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We discuss a Petrov-Galerkin mixed finite element formulation of the sem-
iconductor continuity equations on a rectangular domain. We give error estimates
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1 Introduction.

The use of a form of exponential fitting for the semiconductor continuity equation is suggested
by the success of the Scharfetter-Gummel discretisation[1] in one dimension and variations on that
discretisation in two dimensions. Numerous derivations of Scharfetter-Gummel type discretisations
are given in the literature, for instance by Selberherr{2], Markowich[3], Bank et al.[4], Brezzi et al.[5],
and others. This paper extends a one dimensional exponential fitting technique, discussed by
Hemker{6], to the two dimensional problem.

In section 2 we introduce a model equation for the semiconductor continuity equations. We
introduce several bilinear forms, related to the coefficients in this equation. In section 3 and 4 we
treat the discretisation. In section 5 we collect some technical results and in section 6 we derive two
error estimates. These error estimates are based on the techniques used by Douglas and Roberts[7].
The proofs in section 6 take all characteristics of our special discrete system into account, in partic-
ular the quadrature rule for the approximation of certain integrals in the discrete system. Note that
the error estimates in section 6 are degenerate if the problem is singularly perturbed, i.e. if the con-
vection dominates in the problem. On the other hand, an indication for good behaviour of the
method for singular problems is that - for constant coefficients - it reproduces reproduces the solu-
tion Cexp(—B;x;—B,x,) exactly. In section 9, we develop an a posteriori error estimator. In the
last section we discuss our findings.

2 The equation.
We consider the following problem, find u € H?(Q) such that:
—div(%(gradu+uﬁ)) +yu=/ on 2 and (1)
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coefficients:

«EWP® and 3 A€R:a >4 >0 on &, @)
-;—ew'r(xz) on @, A)

B = (B1,B,)" with 8,8, EWP(Q), )
YEWYP®) and vy = 0 on 2, )

where W (Q) , H*(Q) are the usual Sobolev spaces[8], and

H(div,2):= { € L’@)* | divr € L’@) },
with scalar product

(0, Mngaive = é oTdp + é dive divr dp,

is a Hilbert space (see also Girault and Raviart, [9] formula 2.15 in section 2.2). We assume, that
the equation has a solution and that f € LX(@) , g € H*/2(3%).

The stationary semiconductor continuity equations take the form (1). Here B corresponds to
the electric field, the term yu corresponds to a linear approximation to the recombination term and
1/a corresponds to the electron or hole mobility. The exact correspondence depends on the choice
of scaling]10].

To formulate the weak mixed form of this equation, we use the following bilinear forms
6f) = [stdp V st€LXQ),
o

a(e, 1) = ‘s{amr dp V eo,7 € H(div,D),
b(o,r) = é Botdp V o €HWiv,Q),t € LY D),
c(s,t) = ‘s{Y” dup V st € LXQ),
<gh> = é{;gh d\ V gh e 1?09 .
Given these definitions, we see immediately, that any solution u € H2(2) of (1) generates a
solution (o,u) € H(div,2) X L*(Q) of

a(e,7) — (divr,u) + b(r,u) = < gTmye > V 7€ H(div,9), (6a)
(dive,t) + cw,t) = (fit) V t € LX(Q) . (6b)

Where 6 = —%(gradu + upf).

To simplify the notation, we denote the Cartesian product of a normed linear space E with
itself by E in bold faced type, E:= EXE. We define

2
@) || &= (El NwlIB* ¥V @m)€E.

3 Preparations.

We introduce a partition of the domain and we define the adjoint problem of (1), which we
use in the derivation of one of our error estimates. Next, we introduce several special projections,
that are needed in the definition of out approximation spaces and in the derivation of the error esti-
mates. Finally we give an error estimate for the projections.



3.1. The partitioning of the domain.

We assume, that our domain @ is rectangular. On £, we use Cartesian coordinates, with the
unit vectors e; and e, parallel to the edges of 2. We define 7;:= 7-¢; for v € L*(2) and x;:= x-¢;
for x € R2. Before we treat our discretisation, we define our approximation space. We assume that
our partition is the cartesian product of partitions

P={0=py<p1 < - <pny =L1}, )
and
Q={0=¢go<q1 < - <gqn =1L} ®
of the sides of our domain. We define the index set K|
K= {(+%j+%]i=01,...,N;—1,j=0,1,...,N,—1},
with the obvious index pair for a given cell,
Qivpjrn = (X|pi < X1 < pi+1,q < X2 < Pj+1} -

We define x; to be the centre of £, and h; to be the diagonal of £;,. We use the notation x; for
the characteristic function of ;. (The characteristic function of a set is the function that is equal to
one in all points of the set and zero elsewhere). The edges of £, are the sets:

Thij = {XEQ | xe, = (x+(—%)e } for i=12,7=0,1. )
Xx,i,; is the characteristic function of edge Tyij- So (5,/)=(1,0),(1,1),(2,0),(2,1) denote the left, right,
bottom and top edges.

3.2. The adjoint problem.
We use the following definition for the adjoint problem of (1) (cf. Douglas and Roberts [7] ),

w € HAQ) , (10
.1 B _
——dlv(:gradw) + a~gradw +yw =f on @,

w =20 on Q.
The adjoint problem is called regular, if there is a unique solution w for every f € L*(2) and this
solution satisfies ||w || w@) < C||f]| 1:@) for every f € LX(R).

Both in the above equation and in the rest of this report, the upper case C, without a subscript,
denotes a generic constant. It may have a different value at each appearance.

The weak mixed form of the adjoint problem is:

(m,w) € H(div,Q) X L2(Q) , an
a(t,06)—(dive,w) = 0 V o € H(div,?) and (11a)
(divr,0)—b(@,0)+cw,t) = (1) V t € LX(Q) . (11b)

Any solution w € H*(Q) of (10) generates a solution (—% gradw,w) of this problem. If (9) is regu-
lar, then this solution satisfies ||w || w2y + ||7||w@ < C||fll v@-

3.3. Some projections.

We introduce several local projections, we use these to define four global mappings, P, P ,
II, and II, that map function spaces to finite dimensional function spaces. First, we define P[£;] to
be the orthogonal projection from L2(Q) to the space of constant functions on £, and we define
P[T,;;] to be the orthogonal projection from LT %,i,j) to the space of constant functions on I’y ; ;.

We use P[Q;] to create two global mappings, P;: L(2) — L*(R),
Pif = 3 x PN V fELXQ), (12a)

keEK
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and P,:L*(Q)—L*(Q),
PB = 3 i [PBere; + PlOBe)e] V BELX@. (120)
k€K
Next, we introduce two mappings, based on P[T;;]. These mappings have as their domain the
space 2,
' S:= {7 EH(AV,Q) | T|s9, Mg, EL?(@%Y) V KEK}.

This space is similar to the one introduced by Roberts and Thomas in formula (1.10) of their
report[11].
To simplify the definition of these mappings, we introduce local coordinates on each cell &,
X1 — X1 1

2 et 2
k= x, — Xk2 +_1_ : 13
hk,2 2
The mappings are defined as follows:
2
M= 3 %3 [0~ 4)PTuiolr) + &PThinlrd]er (14
keKk i=1
~ 2
D= 3 % 3 [06) Paiol) + GuiPTeialm]er as)
k€K i=1

where

exp i PIRIB) — 1
explhy, PRABY) — 1 T FIBIE) #0,

& if PE%J(B) = 0.

fk,i =

So, for II,7 we get the i component on ; by linear interpolation between the projections of this
component on the two sides orthogonal to e;. For II, hewever, we obtain the same component by
using an exponential function to interpolate between the projections of this component on the two
sides orthogonal to e;.

Now we introduce the following finite dimensional function spaces as the ranges of the above
projections,

Vi = L), W, = Py(L*@) and X, = I,(S).

Vy X W), is the lowest order Raviart-Thomas-Nedelec space for rectangles. This space and the above
projections were described by Douglas and Roberts, [7] Raviart and Thomas[12] and, for 2 C R3,
by Nedelec[13]. In this paper we use the usual space, ¥, X W}, as the trial function space and
X, X W), as the test function space. In effect, we use exponential test functions instead of the usual
linear test functions. Thus, we obtain a Petrov-Galerkin mixed finite element discretisation.

3.4. Error estimates for projections.

We prove a lemma on the accuracy of our projections. Considering the number and diversity
of articles on error estimates, e.g. the classical projection estimates from Ciarlet and Raviart[14], this
may seem superfluous, but we shall see that the relative simplicity of the case under consideration
makes it possible to derive sharp error estimates under minimal assumptions.

Lemma 1.
If f is a square integrable function with square integrable derivatives on a rectangle



ﬂ:[oah I]X[O’hZ]

with sides rl,l:{ h] }X[O,hz], I‘2'1=[O,h1]><{ hz }, 1‘,_0={ 0 }X[O,hz] and 1‘2'0=[O,h1]><{ 0 },
then the following inequalities hold,

|/~ PlAYf || @ < @h1+2h3)*|| gradf] v - (162)
If 5 is a continuous function with domain [0,%,] and range [0, 1], then we have,
| f— (=)L of —sIT 11 || iy < (2h1+203)* || gradf|| ) - (16b)
If fe L®(Q), grad f € L*(£), then
|f—PlAY || =@ < (h1+hy)|| gradf||1=g) - (16¢)

Proof.
We start by proving the above inequalities for f € C'(4). We can then extend them by the usual
density argument to H'(2). To prove the first inequality, we write,

B by 2

If—PAY 1 ve = f fo P [ [ f&y)—fow,2)dwdz| dxdy ,

w=0z=0
by definition,
JGp)—fom,2) = f—i(a 2)da + f—f(x b)da .

If we substitute this into the above expression, then we find
hy h, hy h,

2
I/-PIte = | [ | [ [ 2@oa + f—i(x,wdb}dwdz dxdy .
x=0= a= w

w=0z= b=z

We apply the Ho6lder inequality to the inner integrals and extend the integrations over a and b
where appropriate,

/=PI || ey <
hy h, 95 }2 %12

NI ?”af/axlllL(Q)*‘hz f[ (x,b)

x=0y=0

dxdy .

We use (|4 |+ |B|)* < 2(4%2+B?) to write this as,
/=PI | L@ <

B, B X h,

2[ f—llaf/axxllun)dx"}' + 2fh2 18778, || Ly dy -

x=0p=0 y=0
This reduces to,

If—PIOIf|| L <
21t ||3f /8x: || ey + 203 (1817 8% || L -
Now, we consider the second inequality, (16b), we write,
[lf~ Q=T ol =Tl || Ly =
By h, hy 2

[ ] | L [0 sC00e) =702 + sCofCey) ~f0h1,2) | ity

x=0y=

We use partial derivatives to rewrite the expression,



“f_ (1=9ITy ol —sTTy,1 | 2@ =
h h

tf oyf f [(1 S(x)){ / l(a z)da + f —f(x,b)db} +

2

5(x) / —ﬁ(a Z)da + j —L(x bydb\|dz| dxdy .

I

We use Hblder and extend the integrals where appropriate,

|| f= Q=T of =TTy if || 2@y <
h, h, h, #)?

2
ff %||af/3xll|um + k¥ [[—ﬁ(xb)] dxdy .

x=0y=0
Weuse (|4 |+ |B|)? < 2(4%+B?) to write this as,
“f_(l_S)H[rl,O]f_SH[rl e <

h, h,
2[ [ _Ilaf/axlll e + hzf [—[(x b)] db|dxdy .

This reduces to,

| f— Q=T olf —sTT1 If || @ <
203 || 9f /9%y || 12wy + 203 || 9f /9%, || ) -

Lastly we verify (16c),
x y
_ - (8f of
foep=fone) = [ SL@naa + | Lesba.
So,
h, hy
i ] | o= onzyiy =
2x= Y=
By By
1h2 [0 fo j—ﬁ(az)da + j L(x,b)daldxdy < (h1-+12)]| gradf | -
y a= W
O
Note that the above inequalities imply,
llo—Iho|lue < max(hi;+2k%2)"| e |lna , (172)
lo-Thollve < max@hi:+2482)%||owe , (17b)
llu=Pyu|l v < maxhi; +2hE2)"|ul wa) » (17¢)

for suitable u and o.



4 The discretisation.

We describe our discretisation. The basic idea of mixed finite elements with a lowest order
Raviart-Thomas trial space and an exponentially fitted test subspace for the vector valued functions
is complicated by the use of a quadrature rule, needed to keep the M-matrix property for the system
without Lagrange multipliers for non-zero y. This quadrature rule is discussed in section 4.1.
Another complication is the approximation of the coefficients by piecewise constant functions, as
described below. In section 4.2 we give the resulting discretisation.

We replace the coefficients a, 8 and y by two dimensional step functions. To write our
modified problem in weak form, we need to define three new bilinear forms,

a(o,7) = JaurPha dp V e 7€Z,

k

b(o,t):= fto-P;,ﬁ dp V 6€ZtE LYQ),
Q
c(s,0):= fstP,,y dp V st e L*Q).
2

The bar on the bilinear forms denotes that the coefficients are replaced by their cell-wise averages.
We then replace a by a,, the subscript ¢ indicates that a - not yet specified - quadrature rule will be
used in the evaluation of this bilinear form.

4.1. The quadrature rule.

We construct a quadrature rule a,, by imposing the condition that, if a, B are constant,
Y= 0, and the solution satisfies u = Cexp(—B;x;—B,x;)+ K, with C,K € R, then the discrete
solution should satisfy o, = II,6 and u, = P,u. We see that for the u given above 6 = —KB/a,
so o is constant. We define o, separately for each basis function 7; ;. 5 where

§(i—9$,j+5é),lel on 9i—95,j+9s ,
Mij+s = {(A—Se+nj+m)er on Qiyyiiy,
0 elsewhere,

and 7; 44 ; Where
S+nj—mae2 on Qiiyjy,
Mivsy; = V(I=8a+uj-m2)€ on iy iy .
0 elsewhere.

We denote the set of all possible indices for the basis functions 5 by
E={e=(G(j—%|i=012...,N;,j=12,...,N, }UJ
{e=(—%)|i=12,...,N;,j=0,1,2,...,N, }.

Our quadrature rule should satisfy the following condition,
a,1(0,m,) = a(om,), A)

for all constant ¢ and all r € E. Due to our assumption that the coefficients are constant, we have
a=a and b=h. The above condition guarantees that, for constant coefficients and constant o,

a(o,7,)— (u, div7,) +b(7y,u) = @ 1(IL6,7,)— (Ppu, dive,) +b(7y, Pru) V 74 € X,
and we also have,
(dive,?) = (divIle,1) = 0 V ¢t € L*(Q) .

So our condition (A) on g is sufficient for our purposes. We now select the quadrature rule by
taking the following definition for g ;,



Gy1(0,7) = (182)
D) é H@OPIRI( [PIIHIPIT;11@m) + PIRI0 ~ L) P[Tigollorm)] -
We introduce a’;ew problem dependent norm on Xj,
l7alls = kgmﬁl ) (PG )PThirleh) + PIBIA— ) PTiolrh] - (180

From this point onwards, we take a,=a;, .

4.2. The discrete system.
We approximate the solution (@,4) of (6) by (6,,u;) € V3 X W}, where

a(on,m) = (uyy dive) + b)) = < Tmggg > V TEX,, (192)
(diveg,8) + cw,,)) = (fif) V t EW, . (19b)

If we use a in stead of a,, then that means that our discrete problem does not always yield an
M-matrix for u,. Consider, for instance, the corresponding discretisation on a uniform mesh with
mesh width 4 in one dimension with « = 1, 8 = 0 and v constant. If ays2/6 > 1, then the off-
diagonal elements of the discretisation matrix for u, after elimination of o, through static condensa-
tion have the same sign as the elements on the diagonal.

The idea of using linear trial functions and exponential test functions was used by Hemker for
singularly perturbed two point boundary problems[6]. For the one dimensional case, the introduc-
tion of exponential test functions follows from the requirement that it must be possible to approxi-
mate the Green’s function of the problem by the test functions. For finite elements in one dimension
the the singularly perturbed case was studied by O’Riordan and Stynes[15-20] and Reinhardt[21].
For finite element in two dimensions O’Riordan and Stynes derive a uniformly convergent esti-
mate[22] but only for problems with a strictly positive zero-order term.

In the following sections, we prove, that the solution of our discretisation (19) is an O(h)
approximation to the solution of our original problem.

S Several technical results.
This section contains some technical results, collected for later reference.

Lemma 2.
I, °II, = I, , (202)
II, o1, = II, , (20b)
(dive,Pyt) = (divIl,o,f) V 6 E€Z,t € L2Q), (20c)
o7 = Wt V TE3. (20d)
Proof.

Both mappings are based on the same projections P[I'y ], so (20a) and (20b) are trivial.
To prove (20c) we use a special case of Green’s theorem:

2
‘{ dive du = El “’(1:) [P Lriile) — P [Fk,i,O](oi)] .

If we combine this with the definition, of II,, the proof of (20c) is complete. Equation (20d) follows
immediately from the definitions. O

Lemma 3.
If 0 €Z and we define a;; = P[T);0)(¢;) and by; = P[Ty;](¢;), then the following inequalities



bold for ||II;0|| 1@, and ||II;0 || 2@,

p(%) 2 p() 2
————6" S(ak; + b1) < || o]ty < > 21 (at; + b)) - (21a)

i=1 i=
1ol By < 2o} < 12(| W] L - (21b)

Proof.
Formula (21a) follows immediately from

2 2
o) = 3 3 [(1 —& ay + £k,,-bk,,~] dp .
i=l1k€K,
Next, we derive (21b) from,
- - 2 2
o) = 3 3 [(1 —o)a + ck,ibk,i] dp .
i=lkekK

We see immediately that

2 22 2 12
f[(l—fk,i)ak,i + §k,ibk,i] dp < [20-8)?ak; + 2% b} dn <
Q, £

2[(1~8)aks + Gubhidi = 2@ (PO~ Gedats + PIRIGk D) -
8

This implies (21b). O
Lemma 4 shows, that a is L?(R)-bounded and L*(Q)-elliptic.

Lemma 4.
Leta €WPQ),a = 4 > 0 on @ and a(e,7):= fP,,(a) ordy V o, €LXQ), then
Q

ae,m) < |la||l =@ llollve I Tllve VY orELX®), (222)
and
a(n,m) = A||7||f@ V TELXQ). (22b)

Proof.
From (2) it follows that,

adp’

< ||alli=@y ,
o) Il el =g,

together with the definitions of P and g this implies (22a) and (22b). O.
We introduce the minimum mesh width 4 p;, and the maximum mesh width & ,,,

.= i 1 . 2
hmm ,fnen}{ ’;m%g lhk,l] ’ ( 3a)
h = h | . 23b

max = 02X max | e | (23b)

5.1. The properties of a,.

We discuss the properties of the quadrature rule a,. We assume that a,=aj,;, where g, is
given by (18a). We discuss the interaction between II, II and a,. We show, that g, is L*(Q)-

bounded on ¥}, and we also show, that ag is LZ(SZ)-clliptic on ¥, and X,.

Lemma 5.
If 0,7 € 2, then



a-q ;,O,II},T) = aq(HhTsHho) = aq(o's]‘--[lr‘r) = a.q(]-—-[h"»'r) = (243)
2y(0,1L7) = G, (0,m) = 3,(Ty0,I;7) ,

~ - ~ -~ - -~ A -~

[ ]| L@ ”II,,o”,z, => aq(Hho,H,,o) = Ya(1l,e,11,0) = —2——”1',[,,0”%1(9) , (24b)
a,(I0,I1y7) < 6||a|| L=@) || o || 2@ || TTaw || s » (240
ANTrl)} < 3,0 m) < [lal| o I Tl 3 (24d)

Proof. .

The definitions of II;, II, and g, imply (24a). Inequality (24b) follows immediately from (18a),
(18b) and (21b). To prove (24c), we need some auxiliary variables, ai; = P[Tx;0l(0),
by = P[Ty;11(0), cxi = P[Ty;0l(r) and dy; = P[Ty;;](r). We use Cauchy-Schwartz twice to
obtain

. 2
a,(Ile,II7) = 3 PIQJ(p@0) Y @I~ danicr; + PIQICr )by idri) <

kEK i=1

2 KN %
> P2 J(0)u(R) [2 (at; + b}) [2 [PI%]A—$r ) ek + P [Qk](fk,i)zdlzc,i]J .
i=1 i=1

k€K

We use
PIRI(N® < PG
to rewrite the term in ¢ and d and we use (21a) to replace the term in a and b by || I, || L@,
3,(IL;0,IT,7) <
Il 11h0 || 2ca,
P()*
We see immediately that this implies,

2 %
kZ P ]()p )6 [E PIUNA—8x) ks + Plﬂk]((fk,i)z)dii)] .
€K

i=1

2,0, 1) <
6llall =@ [ITTse]liz@ || T || s -
This proves (24c). Inequality (24d) follows immediately from (18).

d

5.2. The difference between g and Eq.

For our error estimates, we need an upper bound for the difference between the value of
a(oy,7) and that of g (e},7) for 6, € ¥, 7 € H/(Q). As we already know from (16c) (see also Lem-
mas 8 and 9) that,

la(e,1) — a(o,m)| < 2hpu || a|lwr |l @] ) || 74 || @) 5

an estimate for |a(o,7;) — a,(0,7,)| suffices. Such an estimate is derived in lemma 6.

Lemma 6.
Let 7, € X, and o € H'(Q), then

la(o,m) — a,(0,m)| < 2||a|l L@ Fmax | llsllo]lwe - @5
Proof.
To simplify our notation, we introduce axi = P[Tyi0l(h), bii = P[Tx;11(Ts), oxi0 = P[Tx;0l(s)
and oy ;; = P[T};1)(0;). We prove the lemma for ¢ with 6,,0, € C'(), and extend by density.

-10 -



We consider the difference between the two forms on one subdomain £, with P[Q;J(e) = 1.

2
[ o dp — @) 3, [PIRIA—8.)PTriolloimsy) + PGk IPT i) | =
2, i=1

2 2
> [(1—§k,i)ak.i + fk,ibk,i] o; dp — p(Sh) 2.1 [P (21— Sk DP[Ti i 0)(ak,i0) + Pk )P [rk,i,l](bk,ioi)] | =

, i=1

[ 5]

> [(1~§k,,-)ak,,-o,- + Guibro; — P~ )k i0ki0 — P[ﬂkl(r,q,-)bk,..ok,.-,,] dp| =

e =1
2
> [(l_fki)ak,i(oi_ok,i,o) + fk,ibk,i(oi_ok,i,l)] du| ,
L i=1

The application of the Cauchy-Schwartz inequality to this last term and insertion of « yields the fol-
lowing result,

2 1

%
|a(e,1) — @,(0,7)| < hpax |||l L2@) |74 |2 [ P llf’i—af,k,jlli‘(n.)] .
K EKi=1j=0

If we take s = j in (16b) then this implies,
2 %
|ao,1) — a(0,m)| < |||l =@ ||7xllx [;}‘mﬁm || grado; || i’(n)] < 2hpux || @] @ Nl 7wl |l 0|l me) -
Because C'(R) is dense in H'(R2), the formula also holds for 01,0, € H'(£).

O

6 The error estimates.

We use the standard estimates for ||6—1II,06||>q) and ||u—P,u|| 1), as described in sec-
tion 3.4, to reduce the problem to deriving bounds for || Pyu—u, || 12 and || II,6—0y || 12g). We
discuss two possible derivations of an O(h) error bound. The first derivation needs the assumption,
that h, is “small enough”, the second derivation places a condition on an approximation of the
discrete version of the adjoint problem.

6.1. Errors due to approximation of the bilinear forms.

As preparation for the derivation of a priori error estimates, we derive some upper bounds on
the errors caused by the piecewise constant approximation of the coefficients o, 8 and y. We use the
following well-known notation. If ¥ and W are normed linear spaces, then AV, W;R) is the space
of bounded bilinear forms on ¥ and W. the standard norm of an element b € AV, W;R) is given

by
1011 sty = sup, sup LG
AV, WR) VEBIWGPW”v”V“w“W.
Lemma 7.

If « € WP(R) then

lla =3, || ar @, cx, . om0y < Shmax ||| wr »

where (X3, ||.||») is a normed linear space with as elements the elements of X, but with ||. ||, as
norm.

Proof.

From equation (16c) and (21b) it follows that,

|a(o,m) — a(0,7)| < 4hmaxll@lwr |loll 2 [l all -
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When combined with lemma 6, this implies

lla—a, || zur @, 11 10m) < Ofmax || ¢l wre) -

Lemma 8.
If B € WP () then

16=b|l e, V@) < Hmax || Bllwr@ -
Proof.
This follows immediately from (16c).

|

Lemma 9.
If y € W(R) then
le—cll av@,.v@m < 2maxllY|lwre -

Proof.
This follows immediately from (16c).

a

6.2. An a priori error estimate.

The following two lemmas show nice properties of our discretisation. We need these properties
to derive the error bound.

Lemma 10.
LetT €2, t € L), then
b(I,,t—Pyt) — (divIL,r,t—P,t) = 0. (26)

Proof. - -
A straightforward calculation shows that P,(8)-IL,7 — divII,r is constant on ;. From this (26)
easily follows. O

Lemma 11.
If (o,u) is a solution of (6) and (oy,u;) is a solution of (19), then
(div(e—o0,),Pyt) + c(u—up, Pyt) =0 V 1 € LX) . 27
Proof.
We take (19b),

(divey, Pyt) + c(uy, Pyt) = (f,P4t),
¢ is derived by orthogonal L*(£;) projection, so this implies
(divey, Pyt) + c(up, Pyt) = (f,Pyt) .
If we subtract this from (6b), (dive,Pyt) + c(u,Pyt) = (f,Pyt), then we find (27). O
We are now ready to give an estimate for ||II,6—0y || 5.
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Theorem 1.
If (o,u) is the solution of (6), (4,u;) is the solution of (19) and (e,u) € H'(Q) X H2(R), then there
exist positive real numbers C and D such that

12
C < —rmax(L, || a|lwr@; | Bllwr @ | Y|l wr@) max(L, || o] w@, |4l v@) » 29)

| BIl =@
<2 y , -
”HhO' — 0';,“[2, < Chmax(”H,,o - ah”h =+ ||Phu - u,,“ LI(Q)) +
D|[Iyo — o4 |4 || Pavt — || vy -

D

Proof. _ ~
According to (24d), 4 || (6—ep)||7 < a,(6—oy, I1,(6—o0y)). This is the starting point for the
derivation of our error bound. Equations (6a) and (19a) imply, that

a,(6— 03, I4(0—0y)) = @,—a)(0,1I;(6—0y) + a(o,II4(6—03)) — 7,(0}, IT4(6—03) =
@, —a)o, I, (6—0y)) + (divIly(6—0;),u) — b(Ty(c—0y),u) +
< g,nan'ﬁh(o—"h) >+ b(IL(o—o0p),u) — (divIL,(e—op)u) — < g,llan’ﬁh(ﬂ—oh) > =
@, —a)(o,ITy(6—oy)) + (divIl(6—0y),u) @ — (0—b)Au(e—04),u) — bLy(6—04),u) +
b(ITy(e—0,),u5) — (divILy(o—0y),uy) .
Where we give b —3, E,,—a etc. their obvious meaning. If we use lemma 10, we find:
A||Tyo—0p) ||} < @—a)o,IT4(0—0y) — G—Db)IL(6—0),u) +
(divIT,(6—0,), Pyu—u) @ — BTy (06— 03), Pru—uy) .

If we use (20b) and (20c) to prepare the way, then the application of lemma 11 to this expression
results in:

A ye—op) || B@ < @—a)o,I4e—04) — (b—b)TT4(0—0y),u) —
c(u—up, Pru—u;) — b(IL,(6—0;), Pru—uy) .

As v is non-negative according to (5), we may add c(P,u —up, Pyu—u;) on both sides of the inequal-
ity, we find,

A||Ty(0—0) || @ + c(Phu—uy, Phu—uy) <
@,~a)(@,(0—0y) — (b—b)[T4(0—0,),u) —
(c—c)(u—Pyu, Pyu—u;) — Z(ﬁ,,(w—o,,),Phu—u,,) .
We use lemmas 7, 8 and 9 to reduce this to,
A||Ty(o—0y)||} <
P mmax [ﬁllallwr(ﬂ)ll"lln'(n) + 4] Bllwra |l vl L’(ﬂ)] | o —en) |5 +
2 max || Yiiwr@ |4 — Prte|| v || Pru—un || 2@y +
2| Bllv@ I (0 —0) || 2@y || P — e || 13y -
Note that for all u € LX), ||u—Pyu|| g < | u|| 1@ and ||II;e||, = ||1:I,,o||,,.
O

Next, we prepare for the second part of our error estimate.

Lemma 12.
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If (o,u) is the solution of (6), (o;,u;) is a solution of (19) and (r,q) is the solution of the adjoint
problem for an arbitrary right hand side p € L*(R), then

(divr,Pru—uw) — b(r,Pru—u,) =
a(o,fl,,-r) - Eq(o,,,flh'r) + (b—l;)(ﬁ,,'r,u) + I;(ﬁ,,f-—'r,Phu—u,,) + (Z—b)('r,P,,u—u,,) .

Proof. _
We start by replacing b by b,

(divr,Pru—u) — b(t,Pru—u,) =
(divr, Pyu—wuy) — b(x,Pyu—uy) + (b—b)(r,Pyu—u,) .

We use (20a) and (20c) to get,

(divr,Pru—uw) — b(r,Pru—u;) =

(divILyr, Pyu—w,) — b(Ly7, Pyu—w) + b(Iyr—7,Pyu—u,) + (b—b)r, Pyu—u;) .

We use lemma 10 to find,

(divr,Pru—u) — b(7,Pru—uy) =

(divITm,u—w) — bLmu—w) + blr—1,Pyu—u;) + (b—b)(r, Pyti—uy) -

We use equation (6a) and equation (19a),

(divr,Pyu—u,) — b(r,Pru—uy,) =

a(o, ﬁ,,'r) - < g,fI,,-r-nm > - _q(o,,,f.[,,f) +
< g,ﬁ,,'r-nag > + (b—Z)(ﬁ,,'r,u) +
b7 —7,Pyu—uy) + (b—b)(r,Pyu—uy) .

O

Lemma 13.

If (o,u) is the solution of (6), (6;,u;) is a solution of (19) and (r,w) is the solution of the adjoint
problem for an arbitrary right hand side p € L*(Q), then

c(Pyw,u—w;) = —a(r, I, (6—0,) + Z(ﬁh("_"h),w“‘PhW) .

Proof.
According to lemma 11,

c(Ppw,u—uy) = —(div(e—oy),Ppw),
according to (20b) and (20c) we can rewrite the right hand side,
c(Pywu—uy) = — (divﬁ,,(o—- o), Pyw) .

We wish to use equation (26) from lemma 10 to remove P;. To do this we must add and subtract a

term b(Il,(6—6;),P,w) on the right hand side of our equation. We apply lemma 10 and gather
terms in b together, ’

c(Pyw,u—uy) = —(divI(6—03),w) + b(IL4(0—0p),w —Pyw) .
Finally, we use (11a),
c(Paw,u—w) = —a(r,IT (6~ o) + I;(ﬁh(ﬂ*oh),w—PhW) .
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Theorem 2.
Assume the adjoint problem (11) has a unique solution for all square integrable right hand sides and
assume that there is a constant C, such that, if (T,w) is the solution of (11) for a given right hand
side f, then

Irllee + lIvllee < GlIfllve -

Now, if (o,u) € H'(2) X HX(Q) is the solution of (6), and (65, u) is a solution of (19) then there are
constants

0 < CDE < 4C,(1+2h ppomax(|| a||wr@, || Bllwra | Y| wr@) »
such that
||P,,u—u,, ” L'(® < Chmax(”u ” L’(SZ) + HUH‘(Q)) + Dhmax ”H;,(G“G},)”h + Ehmax ||P,,u—u,, “ L’(Q) .

Proof.
If we have an estimate for (P,u—u,p) for all p € L%(R), then we can use

@.t)

18]
p & L p£0 P Il e

to find ||Pyu — u| 1%q).- We use the regularity of the adjoint problem (11) to find a solution
(r,w) € H' (@)X L%(Q) of (11) for a given right hand side p € L%(Q). We may write,

@ Pru—uy) = (divr,Pyu—uy) — b(r,Pru—up) + cw,Pru—uy) .
If we apply lemma 12, we find,

Nl vey =

@, Pru—w) =
a(o,l:I,,-r) - Eq(o;,,fl,,'r) +
®—b)(Tm,u) + br—7,Pyu—u,) + (b—b)(w,Pyu—u,) + cw—Pyw,Pyu—u,) + c(Pyw,Pyi— 1) -
We use lemma 13,
@, Pru—uy) =
a(o,fI,;r - c—zq(o,,,fl,,v') +
(b—-l;)(fI,,'r,u) + B(fIhT—-T,P;,u*u,,) + (E—b)('r,P,,u——u,,) +
c(w—Pyw,Pru—u,) — a(r,fI,,(a—o,,)) + l_;(fI,,(a—o,,),w —Ppw) .
We can write this as follows,
@, Pru—uy) =
(@=3,)(0,1;7) + G (6—0,,IT,7) +
b —b)AT,m,u) + b(ALy7—7,Pu—u,) + (b—b)r,Pyu—u,) +
cWw—Pyw,Pru—u;) — a('r,ﬁ,,(o—a,,)) + E(fI,,(o—o,,),w—P,,w) .
We use (24a) to write this as,
@ Pru—w) =
(@ =)0, — (a—3)n (e ~0y) +
(b —b)AL,7,u) + bAL,7—7,Pyu—u) + (b—b)(r,Pyu—u,) +
c(w—Pyw,Pru—uy) + E(flh(o—o,,),w-—P,,w) .

We can use the regularity of the adjoint problem (11), lemma 7, 8 and 9 and the projection error
estimates (16a,b,c), to obtain

| Pru—uy || gy <
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€1+ Zhpa e |l vz (1ol + [1Ta(o—0n)ls] +
ACH gax || Bllwr@ 1+ 2k ma) || || 2@y + 2Cmax || Bll =@ | Patt —n || vy +
2 e [Vl wz | Pat = [ v + 11B]] 0 | a0 v -
- This can be written as,

| Pru—up || 2@ <

Ch (1 + ) + Db (1 + ) | TR0 =03 || + B mmax (1 +Bma) || Phtt— 4y || 120y -

O

If 4.y is small enough, theorem 1 and theorem 2 together give an O(h,,) error estimate. An
important limit on A, is implied by the form of the estimates in theorem 1 and 2. The main
problem is, that large values of ||a||w=@), ||B||w=@ and ||v|| w=@) decrease the range of hy,, for
which the estimate is valid. This problem can be avoided if we make an extra assumption. We dis-
cuss this in the next section.

6.3. A different approach.

To improve our estimate of ||P,u — u || 13, We consider the adjoint of the discrete prob-
lem. This means, that we look for (1,,v;) € X, X W}, , such that

Eq('rh’oh) - (diVO'h,Vh) =0 Vv Oy € Vh s (298.)

(divry,ty) — b(rp,ty) + cOmty) = (ity) V 4, E Wy . (29b)

We call this system regular, if there is at least one solution for each f € P,(L%(Q)), and that all
solutions for a particular f satisfy

Imalla + vl e < ClIPS |l @ » (290)

with C independent of the mesh size. This is a somewhat less stringent regularity condition than
that given for the continuous adjoint problem (10). Note, that 7, € X;, so 7,; is a piecewise
exponential function on £ for i=1,2. -

An example of a general condition under which this system is regular is the following:

a=A > O,Y = Co > 0 and AC() - ”B”i’(ﬂ) = C] > 0. (30)
To show this, we need the following relations,

Py(a) _

2 THTh T Py(B)7pvy + Pr(Y)vpvy dp = (€2))
Py() 27,8 |’ Py(B)’
T — v + |P - vy dp = 31a
é a [ h P " 2 (Y) P | © (31a)
P87, |’ Py(B)* | T
Pr(y) vy — ———| + |Py(e) — —dp. (31b)
[P0 % = 25 KO~ B | e

We know, that (divfI,,o,P,,t) = (divII,e,P,t), so, if we take the sum of (29a) and (29b) with
o = Hh‘l'h and ¢ = Vy, WE find

8, ILim) = bmims) + TOmm) = (W) - 32)
According to (24a), a (7, 11x7;) = Zq(ﬁ,,f,,,ﬁ,,r,,), and by (24b) we have

-IIIE(I:I,,a,fI,,o) < Eq(I:I,,a,fI,,o) .

Hence
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f Ph(a)

4 T — PaB) vy + Pa(vivs dp < [ Pu(fvn dpe - (33
) 0

This expression is identical to (31), so (31a) is smaller than (f,v;), combined with (30) this implies

Ci
— Ilive < Ifllve - (34a)
In the same way, we find, that (31b) is smaller than (f,v;), together with (30) and (34a), this implies
Cy
— @ < Q) - 34b
AC)” Il llce < ISl (34b)

From (32) we see that this implies,

Al ||} < (7)) <

1/ v 1l ey + [1Blle@ e vl ve + 1Yl e vl e
this implies that there is a C such that
Imalls < ClIfIl v -
Theorem 3.
If we assume, that (29¢) holds, then
| Pru—uy || 2y < (35)
e (Sl cllwi@ I llm + + 21Bllwrw + Illwr@)llvl vo) -

Proof.
We use (29D),

Pru — up, Prf) = (divey, Pou — wy) — B(T,,,Phu — uy) + c(Ppu — up,vy) .
Hence, according to lemma 10 and the definition of ¢,
(Prtt — up, Prf) = (diveg,u — uy) — b(rp,u — ) + ¢ — p,vy) -
We use (6a) and (19a) to find
(Pyu — uy, Ppf) = (divrg,u — u) — (b—b)(ws,u) — b(ry,u) + b(rp,up) + c(u — w,v;) =
G —b)m,u) + alo,m) — Gyon) + C—Nuvs) + e — w,m) .
According to (24a) and lemma 11, this implies
(Pru — up, Prf) =
G=b)rhu) + (@—8)0,m) + GAo — 04,m) + €—)wvs) — (divAio — 04),0) -
Now, (29a) implies,
Py — w,Prf) = B =b)miu) + @—3)(0,m) + €—c)wvs) .
Finally, we use lemma 7, 8, and 9 and (29¢) to obtain our error estimate (35). O

7 A verification of the local maximum principle.

We use the discrete adjoint problem to show that, for this quadrature rule, the matrix after
elimination of ¢ by static condensation is an M-matrix. The discrete adjoint problem is defined in
(29).

We assume a regular uniform mesh. We denote the matrix corresponding to (29), after elimi-
nation of o;, by A. We see, that the matrix 4 has non-positive off-diagonal elements. We shall
show, that 4 is an M-matrix. To do this, we use theorem 5.12, chapter 5, page 124 of [23]. This
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theorem states, that, for irreducible matrices with non-positive off-diagonal elements, the M-matrix
property is equivalent to the existence of a positive vector with a non-negative image, that is not
identically zero. In our case, the vector (1,1, .. ., 1)7 has a such an image, because all row sums are
non-negative, and any row corresponding to an edge or corner has a positive row-sum.

The fact, that the matrix A is irreducible follows from theorem 3.6, [23] which states that, for a
'square matrix, irreducibility is equivalent to its di-graph being strongly connected. Inspection shows,
that the di-graph of the matrix under consideration is indeed strongly connected.

According to theorem 5.6[23], A7 is an M-matrix too. This implies, that the discrete equations
for the original u, satisfy a local maximum principle.

The M-matrix property implies that the system for , has a unique solution. From the form of
the equations for o;, we see that a given u, induces a unique 6. this implies that our system is
always uniquely solvable. A quick calculation of the coefficients of u; in (19a) shows that, for con-
stant coefficients and large B, i.e. with large convection diffusion ratios, we get a relation between o,
and u;, where the “upwind” point is weighed more heavily. If B/« remains bounded and we go to
the limit |8;|+ |B,|—>co then we get a first order upwind scheme. This suggests that the scheme,

in which the coefficients are continuously dependent on this ratio, remains useful close to such a
limit.

8 An a-posteriori estimator.

We use a special quadrature rule and obtain a higher order discretisation. We seek an aj 3(.,.).
that minimises @ —aj, 3. To do this, we choose a special quadrature rule for each a(.,7), where 7 is
one of the basis functions introduced earlier. Due to the nature of our test functions, the quadra-
ture rule is essentially a one-dimensional rule.

8.1. The derivation of the quadrature rule.

For 74 we proceed as follows. We replace the two dimensional integral by a repeated
integral, we integrate exactly in the e, direction and then use a three point rule to approximate the
remaining integral. As nodes for the last integration we take either the centres of T'j_y 40,

Tivuj+no and Tiiy jiy. Or, if we are at a boundary, the edge centre on the boundary and the
two next closest edge centres. We choose the weights as follows,

@ 3(IL0,m;j+4) = a(0,9;+4%)

for all o with x;-components that are second order polynomials in x,;. Le. for all p,q,» € R, and all
i j+%, We have

@ 3 (y(pxf +gx 1 +r)e),mjrw) = a(x] +gxy+r)enm iy,
In a similar manner, we define the rule for 7,4 4 ;.

8.2. An estimator for the local discretisation error and a lower bound for the global error.

If we assume that ¢=¢, b=b and a=a , then we can use this rule to obtain an a-posteriori
estimator for the local discretisation error and a lower bound for the global error as follows. It is
immediately obvious, that

a3(0m) — ap1(o,m,) = O(hky),

where r is a possible index-tuple. Moreover,

5(0,1',.) - a}1,3(0')"'r) = w(h%uax) >
if o is smooth enough. If

lEh,3(ph”1r) - (div’,r—B'nr’wh)l = K s
then we have either

Wi ll =@ = C:iK,
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or
lenll L=y = C2K,
We see immediately that, if (63, u,) is the solution of (19) with @, =aj,; then
&, 0~ 03,m,) — (div — B, Pru—uy) = OG),
with k=1 or 2 depending on the coefficients in (1) and
@y 3o —0y,m,) — ((div—Bm, Pru—w) = OGREE) + @1(04,1) — 243(0n7,) -

So, (an1—an3)(04,7,) is an estimate for the local discretisation error. Moreover this implies, that
there is a constant C such that

o —on || =@ + |Pru—un|l > = Clan1(@nm,) — an3(onm)| + OMmELd) .
If we assume that
|TLo—04 || =@ + || Pst—th]l 2@ = OCifax) ,
we see that, for & ,,, small enough,
Nho—on || 1= + ||Patt—th || L=@) = %C|an1(0nm,) — an3(0n,0,)] -
This provides a lower bound on the global discretisation error. We expect the solution for aj,; to be

two orders of magnitude more accurate than the solution for aj, ;.

9 Numerical results.
We consider problem (1) with
u = tanh(8(x; —x5)),
a=100, 8,=8,=100,
T)y=02,g = ula,
f=- div(gradu+up) . :

a
We find the following results for the two discretisations. The two components of the error vectors
for the fluxes were identical up to the accuracy given. We use the 2-norm as norm for the error vec-
tors,

(15,
Ivil = 2vils
Lrer
where | 7| is the number of elements in the index set.
the log, of the errors for a,=a ;,
meshwidth | log, || Pru—uy || | logy || (ITxe—04)-e ||

1/4 15 13
1/8 -1.9 -1.9
1716 2.6 -2.6
1732 -3.8 -3.7
1/64 54 5.4
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the log, of the errors for a,=a;, 3,
meshwidth | logy || Pyu—uy || | log; || I1z0—04)€ ||
174 -3.0 -3.1
1/8 -39 -4.5
1716 -6.0 -6.7
1/32 -8.5 -10.0
1/64 -10.9 -137

We see that the order of convergence is indeed higher for the second method. we also see that the
difference in order for the fluxes approaches 2. Deviations from the expected order may be caused
by the steepness of the solution relative to the mesh.

10 Conclusions.

The Petrov Galerkin mixed finite element method with exponentially fitted test functions for
the fluxes has several nice properties. For instance, just as for a finite volume method, if the true
solution o is divergence-free, then the same holds for o,. Furthermore we have a formal a-priori
error estimate, and after elimination of ¢, by static condensation the two dimensional discretisation
results in an M-matrix for u,. We can extend the method to three dimensions without additional
difficulties. Section 9 suggest that the scheme with the three point quadrature rule @, 3 can serve as a
source for a-posteriori error estimates. To judge the effectiveness of the method for singularly per-
turbed problems is very difficult. However the fact that it incorporates exponential fitting, copes well
with the exponential solution of the constant coefficient case and approaches a two-dimensional
upwind scheme if the convection goes to infinity suggests the method based on g, ; can be applied
to such problems.
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