer process and a consumer process� Furthermore� stream de�nitions in Manifold

are generally additive� Thus a port can simultaneously be connected to many di�erent ports through
di�erent streams �see for example the network in Figure ��� The 	ows of units of information in
streams are automatically replicated and merged at outgoing and incoming port junctions� as
necessary� The units of information exchanged through ports and streams� are passive pieces of
information that are produced and consumed at the two ends of a stream with their relative order
preserved� The consumption and production of units via ports by a process is analogous to read and
write operations in conventional programming languages� The word �passive� is meant to suggest
the similarity between units and the data exchanged through such conventional I�O operations�

Independent of the stream mechanism� there is an event mechanism for information exchange in
Manifold� Contrary to units in streams� events are atomic pieces of information that are broadcast
by their sources in their environment� In principle� any process in an environment can pick up a
broadcast event� In practice� usually only a few processes pick up occurrences of each event� because
only they are �tuned in� to their sources� Occurrences of the same event from the same source can
override each other from the point of view of some observer processes� depending on the di�erence
between the speed of the source and the reaction time of an observer� This provides an automatic
sampling mechanism for observer processes to pick up information from their environment which
is particularly useful in situations where a potentially signi�cant mismatch between the speeds of
a producer and a consumer is possible� Events are the primary control mechanism in Manifold�

Once an event is raised by a source� it generally continues with its processing� while the event
occurrence propagates through the environment independently� Event occurrences are active pieces
of information in the sense that in general� they are observed asynchronously and once picked up�
they preemptively cause a change of state in the observer� Communication of processes through
events is thus inherently asynchronous in Manifold�
Each manifold de�nes a set of events and their sources whose occurrences it is interested to

observe� they are called the observable set of events and sources� respectively� It is only the oc�
currences of observable events from observable sources that are picked up by a manifold� Once an
event occurrence is picked up by an observer manifold� it may or may not cause an immediate
reaction by the observer� In general� each state in a manifold de�nes the set of events �and their
sources� that are to cause an immediate reaction by the manifold while it is in that state� This
set is called the preemption set of a manifold state and is a subset of the observable events set of
the manifold� Occurrences of all other observable events are saved so that they may be dealt with
later� in an appropriate state�

Each state in a manifold de�nes a pattern of connections among the ports of some processes� The
corresponding streams implementing these connections are created as soon as a manifold makes a
state transition �caused by an event� to a new state� and are deleted as soon as it makes a transition
from this state to another one� This is discussed in more detail in x����

�

�� This is the header �there are no arguments��
example��
�� These are the public declarations�
�� Two ports are visible from the outside of the manifold �example��
�� one is an input port and the other is an output one�
�� In fact	 these ports are the default ones�
port in input�
port out output�
f
�� The body of the manifold begins here�
��
�� private declarations�
�� three process instances are de
ned�
process A is A type�
process B is B type�
process C is C type�

�� First block �activated when �example� becomes active�
�� The processes described above are activated on their turn
�� in a �group� construct�
start� �activate A�activate B�activate C� � do begin�

�� A direct transfer to this block has been given from �start��
�� Three pipelines in a group are set up�
begin� �A �� B�output �� C�input �� output��

�� Event handler for the event �e��� several pipelines are
�� set up �see Figure ���
e
� �B �� input�C �� A�A �� B�output �� A�B �� C�input �� output��

�� Event handler for the event �e��� a single pipeline
�� is set up �see Figure ��
e�� C �� B�
g

Table
� An example for a manifold process�

��� Manifold De�nition

A manifold de�nition consists of a header� public declarations� and a body� The header of a manifold
de�nition contains its name and the list of its formal parameters� The public declarations of a
manifold are the statements that de�ne its links to its environment� It gives the types of its
formal parameters and the names of events and ports through which it communicates with other
processes� A manifold body primarily consists of a number of event handler blocks� representing
its di�erent execution�time states� The body of a manifold may also contain additional declarative
statements� de�ning private entities� For an example of a very simple manifold� see table
 which
shows theManifold source code for a simple program�� More complete manifold programs are also
presented� e�g�� in ��� Declarative statements may also appear outside of all manifold de�nitions�
typically at the beginning of a source �le� These declarations de�ne global entities which are
accessible to all manifolds in the same �le� provided that they do not rede�ne them in their own
scopes�

Conceptually� each activated instance of a manifold de�nition � a manifold for short � is an

�In this and other Manifold program listings in this paper� the characters ���� denote the beginning
of a comment which continues up to the end of the line� Keywords are typeset in bold�

�

input

C

A

example

B

input

input

input

output

output

output

Figure �� Connections set up by the manifold example on event e��

input

C

A

example

B

input

input

input

output

output

output

Figure �� Connections set up by the manifold example on event e��

independent process with its own virtual processor� A manifold processor is capable of performing
a limited set of actions� This includes a set of primitive actions� plus the primary action of setting
up pipelines�

Each event handler block describes a set of actions in the form of a group construct� The actions
speci�ed in a group are executed in some non�deterministic order� Usually� these actions lead to
setting up pipelines between various ports of di�erent processes� A group is a comma�separated
list of members enclosed in a pair of parentheses� In the degenerate case of a singleton group
�which contains only one member� the parentheses may be deleted� Members of a group are either
primitive actions� pipelines� or groups� The setting up of pipelines within a group is simultaneous
and atomic� No units 	ow through any of the streams inside a group before all of its pipelines are
set up� Once set up� all pipelines in a group operate in parallel with each other�
A primitive action is typically activating or deactivating a process� raising an event� or a do action

�

which causes a transition to another handler block without an event occurrence from outside� A
pipeline is an expression de�ning a tandem of streams� represented as a sequence of one or more
groups� processes� or ports� separated by right arrows� It de�nes a set of simultaneous connections
among the ports of the speci�ed groups and processes� If the initial ��nal� name in such a sequence
is omitted� the initial ��nal� connection is made to the current input �output� port� Inside a group�
the current input and output ports are the input and output ports of the group� Elsewhere� the
current input and output ports are input and output� i�e�� the executing manifold�s standard input
and output ports� As an example� Figure � shows the connections set up by the manifold process
example on Listing
� while it is in the handling block for the event e� �for the details of event
handling see x����� Figure � shows the connections set up in the handling block for the event e��
In its degenerate form� a pipeline consists of the name of a single port or process� De�ning no

useful connections� this degenerate form is nevertheless sometimes useful in event handler blocks
because it has the e�ect of de�ning the named port or process as an observable source of events
and a member of the preemption set of its containing block �see x����
An event handler block may also describe sequential execution of a series of �sets of� actions�

by specifying a list of pipelines and groups� separated by the semicolon ��� operator�� In reaction
to a recognized event� a manifold processor �nds its appropriate event handler block and executes
the list of sequential sets of actions speci�ed therein� Once the manifold processor is through with
the sequence in its current block� it terminates�

��� Event Handling

Event handling in Manifold refers to a preemptive change of state in a manifold that observes
an event of interest� This is done by its manifold processor which locates a proper event handler
for the observed event occurrence� An event handler is a labeled block of actions in a manifold� In
addition to the event handling blocks explicitly de�ned in a manifold� a number of default handlers
are also included by theManifold compiler in all manifolds to deal with a set of prede�ned system
events� The manifold processor makes a transition to an appropriate block �which is determined
by its current state� the observed event and its source�� and starts executing the actions speci�ed
in that block� The block is said to capture the observed event �occurrence�� The name of the event
that causes a transfer to a handling block� and the name of its source� are available in each block
through the pseudonyms event name and event source� respectively�
The manifold processor �nds the appropriate handler block for an observed event e raised by the

source s� by performing a circular search in the list of block labels of the manifold� The list of block
labels contains the labels of all blocks in a manifold in the sequential order of their appearance�
The circular search starts with the labels of the current block in the list� scans to the end of the
list� continues from the top of the list� and ends with the labels of the block preceding the current
block in the list�

The manifold processor in a given manifold is sensitive to �i�e�� interested in� only those events
for which the manifold has a handler� All other events are to be ignored� Thus� events that do not
match any label in this search do not a�ect the manifold in any way �however� see x��� for the case
of called manners�� Similarly� if the appropriate block found for an event is the keyword ignore�
the observed event is ignored� Normally� events handled by the current block are also ignored�

The concept of an event in Manifold is di�erent than the concepts with the same name in
most other systems� notably simulation languages� or CSP� Occurrence of an event in Manifold

is analogous to a 	ag that is raised by its source �process or port�� irrespective of any communi�
cation links among processes� The source of an event continues immediately after it raises its 	ag�
independent of any potential observers� This raised 	ag can potentially be seen by any process in
the environment of its source� Indeed� it can be seen by any process to which the source of the
event is visible� However� there are no guarantees that a raised 	ag will be observed by anyone� or
that if observed� it will make the observer react immediately�

�In fact� the semicolon operator is only an in�x manner call �see x��	
 rather than an independent
concept in Manifold� However� for our purposes� we can assume it to be the equivalent of the sequential
composition operator of a language like Pascal�

�

��� Event Handling Blocks

An event handling block consists of a comma�separated list of one or more block labels followed
by a colon ��� and a single body� The body of an event handling block is either a group member
�i�e�� an action� a pipeline� or a group�� or a single manner call�see x����� If the body of a block is a
pipeline� and it starts �ends� with a ��� the port name input �respectively� output� is prepended
�appended� to the pipeline�

Event handler block labels are patterns designating the set of events captured by their blocks�
Blocks can have multiple labels and the same label may appear more than once marking di�erent
blocks� Block labels are �lters for the events that a manifold will react to� The �ltering is done based
on the event names and their sources� Event sources in Manifold are either ports or processes�

The most speci�c form of a block label is a dotted pair e�s� designating event e from the source
�port or process� s� The wild�card character � can be replaced for either e� or s� or both� in a block
label� The form e is a short�hand for e�� and captures event e coming from any source� The form
��s captures any event from source s� Finally� the least speci�c block label is ��� �or � � for short�
which captures any event coming from any source�

��� Visibility of Event Sources

Every process instance or port de�ned or used anywhere in a manner �see x���� or manifold is
an observable source of events for that manner or manifold� This simply means that occurrences
of events raised by such sources �only� will be picked up by the executing manifold processor�
provided that there is a handling block for them� The set of all events from observable sources
that match any of the block labels in a manner or manifold is the set of observable events for that
manner or manifold� The set of observable events of an executing manifold instance may expand
and shrink dynamically due to manner calls and terminations �see x����� Depending on the state
of a manifold processor �i�e�� its current block�� occurrences of observable events cause one of two
possible actions� preemption of the current block� or saving of the event occurrence�
In each block� a manifold processor can react to only those events that are in the preemption

set of that block� The Manifold language de�nes the preemption set of a block to contain only
those observable events whose sources appear in that block� This means that� while the manifold
processor is in a block� except for the manifold itself� no process or port other than the ones named
in that block can be the source of events to which it reacts immediately� There are other rules
for the visibility of parameters and the operands of certain primitive actions� It is also possible to
de�ne certain processes as permanent sources of events that are visible in all blocks� A manifold
can always internally raise an event that is visible only to itself via the do primitive action�
Once the manifold processor enters a block� it is immune to any of the events handled by that

block� except if the event is raised by a do action in the block itself� This temporary immunity
remains in e�ect until the manifold processor leaves the block� Other observable event occurrences
that are not in the preemption set of the current block are saved�

��� Manners

The state of a manifold is de�ned in terms of the events it is sensitive to� its visible event sources� and
the way in which it reacts to an observed event� The possible states of a manifold are de�ned in its
blocks� which collectively de�ne its behavior� It is often helpful to abstract and parameterize some
speci�c behavior of a manifold in a subroutine�like module� so that it can be invoked in di�erent
places within the same or di�erent manifolds� Such modules are called manners in Manifold�

A manner is a construct that is syntactically and semantically very similar to a manifold�
Syntactically� the di�erences between a manner de�nition and a manifold de�nition are�

� The keyword manner appears in the header of a manner de�nition� before its name�

�� Manner de�nitions cannot have their own port de�nitions�

Semantically� there are two major di�erences between a manner and a manifold� First� manners
have no ports of their own and therefore cannot be connected to streams� Second� a manner

�

invocation never creates a new processor� A manifold activation always creates a new processor to
�execute� the new instance of the manifold� To invoke a manner� however� the invoking processor
itself �enters and executes� the manner�

The distinction between manners and manifolds is similar to the distinction between procedures
and tasks �or processes� in other distributed programming languages� The term manner is indica�
tive of the fact that by its invocation� a manifold processor changes its own context in such a way
as to behave in a di�erent manner in response to events�
Manner invocations are dynamically nested� References to all non�local names in a manner are

left unresolved until its invocation time� Such references are resolved by following the dynamic
chain of manner invocations in a last�in��rst�out order� terminating with the environment of the
manifold to which the executing processor belongs�
Upon invocation of a manner� the set of observable events of the executing manifold instance

expands to the union of its previous value and the set of observable events of the invoked manner�
The new members thus added to this set� if any� are deleted from the set upon termination of the
invoked manner�

A manner invocation can either terminate normally or it can be preempted� Normal termination
of a manner invocation occurs when a return primitive action is executed inside the manner� This
returns the control back to the calling environment right after the manner call �this is analogous to
returning from a subroutine call in conventional programming languages�� Preemption occurs when
a handling block for a recognized event occurrence cannot be found inside the actual manner body�
This initiates a search through the dynamic chain of activations similar to the case of resolving
references to non�local names� to �nd a handler for this event� If no such handler is found� the
event occurrence is ignored� If a suitable handler is found� the control returns to its enclosing
environment and all manner invocations in between are abandoned�

Manners are simply declarative �subroutines� that allow encapsulation and reuse of event han�
dlers� The search through the dynamic chain of manner calls is the same as dynamic binding of
handlers in calling environments� with event occurrences picked up in a called manner� Preemption
is nothing but cleanly structured returns by all manner invocations up to the environment of a
proper handler�

In principle� dynamic binding can be replaced by the use of �appropriately typed� parameters�
Our preference for dynamic binding in manners is motivated by pragmatic considerations� Suppose
a piece of information �e�g�� how to handle a particular event� or where to return to� must be passed
from a calling environment A� to a called environment B� through a number of intermediaries� i�e��
B is not called directly by A� but rather� A calls some other �subroutine� which calls another one�
which calls yet another one� � � �� which eventually calls B� Passing this information from A to B

using parameters means that all intermediaries must know about it and explicitly pass it along�
although it has no functional signi�cance for them� Dynamic binding alleviates the need for this
explicit passing of irrelevant information and makes the intermediary routines more general� less
susceptible to change� and more reusable�

� A subset of Manifold

In this section we de�ne the subset of the Manifold language that we use for our formal semantics
study� This subset contains the event mechanism ofManifold that comprises the control aspect of
the language� We consider the communication and handling of events� management of the dynamic
data�	ow network� concurrent processes in an application� the behavior of processes receiving and
handling an event� and the preemption of their current states�

The major issues in the general Manifold model and language that are not considered here
are streams and the transfer of units through them� For our purposes� the data�	ow network
is represented as a graph� The formal model presented here manipulates this graph to re	ect
construction and destruction of process instances and streams� but we do not consider what happens
inside the streams�

In this section� we �rst present an informal description of the subset of the Manifold language
included in our formal speci�cation� Next� we give an intuitive informal semantics for the constructs

�

of this kernel language� and conclude this section with a grammar for its abstract syntax�

��� The constructs and processes structure

A Manifold application is consists of concurrent� independent processes� and it is �a medium for
the propagation of event occurrences� among them �
�� The only means of communication with a
process is through its input and output ports and through events� Each process has three standard
ports� input� output and error� There are two kinks of processes in Manifold� atomic processes
and manifolds�

An atomic process is one whose behavior is a priori unknown� The behavior of a manifold
process� on the other hand� is described using the Manifold language� There are also a number of
prede�ned processes� which are considered to be atomic� because we do not describe their behavior
using the Manifold language� For example� the prede�ned process VOID can appear as an action
or part of a pipeline� and represents a process doing nothing� taking all input in� and producing
no output�

A manifold is a reactive process� it performs actions only in response to observing an event
occurrence� When an event occurrence is observed by a manifold� it may decide to handle the event
occurrence only if it is a preemptive event� The body of a manifold is composed by a number of
handling blocks� each specifying what actions must be performed �raising of events� �de��activation
of processes� building of pipelines� � � � � when an event occurrence that matches the label of the
block is selected for handling� This set of blocks is ordered� and can be seen as a list� This is
important for deciding the next state when a preemption takes place� In the present version of the
Manifold language� the next handling block is determined by a circular search form the current
block�

The syntax of a manifold program is as follows�

Pname f blocks g

There is a speci�c manifold called main� An instance of the main manifold is activated at the
start of an application� Other processes must be activated by main or by its successors in activation�
A handling block is of the form�

label � handler�

where the label is a list of event names that can be handled by this block� and the handler is the
action that must be executed in reaction to this event� Each handling block represents a distinct
state of its executing manifold process instance� Each state de�nes a set of preemptive events whose
occurrences are allowed to cause a transition from that state to another�

A manifold instance selects one of the preemptive event occurrences it has observed for handling�
This selection is done in accordance with a priority scheme that divides events into a �nite number
of priority classes� There is a strict total order on class priorities� The occurrence of an event is
selected for handling by a manifold process only if there are no observed occurrences of events
in higher�priority classes� Selection of event occurrences within the same priority class is non�
deterministic�

Once an event occurrence is selected for handling� the manifold process then makes a circular
search for an appropriate handling block for this event� The �rst handling block encountered in
this circular search whose label matches the event occurrence is chosen as the target block� The
event designators in block labels are generally of the form event�source� as explained in Section
���� with the possibility of using wild�card characters�

When a handling block is found� its handler is executed� The start handler is compulsary� it
must be given in a manifold for it to be correct �
�� Other prede�ned events have default handlers�
when no explicit handler is given for them by a Manifold programmer�

��� Intuitive semantics of the actions

A handler can be one of the following�

Manner calls A manner is a sub�routine�like construct de�ned� like a manifold� by its own set
of event handling blocks� When called� the local blocks of a manner take precedence over
the previous event handling blocks and are used for event handling until the invoked manner
returns� This stacking of handling blocks changes the behavior of the calling manifold to a
di�erent manner� A manner call has the form�

name 	 parameters�list

Primitive actions �

� DO event raises the speci�ed event locally �inside the manifold�� The source of the event
is the manifold process itself� which is denoted by self�

� RAISE event raises the speci�ed event externally �outside the manifold�� The source of
the event is the manifold which executed the RAISE action�

� BROADCAST event raises the speci�ed event inside and outside the executing manifold�
The source of the event in this case is the special process system��

� GUARD	port�event
 installs a process that guards the port and raises the event inside
the manifold as soon as there is at least one unit ready for transfer inside the speci�ed
port�

� IGNORE does nothing� but when it is the only action in a handler� then the manifold
goes back to the previous state it was in�

� SAVE saves the handled event in the observed events memory� but otherwise acts like
IGNORE �i�e�� goes back to the previous state��

� RETURN causes a return from a called manner�

Pipelines � One of the main activities of a manifold process is to dynamically build and dismantle
pipelines� A pipeline consists of a set of streams� each of which establish a link between two
ports of processes� What is special about a pipeline is that all streams in a pipeline are
dismantled as soon as one of its streams is broken �e�g�� one of the processes dies��

A pipeline has the following form��

� P� �� P� � � � �Pi �� Pi�� � � � �

The above construct means that the port Pi is connected to the port Pi�� by a stream� A
port designator is generally process�port� The default for process is self when it is not given
explicitely� If port is not given� it defaults to input when on the right�hand side of a stream
operator ��� or to output when on its left�hand side�

The �rst �or only� item in a pipeline can be one of the following special pseudo processes�

� ACTIVATE process� that activates the speci�ed process� and delivers a boolean result on
its own output port�

� DEACTIVATE process� that deactivates the speci�ed process� and delivers a boolean result
on its own output port�

� GETUNIT	port
� that delivers on its output port the �rst unit of information coming out
of the speci�ed port�

Because these pseudo processes do not have input ports� it is syntactically incorrect for them
to appear on the right hand side of the stream operator �� �
��

�This action is not available to the Manifold programmer directly� However� we use it here as a
generalization of the actions SHUTDOWN and CANCEL�

�This syntax is a simpli�ed adaptation of the original speci�cation� Without loss of generality� we
consider only the case where port connections are described explicitly ���

�

Groups is a construct that allow associating several of these actions in one handler� by enclosing
them in a pair of parentheses�

	 a�� � � �an

The above construct means that all the actions ai are executed in a non�deterministic order�
and the handler is terminated when they all terminate�

��� Grammar

In this section we present an abstract syntax for the Manifold sub�language we consider in this
report� In this sub�language we ignore all declarations� but assume that their e�ects are somehow
known and properly remembered� For example�

� The set of all atomic�processes used by an application is known� For each atomic process P �
output�P� is the set of events that can be raised by P �

� Every manifold�process is de�ned in a relation manifold� Mname�Mblocks � that associates
the body Mblocks with the manifold name Mname�

� Every manner is de�ned in a relation manner� Mname�Mblocks � that associates the body
Mblocks with the manner name Mname�

The grammar for the abstract syntax of the subset Manifold language appears in table �� In
this grammar� non�terminals are in italics and are enclosed in h and i� i�e�� hai� The construct a�

means at least one a� and a� means zero or more occurrences of a�� The italic brackets
 and � are
used for grouping�

In this grammar� we treat heventi and hnamei as identi�ers� Furthermore� hlabeli and hporti
designate block labels and port names as described in Sections ��
 and ���� respectively�

� Operational semantics

In this section we present the operational semantics of the kernel Manifold language de�ned in
Section �� The notation and style used here are inspired by the now classical approach of Plotkin�
Our operational semantics consists of four transition systems� each at a di�erent level of abstraction�
application� process� handler� and action�

The action level de�nes the semantics of each primitive action by describing its e�ect in four
areas�

� locally raised events

� externally raised events

� installed pipelines

� �de�activated processes

The rules de�ning the action level semantics comprise our bottom�most transition system�

The handler level de�nes the semantics of an event handling block using a transition system on
top of the action level semantics� The handler level semantics de�nes�

� the �normal� case of event handling� going to the next state

� the reactionnary actions �IGNORE and SAVE�

� the manner calls and returns

The process level de�nes the semantics of a process instance in terms of transitions among states
whose semantics� in turn� are de�ned at the handler level� The transition system at this level
describes�

�

hactioni ��� DO heventi
j RAISE heventi
j BROADCAST heventi
j GUARD	hporti�heventi

j RETURN
j IGNORE
j SAVE

hpipelinei ��� hprocporti �� hporti j
� hprocporti �� hporti
 � hstreami ��

hstreami ��� hporti �� hporti
hprocporti ��� j ACTIVATE hprocessi

j DEACTIVATE hprocessi
j GETUNIT	hporti

j hporti

hgroupi ��� 	 hacti
 � hacti ��

hacti ��� hgroupi
j hpipelinei
j hactioni

hhandleri ��� hacti
j hmanneri

hlabelsi ��� hlabeli
 � hlabeli ��

hblocki ��� hlabelsi � hhandleri �
hmanifoldi ��� manifoldhnamei fhblocki�g
happlicationi ��� hmanifoldi�

Table �� An abridged grammar of the considered sub�set of the Manifold language�

� Atomic processes

� Manifold processes

� reacting to priority events

� reacting to preemptive events

� evolution of the sub�network of streams under the control of a manifold

� termination of a manifold or a manner

The application level is the top�most transition system� It de�nes the behavior of a set of con�
current processes� the semantics of each of which is de�ned using the process level transition
system� above� It describes the global behavior of a Manifold application and the state of
the global data�	ow network of streams�

Finally� we propose an extension to the semantics of Manifold and recognize stable states of
a Manifold application� This extention is in the anticipation of our future work on higher�level
analysis of Manifold application�

��� A formal speci�cation methodology

One of the ways to de�ne an operational semantics for a programming language is to use the
Structural Operational Semantics �SOS� method� This involves de�ning a set of states and rules for
transition between these states� Plotkin proposes a widely�accepted framework and methodology
for building transition systems �

�� This approach was used� for example� to de�ne the formal
semantics of the parallel language CSP �
��� It has also been used to de�ne the operational semantics
of Esterel� which is a synchronous real�time programming language ���� The compilation and
implementation of Esterel� and more recently� its direct hardware�compilation� are all based on
this formal semantics� As in the case of other synchronous real�time programming languages ����
this formal semantics provides a mathematically well�founded basis for the language which can

be used to validate the correctness of its programs and its implementation� Our approach to the
formal semantics of Manifold is inspired by these works�
The essence of this approach to formal semantics is the de�nition of a number of states �or

con�gurations� denoted by �� ��� � � � � and of a transition relation between these states� We use the
notation�

�
�
�

�
��

to indicate that within the context �� a transition can be made from the state � to the state ���
accompanied by e�ects ��

Several transitions can lead from one state to another� passing through intermediary states�

�
��
�

��
��

��
�

��
�� � � �

�n
�

�n
��

and the transitive closure of the transition relation is denoted as�

�
�
�
�

�
��

A transition may be allowable only under certain conditions or premisses �involving � or aspects
of ��� Rules for a transition with premisses are denoted as�

premisses

�
�
�

�
��

meaning that the transition from � to �� is possible only if the premisses are true�
Special cases of premisses consist of transitions involing parts of �� as when the transition of a

construct or structure depends on the transitions of its parts� For example� to show that a transition
from � to �� is possible only if there is a transition between � �a part of the structure �� and �� �a
part of the structure ���� we write�

�
��
�

��
��

�
��
�

��
��

We also use abbreviated notations for sets of rules� inspired by those used by Plotkin in his study
of CSP �
�� p������
��� When several transitions from the same state are possible� we write�

��
�
�

�
��j � � � �k

���
��
�

��
���j � � � �

�
k

instead of the k rules i �
��k�

��
�
�

�
�i

���
��
�

��
��i

When several combinations of several transitions are possible� we write�

��
�
�

�
��j � � � �m� ���

��
�

��
���j � � � �

�
n

����
���
�

���
�����j � � � �

��
�nj � � � �

��
m�j � � � �

��
mn

instead of the mn rules i �
��m� j �
��n�

��
�
�

�
�i� ���

��
�

��
��j

����
���
�

���
���ij

�

��� The actions level

At this level the semantics of each primitive action is described� We de�ne the e�ect of each
primitive action on the transmission of events� observed events� pipelines� and processes� A primitive
action is assumed to be within the context of an event handling block for the event occurrence e�
in a manifold Pname�
The transition system that de�nes the action level semantics of Manifold consists of a number

of states and a transition relation described below� States are of the form hA� �i� or� for terminal
states� �� A is an action and � is the environment in which it is executed� An environment � is a
four�tuple�

hEloc� Eext� P ipe� Proci

where

� Eloc is the set of events raised within the executing manifold�

� Eext is the set of events raised outside of the executing manifold�

� Pipe is the set of current pipelines under the control of the executing manifold�

� Proc is the set of references to processes p that must be activated or deactivated� denoted
as p� and p�� respectively�

Two of the components of an environment four�tuple� Eloc and Pipe� represent information local
to an executing manifold process� The other two� Eext and Proc� represent information meaningful
at the application level and are treated there�

The transition relation is�

hA� �i
e� Pname

�

act hA
�� ��ij��

where�

� e is the event occurrence that caused a transition to the event handling block containing the
action A� and

� Pname is the name of the manifold process instance in which the action is executed�

The semantics of an action is evaluated in one or several transitions from an environment ��
terminating in an environment ���

hA� �i
e� Pname

�

act
�

��

In order to simplify our notation which uses four�tuples of sets� we de�ne a constant neutral
element �� � h�� �� �� �i� and an operation of union� For � � ha� b� c� di and �� � ha�� b�� c�� d�i� we
de�ne�

� � �� � ha � a�� b� b�� c� c�� d� d�i�

����� The Primitive Actions Level

In this section we de�ne the semantics of the primitive actions that cannot appear within pipelines�

������� DO

The action DO elocal raises the event elocal inside of the executing manifold process only� To raise an
event locally� the event is added to the set of locally raised events� with source self� The action DO

terminates� The manifold will be preempted by elocal � A special case of this action is HALT� which
is equivalent to the action DO abort� resulting in the termination of the manifold instance within
which it is executed�

Rule � � raising an event locally

hDO elocal � �i
e� Pname

�

act � � hfelocal �selfg� �� �� �i

�

������� RAISE

The action RAISE eext raises the event eext outside of the executing manifold� The event eext is
added to the set of externally raised events and will be transmitted to its proper observer processes
by the application level semantics� The action RAISE terminates� This may terminate the handler�
If this happens and there is no preemptive event to be handled� then the current manner� or
executing manifold if at that level� will be exited �see process level rules��

Rule 	 � raising an event globally

hRAISE eext� �i
e� Pname

�

act � � h�� feext�Pnameg� �� �i

������� BROADCAST

A broadcast event is added to both event sets� combining the e�ects of DO and RAISE with the
special source system� Special cases of broadcasting of events are the actions SHUTDOWN and CANCEL

as de�ned in the original Manifold language �which are� respectively� equivalent to the actions
BROADCAST terminate and BROADCAST abort��

Rule
 � broadcasting a system event

hBROADCAST ebroad� �i
e� Pname

�

act � � hfebroad�systemg� febroad�systemg� �� �i

������� IGNORE

When an event occurrence causes a transition to a block that contains an IGNORE action� it is
consumed� The IGNORE action does not change its environment� it is neutral and has an e�ect ���
The new environment is thus � � �� � ��

Rule � � ignoring the handled event

hIGNORE� �i
e� Pname

�

act �

������	 SAVE

When an event occurrence causes a transition to a block that contains a SAVE action� it is not
consumed� Saving the handled event puts it back in the local events set� The SAVE action terminates�
and like IGNORE� it has no other e�ect on its environment�

Rule � � saving the handled event

hSAVE� �i
e� Pname

�

act � � hfeg� �� �� �i

For the case where IGNORE or SAVE is the only constituent of the handler� other e�ects �i�e�� the
fact that the previous state of the process is returned to� are described further� at the handler
level� in a group� their e�ect to that respect is neutral�� In fact� even SAVE has no side�e�ect at all
when in a group� the saved event e will not be in the set of observable events� because it is part of
the labels of the current block� and thus will be discarded of the events memory E�

�In the present version of the speci�cation ��� however� IGNORE and SAVE are not allowed in groups i�e��
they are allowed only as full handlers� but as the proposed semantics gives them a coherent meaning even
in groups� it o�ers us a generalisation�

�

������� GUARD

Guarding a port of a process� whose complete name is Pname�port� starts a new process and adds
it to the set of process activations�

Rule � setting a guard on a port

hGUARD	port� eguard
� �i
e� Pname

�

act � � h�� �� �� fguard�Pname�port� eguard�
�gi

����� Processes in pipelines

The following actions can be used in pipelines as processes with streams from their output ports�
or they can appear by themselves as actions� As for other processes� their termination will be
described further� at the process level�

������� ACTIVATE

Activating a process p consists of adding two processes to the set of activated processes� p�

and activate�p�� are added to the set of to�be��de��activated processes� This means that p and
activate�p�� must be activated at the application level as new processes� The activate�p�� itself
is a process that produces a result on its standard output port� The termination of this primitive
action follows the rules of process termination�

Rule � � activating a process

hACTIVATE p� �i
e� Pname

�

act

� � h�� �� fACTIVATE�p��outputg� fp�� activate�p��gi

������� DEACTIVATE

Deactivating a process p adds p� and deactivate�p�� to the set of �de��activated processes�
This means that the process p will be deactivated at the application level and a new process�
deactivate�p��� will be activated to produce a result on the standard output of the DEACTIVATE

primitive action� As in the case of the ACTIVATE� the termination of a DEACTIVATE action is subject
to the process level rules�

Rule � � deactivating a process

hDEACTIVATE p� �i
e� Pname

�

act

� � h�� �� fDEACTIVATE�p��outputg� fp�� deactivate�p��gi

������� GETUNIT

Getting a unit from a port activates a process GETUNIT�port�� This adds getunit�port�
�

to the
process �de��activations set� As in the case of the ACTIVATE� the termination of a GETUNIT action
is subject to the process level rules� The union operation de�ned on the four�tuples implies that if
several GETUNIT actions are used in the same block on the same port� only one getunit process
will actually be activated at the application level� as stated in the speci�cation �
��

Rule � � getting a unit from a port

hGETUNIT	port
� �i
e� Pname

�

act

� � h�� �� fGETUNIT�Pname�port��outputg� fgetunit�Pname�port�
�gi

�

������� Breakup of a pipeline

When a process involved in a pipeline raises a death or break event� the pipeline breaks up� The
following rule takes care of this situation�

Rule �� � treating the death or break of a process in a pipeline

e � fdeath�P� break�Pg

hP�Port� �i
e� Pname

�

act �

When the process is not terminated� the port is taken in the Pipe set of ��

Rule �� � process in a pipeline

e �� fdeath�P� break�Pg

hP�Port� �i
e� Pname

�

act � � h�� �� fP�Portg��i

����� Pipelines

The essence of a pipeline expression is to establish sets of port connections� Pipelines as de�ned in
the original speci�cation �
� can be rather complex� Simpli�cation of pipeline expressions involves
various meta�notation and naming� The simpli�cation rules in �
� transform arbitrary pipelines into
simple basic pipeline expressions� In this section� we consider only such basic pipeline expressions
and assume that the function simpli�ed�pipe is available at the handler level to return the simpli�ed
equivalent of an arbitrary pipeline expression� We describe here only the aspect of pipelines that
concerns port connections�

The rule for the set�up of a stream between P� and P� combines their e�ects encoded as the
four�tuples hEloci� Eexti� P ipei� P rocii� Note that Proci may contain process activations� Event sets
Eexti and Eloci are not used yet� but are combined by a union for generality� If neither Pipei is
empty� the resulting pipeline is the pipeline expression between the two transformed forms of P�

and P��

Rule �	 � stream set�up

hP�� ��i
e� Pname

�

act hEloc�� Eext�� fP �
�g� P roc�i�

hP�� ��i
e� Pname

�

act hEloc�� Eext�� fP
�
�g� P roc�i

hP���P�� �i
e� Pname

�

act

� � hEloc� �Eloc�� Eext� �Eext�� fP �
���P

�
�g� P roc� � Proc�i

A stream breaks if any of its processes dies� raises a break event� or has already been deactivated�
In all these cases for some i� the component Pipei � �� Other components of the four�tuples are
nonetheless taken into account�

Rule �
 � stream breaking

hP�� ��i
e� Pname

�

act hEloc�� Eext�� P ipe�� P roc�i�

hP�� ��i
e� Pname

�

act hEloc�� Eext�� P ipe�� P roc�i�

P ipe� � � � Pipe� � �

hP���P�� �i
e� Pname

�

act

� � hEloc� �Eloc�� Eext� �Eext�� �� P roc�� Proc�i

�

A pipeline is a chain of streams� The following rule de�nes the e�ect of a pipeline as the union
of the e�ects of all of its streams�

Rule �� � pipeline set�up

i �
��n � hSi� ��i
e� Pname

�

act hEloci� Eexti� fS�ig� P rocii

h� S�� � � �Si � � �� Sn� �i
e� Pname

�

act

� � h
�
i����n

Eloci�
�
i����n

Eexti� f� S��� � � � S�i � � �� S�ng�
�
i����n

Procii

A pipeline expires if any of its streams breaks� i�e�� if for any i� Pipei � �� Other components of
the four�tuple are nonetheless taken into account�

Rule �� � pipeline breaking

i �
��n � hSi� ��i
e� Pname

�

act hEloci� Eexti� P ipei� P rocii
�
i����n

�Pipei � ��

h� S�� � � � Si � � �� Sn� �i
e� Pname

�

act

� � h
�
i����n

Eloci�
�
i����n

Eexti� ��
�
i����n

Procii

����� Groups

The e�ect of a group is the union of the e�ects of its members� A group terminates when all of its
members have expired� The order of the evaluation of actions in a group is non�deterministic� We
can thus use symmetric rules each ai member of a group� Since the net e�ect of a group is obtained
as union of the ��s of its members� and because union is both commutative and associative� the
non�deterministic order of evaluation of the ai�s does not a�ect the semantics of a group� In this
sense� just as �� the group operator ��� is both associative and commutative�

The action IGNORE is completely neutral inside a group�

Rule � � group

ha�� �i
e� Pname

�

act ha
�
�� �

�ij ��

h	a�� a� � � � �ai � � �an
� �i
e� Pname

�

act

h	 a��� a� � � � �ai � � �an
� ��ijh	 a� � � � �ai � � �an
� ��i

��� The Handler Level

The state of a process at the handler level is a triple hP�C�Ei� where�

� P is the state of the program of the process� P is represented as manifold Pname fblocksg	�
where blocks is a list of the form�manner�block�� This means that there is at least one block
in blocks � and that it begins with � or more called manners �representing the �stacking� of
manner calls�� A called manner manner in this list has the form mannerMnamefblock�g
�
The list of blocks block� is ordered� and the current block is always in the �rst position� As
we will see later� this is important for the search of the next current block in event handling�

�The functions name�P
 and blocks�P
 give� respectively� Pname and blocks�
�This is a kind of addition to the grammar presented in table �� as these constructs are not available to

Manifold programmers� but are here for the internal representation of the e�ect of manner calls on the
set of handling blocks of a manifold�

��

� C is the state of the current block of the process� and can be one of�

� inactive� before activation and the handling of the start event �in this state� start
is the only observable and preemptive event��

� the current state of the current block� labels � action� where action might have di�erent
successive states�

� END when the current handler is terminated�

� deactivated when the whole process is terminated�

� E is the local memory of events for this process� containing all the received occurrences of
observable events� that have not yet been handled�

The transition relation is�
e� Pp� Cp

�

hEext� P roc
� where�

� e is the handled event�

� Pp and Cp are the previous states of the program and the current block��

� Eext is the set of externally raised events�

� Proc is the set of �de��activation of the processes�

This transition relation details the computation of the next state of a process handling an event�
It is used for one�step transitions� without particular terminal states� This level is intended to
operate more as a �choice� rather than for an e�ective computation� The net e�ect of this level is
to discriminate between several cases of event handling by a manifold process�

����� Event handling

This is the �normal� case� of simple handler actions not involving a return to a previous state� The
action ac of the current block is evaluated� with its e�ects in the four�tuple hEloc� Eext� P ipe� Proci�
If the action ac is a pipeline� it must �rst be simpli�ed according the rules given in the original
speci�cation �
�� We assume that this is done by the function simpli�ed�pipe� which leaves all
non�pipeline actions unchanged�

Rule �� � event handling

ac �� reactionary�actions�set � manners �fRETURNg�
a�c �simpli�ed�pipe�ac��

ha�c� ��i
e� name�P �

�

act
�

hEloc� Eext� P ipe� Proci�

hP� lc�ac� Ei
e� Pp� Cp

�

hEext� P roc
hP�pipe�to�block�Pipe�lc�� E �Eloci

At the actions level� where they are calculated� the sets of externally raised events Eext and
�de��activated processes Proc are part of the evaluation environment� However� at the handler
level� these sets are part of the labels of the transitions only�

There is a special event in Manifold� called noevent� whose semantics states that it must be
ignored� This can be done by �ltering out this innocuous event from Eext and Eloc at this level�
The above rule does not re	ect this �ltering� It is trivial to replace Eext and Eloc in the lower part
of the rule with Eext n fnoevent�Pnameg and Eloc n fnoevent�selfg� respectively�

The set Pipe is transformed by the function pipe�to�block�Pipe�lc� into a block with the labels
set lc of the old current block and a minimum action denoting the pipelines in Pipe �a block with
a group� lc�	a�� � � � an
 of all ai � Pipe� i �
��n� or the pipeline block� lc�a if Pipe � fag� or END
if Pipe � ���

�This is necessary because reactionary actions like IGNORE and SAVE �go back� to the previous state of
the process�

�

����� Reactionary actions

These actions are characterized by the fact that they cause a return to the previous state� According
to the present speci�cation �
�� the two actions IGNORE and SAVE have this behavior if they appear
as the only action in an event handling block�

reactionary�actions�set � f IGNORE� SAVE g�

We de�ne a generalized framework for reactionary primitive actions and allow the possibility of
adding other actions to this set� Each reactionary action can have a particular e�ect on a particular
dimension of the four�tuple hEloc� Eext� P ipe� Proci���

Rule �� � reactionary actions

ac � reactionary�actions�set�

hac� ��i
e� name�P �

�

act
�

hEloc� Eext� P ipe� Proci

hP� lc�ac� Ei
e� Pp� Cp

�

hEext� P roc
hPp� Cp� E �Eloci

����� Manner calls

A call to a manner has the e�ect of adding its list of blocks in front of the caller�s� in a push�down
stack style� The net e�ect of this is that the list of event handling blocks of the manner take
precedence over those of its caller� until the called manner returns�
When a handler Mname is a manner call� it has the form name�parameters�� A static relation

derived from the declarations� denoted manner�Mname�Mblocks�� gives the list of blocks Mblocks

for a manner call� This blocks list is put at the beginning of the caller�s blocks list as manner

MnamefMblocksg� This means that the manner is pushed onto the manner calls stack of the man�
ifold� The local event start�self is raised locally in the environment of the called manner� The
process level transition from the state inactive gives the new state of the process P � and the new
current block C�� This� and other transitions� may involve nested manner calls in the handling
blocks of the called manner�

Rule �� � manner call

Mname � manners� manner�Mname�Mblocks��
hmanifold name�P � fmannerMnamefMblocksg blocks�P �g� inactive� fself�startgi

�

pEext� P roc
hP �� C�� E�i

hP� lc�Mname� Ei
e� Pp� Cp

�

hEext� P roc
hP �� C�� E �E�i

The blocks of the manner Mname as given by the relation manner�Mname�Mblocks� are complete
with certain default blocks for a number of prede�ned events� e�g�� to handle its termination and
return to its caller�

����� Manner returns

Returning from a manner Mname consists of removing its blocks list� Mblocks� from the top of
the stack of called manners� The special event returned�self must also be raised in the caller�s
environment� As we are exiting from the manner call� the resulting current block state is END� This

	In particular� this makes the transitivity � of the action level relation quite useless� as it is made in one
step anyway� But leaving it there keeps open the possibility of having more complex reactionary actions�

�
In particular� Pipe is ignored in the present version of the rule� But we can have something like a
group combining the action of the previous state� aCp� and the e�ect of ac i�e�� Pipe� in the following way�
�aCp � pipe�to�block�Pipe�lc��� The e�ect of such an action can be described as installing a supplementary
pipeline and going back to the previous current block�

��

rule re	ects the semantics of normal return from a called manner� Termination of a called manner
is dealt with elsewhere �rule ����

Rule 	� � manner return

hmanifold Pname fmannerMnamefMblocksg blocksg� lc�RETURN� Ei
e� Pp� Cp

�

h�� �
hmanifold Pnamefblocksg� END� E � fself�returnedgi

The set of received event occurrences E may contain events that are observable only inside of
a called manner� This will be dealt with at the application level� where E is intersected with the
current set of observable events� observable�P�� This set is dependent on the current state� and
is thus sensitive to calls to and returns from manners� This way� event occurrences that are not
observable any more after returning from a called manner are �ltered out�

��� The Process Level

The state of a process is represented as a triple hP�C�Ei where�

� P is the state of the program of the process� For manifold processes� this is the same repre�
sentation as used earlier at the handler level �section ���� For an atomic process �prede�ned
or otherwise� we use its name�

� C is the state of the current block of the process� For a manifold process� it is the same
representation as used earlier at the handler level� For an atomic process� it is either inactive�
active or deactivated�

� E is the local memory of observed event occurrences for this process� This component is also
the same as in the handler level�

In our semantic model for Manifold� each process has its own local representation of the ob�
served event occurrences that it is interested in� This re	ects the fundamental notion in Manifold

that events are handled asynchronously�

The process level transition relation is de�ned as �

pEext� P roc
where�

� Eext is the set of events to be raised outside of the process as it makes the transition� and

� Proc is the set of processes that must be �de��activated�

This is a one�step transition whose purpose is to select one of the possible alternative transitions
for a process� The deactivated states of all processes are terminal states� because there are no
transitions de�ned from these states to any other state�

����� Atomic processes

The guard on a port is a special atomic process� because it raises a speci�ed event with proc�port
as its source��� and then terminates�

Rule 	� � termination of the guard on a port

hguard�proc�port� e�� active� Ei �

pfe�proc�portg� �
hguard�proc�port� e�� deactivated� Ei

��This is a local event that follows the same path as the external events� However� in our semantic model
for Manifold� an event source proc�port is observable only by the process instance proc�

��

The process getunit	proc�port
may raise a disconnected event with the source proc�port� but
it does not terminate in this case�

Rule 		 � attempt to get a unit from a disconnected port

hgetunit�proc�port�� active� Ei �

pfdisconnected�proc�portg� �
hgetunit�proc�port�� active� Ei

An atomic process starts when it receives the event start�self�

Rule 	
 � starting an atomic process

P �atomic�processes

hP� inactive� fstart�selfgi �

p�� �
hP� active� �i

A programmer de�ned atomic process P can raise any event in its declared set of output events�
We assume the set of output events of a process p is given by output�P �� The state of an atomic
process� hP�C�Ei does not visibly change� because the internal behavior of an atomic process is
completely unknown to Manifold� From the viewpoint of the Manifold system� the choice of
an atomic process to raise a speci�c event is completely arbitrary�

Rule 	� � raising of an event by an atomic process

P �atomic�processes � e � output�P �

hP� active� Ei �

pfe�Pg� �
hP� active� Ei

As far as Manifoldis concerned� the external atomic process P remains unchanged� it remains
in state hP� active� Ei�

Termination of an atomic process P involves raising the death event externally and changing
the activation state of P to deactivated�

Rule 	� � atomic process terminating

P �atomic�processes

hP� active� Ei �

pfdeath�Pg� �
hP� deactivated� Ei

Similar transitions can be easily de�ned to deal with certain special events� like abort� termina�
te� and start� Likewise� other similar rules can express transitions� e�g�� directly from inactive

to deactivated in reaction to an abort event�

����� Manifold processes

A manifold process can make several types of transitions� depending on its set of observed events
in E�

� Occurrences of priority events� if any� are handled �rst� The actual handling of priority events
is no di�erent than other preemptive events� It is just that the priority events are considered
�rst�

� Occurrences of preemptive events are handled using rule ���

� With no events to preempt the current state� some events can still cause an evolution of the
current state �i�e� the pipelines network�� without causing a transition to a di�erent handler�

� In the absence of any of the above three possibilites� and if the current state is empty �i�e�
the action is terminated� the pipeline is broken�� then the manifold process has nothing left
to do� This means that the manifold must terminate�

�

Handling of events �with or without priority� involves a search to �nd its appropriate handling
block� This is done here using a relation denoted�

e
�

search

This relation is de�ned and elaborated in Section ����

Priority events are pre�de�ned in a set with a total ordering� hp� de�ned on them�

priority�events� f abort� break� dead� end� returned � � �g

The event abort has the e�ect of terminating the process immediately�

Rule 	 � handling abort

abort�� � E

hP�C�Ei �

p�� �
hP� deactivated� Ei

A break event has the e�ect of breaking the pipelines in which its source process Pbreak is
involved�

Rule 	� � handling break

break�Pbreak � E�

hac� ��i
break�Pbreak� name�P �

�

act
�

hEloc� Eext� P ipe� Proci

hP� lc�ac� Ei �

pEext� �
hP� pipe�to�block�Pipe�lc�� �E n fbreak�Pbreakg� �Eloci

In other cases� the greatest element according to hp is the event occurrence with highest
prioritary� and is the one that is selected for handling�

Rule 	� � handling the highest priority event

P �manifold�processes�
	e� e � maxhp �E
priority�eventsnf��abort� ��breakg��

blocks�P �
e
�

search
�

hfblocks�g� C�i�

hmanifold name�P �fblocks�g� C�� E n fegi
e� P� C

�

hEext� P roc
hP ��� C��� E��i

hP�C�Ei �

pEext� P roc
hP ��� C��� E��i

In this rule� it is assumed that these special events have handlers and that� their priority
aside� their handling follows the normal rules�

Preemptive events are handled in the absence of occurrences of priority events� Whether or not
an observed event occurrence is a preemptive event depends on the state of the process P �
An event is preemptive in a given state of a process P if it is in the set preemptive�events�P ��
de�ned as follows�

��

preemptive�events�P� � events of which the source process
is referenced in the current handler

 events for which there is a handler
n events in the labels set of the current block

The preemptive events of P are then exactly those events in the intersection of its observed
event occurrences and preemptive�events�P ��

Rule 	� � handling a preemptive event

P �manifold�processes�
E
priority�events � �� 	e � E
preemptive�events�P��

blocks�P �
e
�

search
�

hblocks�� C�i�

hmanifold name�P �fblocks�g� C�� E n fegi
e� P� C

�

hEext� P roc
hP ��� C��� E��i

hP�C�Ei �

pEext� P roc
hP ��� C��� E��i

The choice of the handled event is non�deterministic �	 in the set� �
��

All streams in the pipelines of the previous state are deleted� C is lost� and is replaced by
C���

The handler for e is found in the blocks list of P �� which are rearranged into fblocks�g by the
circular search mechanism �see Section ����

The transition is made in one step of the �

pEext� P roc
relation� This re	ects the atomicity

of event handling actions �and manner calls��

Note that if an event like a death is preemptive �i�e�� there is a handler for it�� then it is
handled at this level� and preempts the current state� instead of causing a pipeline evolution�

Evolution of the network of pipelines takes place in the absence of preemption� by the death
of a process or breaking of a pipeline� Evolution occurs in reaction to a non�preemptive event
in the evolution�events�set�

evolution�events�set� fdeath��� break��g

Rule
� � evolution of a pipeline

E
 �preemptive�events�P ��priority�events� � ��
	e � E
evolution�events�set�

hac� ��i
e� name�P �

�

act
�

hEloc� Eext� P ipe� Proci

hP� lc�ac� Ei �

pEext� �
hP� pipe�to�block�Pipe�lc�� �E n feg� �Eloci

The action level rules are used to evaluate the evolution of pipelines and groups� Their
evaluated results is Pipe� from which the new state of the current block is obtained� using
the function pipe�to�block discussed earlier �see Section ���
�� Events raised in Eloc and Eext

are in fact not presently used� they will always be empty in the case of evolutions� The set
of process �de��activations Proc is ignored here� because activations have been done already
when installing the pipeline or group���

��However� redundant activations are harmless� redundant deactivations shouldn�t be di�erent� So Proc

may as well be transmitted to the above levels� allowing for this chain of e�ects�

��

An interesting case is of course that of the termination of the current handler� i�e�� when
Pipe � � and the new current block is END� An interesting way to make this transition is to
fake a break event inside the manifold and add it to the local events� Eloc�fbreak�selfg� In
most cases� this event will be �ltered out of E at application level� because there is usually
no handler for break� which makes it unobservable� However� this may be useful for a pre�
de�ned construct like the sequencial operator manner� This manner� for example� captures
the break event and handles it �
��

Termination takes places when there is nothing left to do� This is when the current handler is
terminated �i�e�� C �END� and there is no event occurrence in E that can preempt this state�

Rule
� � termination of a manifold

E
 �preemptive�events�P � � priority�events� � �

hP� END� Ei �

pfdeath�Pnameg� �
hP� deactivated� Ei

Termination in a manner means a return from the manner only� In this case� a returned�self
event is raised in the environment of the caller� This event may be a preemptive event in the
caller�s environment�

Rule
	 � termination of a manner

E
 �preemptive�event�P � � priority�events� � �

h manifold PnamefmannerMnamefMblocksg blocksg� END� Ei �

p�� �
hmanifold Pnamefblocksg� END� E � fself�returnedgi

����� Search of the handling block for an event

The search to �nd an appropriate handler for an event occurernce is de�ned using a new transition
system� The states of this transition system have one of the following three forms�

� A list of � or more manner calls� �stacked� as described in rule
� on top of the blocks of a
manifold�

fmanner�block�g

�

� The terminal state when the search is successful is a pair that contains a new arrangement
of the list of blocks� together with the new current block�

hfmanner�block�g� blocki

�

� The terminal state when the search is unsuccessful is an empty list of blocks� fg�

The transition relation is
e
�

search � where e is the event for which a handling block

must be found �i�e�� whose labels contain e��
The target handler must be looked for in the deepest called manner� If it is there� then the

corresponding terminal state is reached�

Rule

 � successful search in manner

��

fMblocksg
e
�

search hfM �
blocksg� lc�aci

fmanner MnamefMblocksg blocksg
e
�

search

hfmanner MnamefM �
blocksg blocksg� lc�aci

If the target handler is not found in the deepest called manner� the manner is preempted by the
event� This means that the event returned�self is not raised in the environment of its caller� but
the manner is terminated and the search continues in the environment of its caller �
��

Rule
� � unsuccessful search in manner

fMblocksg
e
�

search fg

fmanner MnamefMblocksg blocksg
e
�

search fblocksg

At each level� a circular search is performed among the event handling blocks of the current

environment to �nd the appropriate handler� We denote this search by the relation
e
�

circ

de�ned in Section ��� The success or failure of our search depends on the success or failure of
this circular search at each level�

Rule
� � successful search

hfl��b�� blocksg� fgi
e
�

circ
�

flc�bc� blocks�g

fl��b�� blocksg
e
�

search hflc�bc� blocks
�g� lc�bc�i

Rule
 � unsuccessful search

hfl��b�� blocksg� fgi
e
�

circ
�

fg

fl��b�� blocksg
e
�

search fg

����� The circular search

The circular search is also de�ned by a transition system� The states of this transition system are
one of the following�

� A pair of lists of blocks hfblock�g� fblock�gi� the �rst of which contains the blocks to be
searched� and the second one the blocks already searched�

� The terminal state fblock�g� re	ecting the new arrangement of the list of blocks� where the
new current block just found is the �rst element� If the search fails� the list of blocks is empty�
and the terminal state is f g�

The transition relation is
e
�

circ � where e is the event for which a handling block

must be found� The event e is matched against the labels of each block� considering the wild�card
character � �see Section ��
�� We use e � labels�b�� to denote a successful match of the event e
with the labels of the block b��

Circular search� if the event for which we are looking for a handler is not in the labels set of the
�rst block b�� then the �rst block is appended at the end of the list of the already searched
blocks� which re	ects the circularity of the search�

��

Rule
� � circular search

e �� labels�b��

hfb� blocksg� fblocks�gi
e
�

circ hfblocksg� fblocks� b�gi

Handler found� if the event e is in the labels of the �rst block� then the search ends successfully�

Rule
� � successful circular search

e � labels�b��

hfb� blocksg� fblocks�gi
e
�

circ fb� blocks blocks�g

The new arrangement of the list of blocks is obtained by placing the mathed block in the �rst
position� followed by the remaining blocks that were not searched� and then by the blocks
that were searched before�

Unsuccessful search � The end of the search is reached when the list of blocks to be searched is
exhausted�

Rule
� � unsuccessful circular search

hfg� blocks�i
e
�

circ fg

��� The Application Level

The state of an application is the set of the states of all the processes �manifolds and atomic

processes� in that application� The application level transition relation is denoted by �

a �

��	�� Concurrency of processes

An application changes when any of its active processes causes a change� possibly by raising events
that must then be propagated to the rest of the processes in the application�

Rule �� � transition at application level

	p � A� p �

pEext� P roc
p�� A� � �A n fpg� � fp�g

A �

a f p�� j 	p� � A�� p�� � diffact�p�� Eext� P roc� g

The Manifold application state A is changed by�

� replacing previous state p of the process by its new state p� �this can also be written as
A�p��p��� The operator 	 represents non�determinism and asynchrony�

� di�using the possibly empty set of raised events Eext and activating or deactivating the
processes in Proc�

As an extension� the di�act function can also verify that the current pipelines installed in p� can
be actually built� i�e�� that the processes involved actually exist and are active in the application�
If this veri�cation fails� the event dead is added to the events memory of p��

��

diffact�hP�C�Ei� Eext� P roc� �

if C� inactive

then if name�P �� � Procs
then hP� inactive� E � fstart�selfgi
end

else if C � deactivated

then hP�C�Ei
else if name�P �� � Procs

then hP�C�
�E �Eext � fterminate�selfg�

observable�P �i
else hP�C�

�E �Eext�
observable�P �i
end

end

end

Table �� Di�usion of events in a process� the function di�act�

��	�� Di�usion of events and �de��activation of processes

The function diffact�P�Eext� P roc� in table �� describes the reception of events in Eext by each
process� considering what this latter can observe and can currently handle� It also performs the
activation or deactivation of processes named in Proc�
The set of observable events is a function of the state of a manifold process P �
�� Observable

event sources for a manifold process P are�

� All processes referenced in the blocks of the manifold� Because of manner calls� this set is
state dependent�

� The ports of the process P �

� The keyword self designating the process P itself�

Observable events are those that�

� come from an observable source� and�

� match the label of one of the blocks other than the current block �i�e�� they have a handler�
di�erent than the current block��

Intersecting the whole event memory E of a process with the set of observable events has the
e�ect that event occurrences in E that have been received earlier and not yet handled� and that
are not observable any more �e�g�� due to a manner exit�� are �ltered out� This corresponds to the
informal speci�cation declaring them lost �
��

��	 Global Network

The state of the global network connecting all processes can be obtained from the state of a
Manifold application by a multi�union of the local networks of its individual processes� This
results in a multi�set where an element can be redundantly present� Redundant elements in this
multi�set mean that a stream is redundantly installed �
� �see Figure �� Each local network is a
function of the current state of its manifold�

The elements of the network of streams are pairs hport�� port�i of port names���

��In a later stage of the formal speci�cation work� when we consider the data��ow aspect of Manifold

and the transfer of units� we must also include the stream type tags �ushing�non��ushing�

��

network for
manifold M2

{(P1,P2),(P2,M2),
 (P3,P2)}

network for
manifold M1

{(M1,P1),(M2,P1),
 (P1,P2),(P2,P3)}

Global Network

 (P1,P2),(P1,P2)

{(M1,P1),(M2,P1),
 (P2,P3),(P2,M2),
 (P3,P2),

}

M2

P1

P2

P3

M1

M2

P1

P2

P3

M1

M2

P1

P2

P3

M1

Figure � Local and global networks of streams in a Manifold application�

The network is a multi�set in order to represent the property that a stream disappears only when
dismantled as many times as it was installed� The global network is de�ned by the function net�A��

It is the multi�union �
�
of local networks controlled by individual manifold processes�

net�A� �

�
p�A�manifolds

�

net�p�

The local network controlled by a manifold process is given by the state of its current handler�

net�h manifold Pname lc � acfblocksg� E� activei� � net�ac�

The network implemented by a group is the multiunion of the streams constructed in the pipeline
members of the group� For a binary group� the following rule applies�

net� 	a�� � � � ai � � � � an
 � �

�
i����n�

�

net�ai�

If an action is a pipeline construction� then the result is its corresponding set of streams� and
otherwise the empty set ��

net�a� �

����
���

�
i����n

net�Si� if a �� S� � ��� Si ��� Sn

� otherwise

�

For a single stream� the net is its corresponding singleton�

net�Port���Port�� � fhPort�� P ort�ig

� Results and Current Activity

The language considered in this report is an approximation of the original language �
�� It does not
include the data�	ow aspects ofManifold �the inside view of streams� transfer of units� and their
interaction with the event mechanism of Manifold�� Some of the details of the event mechanism
of Manifold are also left out of this report�
One of the results of our work on the formal speci�cation of Manifold is the implementation

of an interpreter� This interpreter enabled us to �validate� our formal speci�cation� We have also
used it as a tool to experiment with the de�nition of the language itself�

Our present ongoing work on formal speci�cation of Manifold includes�

An extension of the application level transitions As presently de�ned� the application level
transitions linearize the concurrent reactions of parallel processes� However� there is no con�
sideration for the time it takes to react� i�e�� the time needed to �nd the handler for an event�
Between the selection of an event occurrence to reacted to� and the e�ects of its handling�
another process may make a transition�

Thus� it may be interesting to dissociate selection of an event occurrence for handling �as a
kind of read operation on the state of the application� and e�ects of its handling �as a kind
of write operation�� This would be closer to the reality of the execution and communication
model of Manifold�

Stable states of an application The stable states of an application can be characterized as
those states wherein the netwok of streams is stable and no preemption is possible by the
present set of all event occurrences� No transition is possible from a stable state unless a new
event occurrence arrives from an external source� e�g�� an atomic process or a pseudo process
primitive action such as a guard� In a stable state� the data�	ow network is active and units
are travel through streams� There is some resemblence between our notion of stable states
and the concept of stability in Grafcet �
���

Using the notion of stable states� a Manifold application can be seen as a system that
makes �global transitions� between stable states� These transitions depend on termination of

the lower�level �application�level� transition relation �

a � The property of being

stable� for an application A� can be de�ned as�

stable�A� �
�

hP�Ei�A

�E
 �preemptive�P �� priority�events � evolution�events�set� � ��

The global transition relation between stable states is de�ned in terms of several steps of the
�unstable� application transitions� as�

stable�A�� A �

a
�
A�� stable�A��

A �

s A�

It may not always be possible to attain a stable state� Some programs may go into a kind of
loop through a tandem of �unstable� states� An interesting area for future work is to de�ne
a method to detect such �unstable� programs�

��

A prototype interpreter We are implementing a prototype interpreter for the subset of Man�

ifold considered in our work on its formal speci�cation� The interpreter is being used to
validate and �debug� the rules presented in this report� It consists of a quite direct encod�
ing of the rules in Quintus Prolog� where non�deterministic choices are resolved through
interaction with the user� In a future version of the interpreter� we may want to explore the
whole space of possible executions� However� this requires that termination must be assured�

A graphical user interface We plan to use the above mentioned interpreter to feed a prototype
graphical user interface that is under development for Manifold� This� on the one hand�
gives the interpretor a user�friendly interface� and on the other hand� the new concepts of
the interface �e�g�� the ��D representations ofManifold applications� various debugging and
tracing functionalities� etc�� can be experimented with using the interpretor� Given that the
interpreter is much smaller and simpler than the actual implementation of the Manifold

run�time system� this facilitates developement of the graphical user interface�

� Conclusions and Future Work

This report documents a �rst step towards a complete and formal speci�cation of the Manifold

model and language� It presents the speci�cation of a subset of the Manifold language as de�ned
in its original informal speci�cation �
��

We intend to continue our formal speci�cation work to cover the whole Manifold language�
including streams and the transportation of units� The interactions between the streams and the
event mechanism of Manifold is indeed an important and complex aspect of the language� We
may also examine other formal speci�cation methodologies in order to evaluate their adequacy
compared to our present choice of hierarchical transition systems� Also� a systematic exploration
of the de�nition of the primitive actions can be made in an orthogonal way� For example� we may
consider primitive actions based on their e�ects on the four�tuple hEloc� Eext� P ipe� Proci�
Another direction for future work is to concentrate on the modeling methodology itself� and

study alternative ways to analyse the behavior and properties of Manifold programs based on
their formal semantics� The semantics presented in this report gives a clear view of the behavior
of the language� Other representations� such as a �nite�state automata encoding of the states and
transitions of Manifold� can be derived from this model�

Acknowledgement

We appreciate the e�ort of all members of the Manifold group �Paul ten Hagen� Freek Burger�
Per Spilling� Kees Blum� Anco Smit� and Dirk Soede� for their direct and indirect contributions to
this paper�

� References

�
� F� Arbab� Speci�cation of Manifold� CWI Report� Interactive Systems Dept�� to be pub�
lished�
����

��� F� Arbab� I� Herman� Examples in Manifold� CWI Report� Interactive Systems Dept�� CS�R
�����
����

��� F� Arbab� I� Herman�Manifold� A language for speci�cation of inter�process communication�
In Proceedings of the EurOpen Autumn Conference �A� Finlay� ed��� Budapest� pp�
���
�
September
��
�

�� F� Arbab� I� Herman� P� Spilling� An overview of Manifold and its implementation� CWI
Report� Interactive Systems Dept�� CS�R �
��
��
�

��

��� A� Benveniste� G� Berry� The synchronous approach to reactive and real�time systems� Another
look at real�time programming� Proceedings of the IEEE� special section� September
��
�

��� G� Berry� A hardware implementation of pure Esterel� DEC Paris Research Laboratory�
Report n�
�� July
��
�

��� G� Berry� G� Gonthier� The Esterel synchronous programming language� design� semantics
and implementation� INRIA Research Report n� ���
����

��� N� Halbwachs� P� Caspi� P� Raymond� D� Pilaud� The synchronous data�	ow programming
language Lustre� Another look at real�time programming� Proceedings of the IEEE� special
section� September
��
�

��� P� Le Guernic� T� Gautier� M� Le Borgne� C� Le Maire� Programming real�time applications
with Signal� Another look at real�time programming� Proceedings of the IEEE� special section�
September
��
�

�
�� L� Marc�e� P� Le Parc� Mod�elisation de la s�emantique du Grafcet �a l�aide de processus syn�
chrones� In Proceedings of Grafcet ���� Paris� �� � �� Mars
����

�

� G�D� Plotkin� A structural approach to operational semantics� Aarhus University� Computer
Science Dept�� Report DAIMI FN�
�� Sept�
��
�

�
�� G�D� Plotkin� An operational semantics for CSP� In D�Bj rner �ed��� Proceedings of the
IFIP Working Conference on Formal Description of Programming Concepts � II� Garmisch�
Partenkirchen� Germany�
� June
���� North�Holland�

�
�� D� Soede� F� Arbab� I� Herman� P� ten Hagen� The GKS input model in Manifold� CWI
Report� Interactive Systems Dept�� CS�R �
���
��
�

�

