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The aim of this paper is to show the capability of the 2D moving-finite-element method (MFE) to solve dif-
ferent kinds of time-dependent partial differential equations having solutions with steep moving fronts,
rotating pulses, or other features involving fine scale structures. Some difficulties are discussed that can
arise, e.g., the treatment of second-order differential operators in combination with MFE. The numerical
performance of MFE applied to three model examples, each from a different subclass of PDEs, is studied.
Some of the examined aspects are: the efficiency of the temporal integration process, the effect of the reg-
ularization parameters (penalties), and the effect of the (PDE-)diffusion coefficient. Further, a more sophis-
ticated application of MFE to a 2D brine transport problem in a porous medium is discussed.
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1. INTRODUCTION

The aim of this paper is to show the capability of the 2D moving-finite-element method (MFE) to solve
different kinds of time-dependent partial differential equations (PDEs) having solutions with steep moving
fronts, rotating pulses, or other features involving fine scale structures. MFE belongs to the class of
moving-grid methods, which is a subclass of the class of (time-dependent) adaptive-grid methods. Adaptive-
grid methods are numerical methods for PDEs which strive to resolve the sharp transitions in the PDE solu-
tion to acceptable degrees of accuracy thereby avoiding the use of an excessive amount of spatial grid points.
Fixed-grid methods are in such situations computationally inefficient, since, to afford an accurate approxima-
tion, they should contain an unacceptably large number of nodes. Adaptive methods use non-fixed, non-
uniform or locally uniform grids and automatically concentrate the grid in regions of high spatial activity
during the time-integration process.

In contrast with the one-dimensional case (see, €.g., [20, 24, 34]), application of moving-grid methods in
two space dimensions is less trivial. For instance, there are many possiblities to treat the one-dimensional
boundary and to discretize the spatial domain each having their own difficulties for specific PDEs. Therefore,
2D moving-grid methods have hardly been applied to real-life problems. The MFE method [10, 14, 20, 24],
considering its general approach, allows in principle a large class of PDE problems to be dealt with.
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However, because of the intrinsic coupling between the discretization of the PDE and the grid selection, the
application of MFE, as for any other method, is not without difficulties. The main difficulty we are referring
to is the threat of grid distortion. Grid distortion can occur in many different ways due to the quite complex
solution behaviour of 2D-evolution problems [37]. This paper describes some aspects of the MFE method
when applied to various kinds of PDEs with different underlying background. More precisely, three main
PDE characteristics are recognized, i.e. convection, diffusion, and reaction. For each of this notions MFE
acts differently with respect to efficiency (time-integration process), grid movement, etc..

MFE is based on the well-known numerical method-of-lines (MOL) approach for solving time-dependent
PDEs. The MFE-method used here restricts its finite-dimensional approximation to a piecewise linear func-
tion on a hexagonally connected triangularization of the 2D spatial domain. The grid movement is generated
by a least-squares minimization of the so-obtained PDE residual with respect not only to the time-derivatives
of the solution amplitudes, as in the standard (fixed-grid) Galerkin case, but also to the now unknown grid
velocities. This procedure yields, according to the MOL idea, a large system of stiff ODEs, which may be
integrated with a sophisticated implicit stiff ODE/DAE solver, for example the SPGEAR module in the
SPRINT package [8, 9].

In literature, several tests of the MFE method in 2D are described. These can be found, e.g. in
[3,6,10,14,18,29,37]. Theoretically, however, little is known about the moving-finite-element method in
2D. An exception in this respect is the work by Baines and Wathen [4, 7, 35,36], and Miller [23]. A very
important theoretical property is the relation of MFE in both 1D and 2D, for hyperbolic PDEs, with the
method of characteristics [4]. Secondly, for convection/diffusion equations with a small diffusion coefficient
it can be shown that MFE resembles a perturbed method of characteristics [4,37]. Additionally, in the case
of parabolic equations there is a strong link of MFE with equidistribution principles [37]. All these proper-
ties have their influence on the performance of the method when applied to different types of PDEs, as we
will see in this paper.

The paper is divided into four sections. In Section 2.1 we describe the MFE method for a general system
of PDEs in two space dimensions. The treatment of second-order operators is discussed in Section 2.2. Sec-
tion 3.1 shows an application of MFE to convection-reaction equations. A special feature of this section is
the use of a non-rectangular domain for the so-called ‘Molenkamp-test’ (see also [26,30]), which is an
important testproblem in meteorology. In Section 3.2 MFE is applied to a reaction-diffusion equation from
combustion theory [19,27]. An interesting aspect in this section is the effect of the regularization parameters
(penalties) on the grid movement, quality of the solution, and the numerical time-stepping procedure, respec-
tively. Section 3.3 deals with convection-diffusion equations, and shows the effect of a small diffusion
coefficient in the PDE on the semi-discrete MFE system. Also in this section, MFE is applied to a system of
nonlinear brine transport problems in a porous medium, of importance in the field of hydrology [33,38].
Finally, Section 4 is devoted to some concluding remarks.

2. DESCRIPTION OF MFE IN TWO SPACE DIMENSIONS

2.1. The method
In this section a description is given of the moving-finite-element method in two space dimensions. For
more details the reader is referred to [10, 11,20, 24]. The method is presented along the lines of the numeri-
cal method-of-lines (MOL) approach.
Consider an abstract Cauchy problem for a system of PDEs in two space dimensions,
qud
ot =Lja j=1’ Y 4 (X,Y)EQ, t>0, (2'1)

where L; is a spatial differential operator containing at most second-order derivatives. The MFE-
approximation to #/) is chosen to be piecewise linear on a hexagonally connected triangularization of Q

uD = UD-3 VPO ey KOXOD. =L p, @2)
1=1
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where M denotes the total number of gridpoints, and o are the standard piecewise linear hat functions. Dif-
ferentiating (2.2) with respect to ¢ by the chain rule, and using the time-dependence of the gridpoints
(X,(®),Y,(2)) we obtain

M .

UW‘Z Ugj)al +X16$") + YIYSJ) s j=l-,p (23)

1-1

The basis functions B{/) (see Figure 2.1) have the same support as oy, i.e. the hexagon of triangles surround-
ing the j-th node. They are discontinuous at the center and on the inner edges of the hexagon; they are zero
on the hexagonal boundary and take on (for each PDE-component) the six different values of — aU®/ox at
the central vertices of the six triangles. Note that due to the piecewise linear approximation (2.2), - aU® /ax
has a constant value on each triangle. A similar description holds for y{), but now related to — aU®/ay.

FIGURE 2.1. The basis functions o, (left) and B§” (right).

The equations determining the semi-discrete unknowns U}/, X, and Y, are now obtained in the standard
Galerkin way by minimizing the PDE residual R with respect to u;”, X and Y,, where

R:= 2 w; [UP-L;O)|E ) + X P (2.4)
j=1 1
Here w; are non-negative weight factors and P is the grid-regularization term (penalty) (see [11])
Pl = e,AI—S,, (2.53)
with
2
€1
Fi=— 2.5b
4] A] s ( )
and
€2
6’1-5'11=(?)2 ) (2.5¢)
1

where € and €3 are small user-specified constants. The effects of adding this penalty term are explained
below. Note that the second sum in (2.4) is taken over the three perpendiculars A, of each triangle. The
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minimization of (2.4) is performed by setting
dR

—.~—=0, for i=1,"',M;j=1"“’P
U

ﬁ—ﬂ—O for i=1,---,M

aX; 9Y;

and results in a large system of (p+2)xM ordinary differential equations in the unknowns U/, X; and Y;:

M . (i . .
S1<0;, 050 + <0, BP>X, + <0, YiPSY; = <o, L(U)>, (2.63)
=1

fori=1, - M'j=1

3 w2 <8P, a0 + < B>, + <GP AP, + b P — z wi<B{),L;(U)>  (2.6b)
Jj=1 I=1 i
fori=1,---, M,
< D qsl1 + <D g () i) OP, )
> w,2<y Lo >U + <y, BsX, + <y 41>y, + >P— = 2 wi<yDL;U)>  (2.6c)
j=1 I=1 1 i Jj=1
fori=1,---, M,

where <.,.> denotes the usual L ,-innerproduct. It is clear that (2.6a) without the X- and Y-innerproducts is
just the standard Galerkin method applied to (2.1) using piecewise linear basis and trial functions on a
nonuniform triangular grid. The time-dependency of the grid is reflected in the X- and Y-innerproducts in
(2.6a) and the complete equations (2.6b) and (2.6c).

Working out the innerproducts and defining the vector

n:=(-,UD,...,UP, X, Y;, ),
we arrive at the semi-discrete MFE system

AM,eD) M =G M,ed), >0, n(0) given, Q.7

where A is a symmetric matrix, the so-called mass-matrix, containing quantities from the left-hand sides of
(2.6), whereas the only problem-specific terms are contained in the vector G. It must be noted that, for
€,=¢,=0, i.e. without regularization terms, there exist fundamental difficulties with solving system (2.7).

The first difficulty is a possible singularity in the mass-matrix A. The matrix A is singular in the so-called
case of ‘parallelism’. Parallelism occurs in the absence of curvature in the solution of the PDE. In this case,
the basisfunctions BY) and o; (and/or Y and o) become linearly dependent, which means that the
parametrization of the time-derivative U$) in (2.3) degenerates. In other words, the minimization procedure
then has no unique solution, resulting in a zero mass-determinant: det A (,0)=0. Therefore, to avoid the
problem of solving a DAE system of index 1 or higher, the £7-term (2.5b), also called intratriangular viscos-
ity, was introduced in the residual (2.4). It can be shown, that, for €;=0, A is positive-definite and thus regu-
lar. The second degeneracy of A arises whenever the triangles get too thin or lose their positive orientation,
i.e. ‘2D mesh-tangling’. The matrix A will then become very ill-conditioned and numerically singular,
because in such cases the triangle area tends to zero, giving widely varying eigenvalues. Note, that this
behaviour is time-dependent. Both singularities of the mass-matrix are also discussed theoretically in [36].
Since it appears in the left-hand side of (2.7), the parameter €; can also be seen to serve as a tool to control
the grid-point motion.

Another difficulty in (2.7) could arise from a possible singularity of the nonlinear steady-state system:
G (m,0)=0. In the already described case of parallelism, which appears in applications with, €.g. a constant
steady-state, the system G=0 could have non-unique solutions. The parameter €, in (2.5c) (‘intratriangular
spring force’) serves to prevent this degeneracy.
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As for any other method, the regularization is somewhat heuristic and necessarily problem-dependent. For
example, if €, is chosen too large, the grid movement is restricted; &, —co gives a non-moving grid, with the
result that there may not be sufficient refinement in regions of large spatial activity. On the other hand, if €,
is too small, the mass-matrix A may become numerically singular. The parameter €, could be chosen equal
to zero in most applications. For PDEs with ‘flat’ steady-state solutions a small non-zero value of ¢, suffices
to keep the semi-discrete ODE system regular. As for ¢;, too large values for €, could restrict the grid move-
ment: g,—> gives a uniform (non-moving) grid.

The weight-factors w; in (2.4) serve to make it possible to let certain PDE components dominate the grid
movement equations (2.6b) and (2.6¢c). This may be desirable for a badly scaled problem, or if one PDE
component is strongly varying and a second component has only a mildly varying solution, for example.

2.2. Second-order operators
The MFE method used here has serious difficulties, when solving PDEs with second derivative terms. Due

to the piecewise linear approximation (2.2), second order derivatives fail to be defined in the usual sense.

For example, Au is zero on the interior of each triangle, but makes non-zero jumps over the inner edges of a

triangle. Furthermore, the basis function §; has a discontinuity along each inner edge. This can be derived

from the relation B;=—U, ;. These two properties combined make it impossible to evaluate the innerproduct
<B;,Au> without regularization. Note that these considerations hold for the right-hand side y-innerproducts
in (2.6c) as well.

There are several ‘tricks’ to get around this fundamental difficulty:

1. Miller [20, 24] uses the idea of ‘mollification’ to regularize the undefined innerproducts. Mollification can
be interpreted as using a limiting equation obtained by applying the minimizing condition to a PDE resi-
dual underlying a smoothed (mollified) piecewise linear function and then letting the limiting equation
approach its now well-defined limit (using a small perturbation parameter, the so-called &-mollifier).

2. Johnson [17] and Mueller [28] apply Green’s theorem in a clever way to work out the troublesome inner-
products. Their treatment, however, can only be used for special PDE operators.

3. Sweby [31] uses the idea of ‘recovery’. This involves fitting a piecewise polynomial to the first derivative
and then differentiating this better defined quantity. The process is simple in one dimension, but in two
dimensions the expressions may become very complex.

4. Higher order test functions. This means, that instead of applying a minimization of the PDE residual, we
do a projection on a higher order function space. Then, no problems are encountered when evaluating the
right-hand side innerproducts. This Petrov-Galerkin approach works well in 1D (see [16]), and seems to
improve the nodal movement and position of the grid points in steep fronts. In 2D, however, the evaluation
of the innerproducts is not so simple and straightforward as in one space dimension.

It is interesting to note, that for the relatively simple case of a Laplacian operator ideas 1. and 2. yield
identical semi-discrete equations. This is expressed by the following Lemma:

LEMMA 2.1 The right-hand side innerproducts in (2.6b) for L (u) = Au using mollification are identical to
the ones using idea 2. In other words:

<Bi,Au>; = <P, Au>;. (2.8)
PROOF By definition we have:
<BisAu>; = [Bitty dQ + [Biuy, dQ = - [u,o0u, dQ - [u,0u,, dQ,
Q Q 6v 6t

where 6t are the six triangles surrounding the grid point (X;,Y;). Applying the chain rule, the divergence
theorem, and the small support of o;, respectively, this expression can be written as

3 (5 E-D) A ) + 0yt Dty D A D) (2.82)
6t
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where A (7) is the area of triangle T. Next, using relations between «; , Q;y, A (T), the lengths L of an edge,
and the unit normal vector n on an edge, (2.8a) can be rewritten as

> [("1(—)2 2n 22—11 au)L] (i.e. = inner edge),
6t 2ie.

where n, and n, denote the x- and y-component of the normal vector #, Su the normal and Ou the tangen-
tial derivative on each edge, and the second sum is taken over the two inner edges of tT. Expressing % and

%% in terms of u,, u, and n, finally results in

N -
dut ou” Ux tUy [

+ =,
6 gges( on  on ) 2 2
This is equal to <f;,Au>,, since the mollified form consists of — (——+i:—) (the constant measure of Au

+ -

on each inner edge) and —
[11]. O

, which can be interpreted as a mean value for —u, along an edge (see

To apply MFE to real-life problems, such as the brine transport problem in Section 3.4, involves the treat-
ment of a general second order flux term in combination with the piecewise discontinuous basis functions B;
and y;. In this case, option 2. can not be used, and options 1. and 3. yield extremely complicated nonlinear
semi-discrete terms in the right-hand side vector G in equation (2.7). We have used another idea, which is in
our opinion the simplest justifiable option. The idea makes use of the fact, that, owing to the piecewise linear
approximation, the first order spatial derivatives are constant on each triangle. For instance, the innerproduct
of B; with a flux term V- ¢(u, Vu) is treated as follows:

<Bi, V- ¢, Vu)> := [ B; V- o, Vu) dQ = [ -U, o; V- d(u, Vi) dQ
Q 6t

=3 -U(®) [ o; V- o(u, Vi) d, 2.9)
6t T

where the last integral may be approximated without difficulties in the usual way by some quadrature rule,
e.g. the mid-point rule. It must be noted, that using (2.9) is a bit tricky, because the jumps of p;-values over
triangle edges are, more or less, averaged in the approximating integral. In some sense, when replacing ¢ by
Vu, giving back the Laplacian, (2.9) is an averaged approximation to formulas (2.8). Moreover, ‘freezing’
one space dimension in (2.9), say the y co-ordinate, approximates the mollified interpretation of <f;,u,,>,
viz., applying (2.9) to <f;,u,,> yields:

X
<Biun> = f U Qi dX =Y, =U, o1 Ot dx = =U, 2 >, f U, dx  (el=clement),
X, 2l el 2el el

where (_]x, 21 is the average value of U, over the two elements. Defining m; to be U, on the element (X;_;,X;)
and working out the integral by partial integration, we obtain

m;+m;
- ) (m; ml)__ (mx+1 mz)

The last expression is equivalent to <f;,u, > (see [24]).

For the brine-transport application, we evaluate the flux innerproducts according to the idea above. In the
other numerical experiments in this paper the second idea is used for the Laplacian-innerproducts.



3. AN EVALUATION OF MFE IN 2D

We implemented system (2.6) according to [11]. This holds also for the treatment of the boundary terms.
To obtain the fully discretized solution, ODE system (2.7) must be integrated numerically. It is known, that
this system will usually be extremely stiff. For integration in time, therefore, a suitable stiff ODE solver must
be used. In our numerical experiments we have solved the implicit ODE system (2.7) with the (implicit) BDF
integrator SPGEAR of the SPRINT package [8,9] in the usual way. This means amongst others that the
resulting algebraic system is solved by a modified Newton process. In the description of the experiments,
which all were done on an SGI Indigo workstation, the following notation is used:

STEPS = number of successful time-integration steps

JACS = number of Jacobian evaluations

BS = total number of Newton iterations

TOL = time-tolerance (absolute and relative) for the SPGEAR integrator

3.1. Application to convection-reaction equations
For this type of PDEs a standard form for the right-hand side operator L in (2.1) is

L(ll) ==Y Vu + g(u,x,y,t), (3.1)

where vy defines the convection term, and may depend on 4, x, y, and ¢. This means, that (2.1) for this choice
of L is of the hyperbolic type. MFE applications to this class of PDEs can be found in [3, 6,28, 29,37]. It is
known, see e.g. [4], that, for this choice of PDE operator, there is a strong link between the semi-discrete
MEFE system (without regularization terms) and the characteristic equations of the PDE. More specifically, it
can be shown that for PDE operators L of the form (3.1) with y linear in u, x, y, while setting aside boundary
effects, the ODE system (2.7) is equivalent to a discretized version of

(J.Cs }’)T =Y, (323')
i-g (3.20)

In many cases, this characteristic behaviour is very beneficial. However, there are some situations in 2D for
which this behaviour could give problems. Two of these problems are described in [37]. The first problem
has to do with a possible difference between the directions of the characteristic curves of the PDE (the move-
ment of the ‘fluid’-particles) and the movement of the solution front. The second problem can be summar-
ized by the term “grid rotation’, and may occur in PDE problems where the characteristic curves are circles,
spirals, etc. Furthermore, equations (3.2) show, that for y=0, i.e. when we are dealing with an ODE instead
of a PDE, there will be no grid movement at all. This is a desirable property, since pure ODEs can not pro-
duce propagating wave solutions.

The following numerical example from this PDE class is the so-called ‘Molenkamp-test’, which is a stan-
dard test problem in meteorology (see also [25,26,30]). In fact, this example is identical to Example II in
[37] enhanced with a linear reaction term. It was this example (without reaction term) for which MFE pro-
duced a strongly distorted grid when applied on a square with fixed corner points. It will be shown that, if we
let the boundary points ‘move around the corner’, MFE produces a very accurate solution on a well-adapted
grid. The effect on MFE of adding the reaction term will be examined as well.

EXAMPLE I (‘Molenkamp-test’):

The operator L reads for this test-problem:
L(u)=—Jt(y-% g—z + n(x——;)g—‘; -cu (3.3)

with initial and boundary conditions



# rotations | STEPS | JACS | BS Umax
1 100 68 374 | 1.00000
3 205 162 842 | 1.00000
5 289 234 | 1205 | 0.99989
7 390 323 | 1664 | 0.99989

TABLE 3.1 Example I: Integration history for c=0.

1.2 3.2
1m0 = uo(xy) = exp(-80[(x~2) +(y=7) s
u |ag=0.

The domain Q is chosen to be a circle with center (1/2,1/2) and radius \2, in contrast with the experiments
in [37], where Q was represented by a square. It must be noted that the choice of a circular domain is cer-
tainly not restrictive. Equation (2.6a) is there replaced by u = 0, whereas equations (2.6b) and (2.6c) are only
calculated on the interior of the domain Q. In fact, the grid points on the boundary are now free to move.
The exact solution describes a pulse that moves around in circles with a constant speed. During the move-
ment the shape of the pulse changes, depending on the value of c in the reaction term. For c=0, the shape of
the pulse is unchanged, whereas, for ¢>0, the peak of the pulse will decrease. The characteristic curves are

circles with centre (%, %)

(x-—-%)2 +(y---%)2 =r2, 0<r<\2.

On these curves the solution varies according to & = — ¢ u, resulting in the exact solution: u (x,y,f) =ug e™".

From literature it is known, that many numerical methods have severe problems with solving this test
example (see [25,30]). Two important drawbacks of standard numerical techniques to solve (3.3) are, that
either they damp out the solutions dramatically, because of numerical diffusion, and/or they exhibit strong
oscillations in the solution during the integration process.

In Table 3.1 and Figure 3.1 the results for MFE applied to model (3.2) on a circular domain with ¢ =0 are
given. In the below described runs the standard choices TOL=1.E -3, €2=1.E -4 and £3=1.E -9 are made. In
this example the effects of the penalty terms are not essential; they are only needed to keep the semi-discrete
system (2.7) non-degenerate. The starting grid consists of only 11x11 points of which 5x5 are distributed
uniformly around the cone in (0.25,0.75)x(0.5,1.0).

A notable point is that the integration costs remain almost constant during each rotation of the pulse. This
can be explained by the property of MFE to follow the characteristic curves of the PDE, thereby yielding
almost linearly (in x and y) varying grid speeds during the calculations. Note, that this is the optimal way to
follow the rotating pulse. Also, the maximum value of the pulse shows no tendency to decrease as for other
methods. In fact, the error in the peak of the pulse is less than 1.E -4 even after several rotation periods.
Both effects can be explained by referring to equation (3.2) with g=0. In contrast with [37], the grid structure
now remains undistorted and well-adapted to the shape of the pulse.

If we take a non-zero reaction term, for instance ¢ =1 or ¢ =10 in (3.2), the results do not change dramati-
cally. As for the previous case, the error induced by MFE for the maximum amplitude is less than 1.E -4 for
both c=1 and c¢=10. The time-integration costs are, say for c=1: STEPS = 95, JACS = 68, BS = 361 for the
time-period Ost<2. Again, this could be explained by the fact that the semi-discrete MFE system (2.7) is
strongly related with equations (3.2), but now with g=0.
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FIGURE 3.1. MFE solution for Example I (c=0) at ¢= 0.0, 0.5, 1.0 and 2.0.

3.2. Application to reaction-diffusion equations
For this type of PDEs a standard form for the right-hand side operator L in (2.1) is

L)=V-(DW)Vu) + f(ux,yt), 34

with a diffusion coefficient D. MFE applications to this class of PDEs can be found in [2, 10,17, 18, 37].

In the following numerical example, MFE is applied to a scalar reaction-diffusion equation. The effect of
the penalty parameters €; and €, on the time-stepping process, the movement of the grid, and the quality of
the solution, are examined, respectively.
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EXAMPLE II (‘Flame propagation’):
This example of the reaction-diffusion type is a model of a so-called single one-step reaction of a mixture

of two chemicals [19] and stems from combustion theory. The right-hand side operator L in (2.1) reads in
this case

L(u)=d Au + D (1+a -u)e ™", (3.5)
on the domain Q = (0,1)x(0,1), subjected to the initial and boundary conditions

u It-0=1’
g%=0, at x=0, y=0, wu=1, at x=1, y=1.

The dependent variable u here represents the temperature of the mixture. The parameter a is the heat release,
D =Re®/ad the Damkohler number, & the activation energy, and R is the reaction rate. For small times the
temperature gradually increases in a circular area around the origin. Then, provided the reaction rate is large
enough, at a finite time ‘ignition’ occurs causing the temperature to suddenly jump from near unity to 1+a,
while simultaneously a reaction front is formed which circularly propagates towards the outer Dirichlet
boundary. When the front reaches the boundary the problem runs into steady-state. Following [1] we select
the parameter values a =1, =20, R =5, but choose a different value for the diffusion parameter d. While in
[1] the diffusion coefficient d=1, we have here put d=0.1 as in [32]. A smaller diffusion parameter has the
effect that the temperature front becomes steeper, particularly so upon approaching steady-state. With this
choice of parameters the ‘ignition’ takes place at about #=.24 and the solution is in ‘steady-state’ at about
t=.35. It is known (see, e.g., [13] for the one-dimensional case), that BDF codes need a rather small time
tolerance TOL of, say 1.E -5, because of the different time-scales in the model. This is especially so to detect
the start of ignition accurately. Small errors at this time point result in significantly larger global errors later
on. This ‘local instability’ of the model can be explained by inspection of the reaction term: for 1su<1.8 its
derivative df/du is positive, for example 1.E +3 for u=1.6, resulting locally in growing solutions and for
u=1.8 negative, for example -5.5E +3 for u=2.0, resulting in locally decreasing solutions, respectively.

Since the initial solution is constant, we let MFE start on a uniform grid consisting of 21x21 moving grid
points. The experiments shown below are separated in two different subcases. First, a standard value for e} is
chosen, viz. 1.E -9, while varying the first penalty parameter €7 from 1.E -6 to 1. Second, with a fixed value
for €2, viz. 1.E -4, the effects of varying €3 within a range from 0 to 1 are studied.

Figure 3.2 shows the grid and solution generated by MFE at some interesting points of time for the stan-
dard choice of parameters e?=1.E -4 and €3=1.E -9. Although there is no exact solution available, the
numerical solution may be compared with a ‘reference’ solution obtained by [32], where an adaptive grid
with local refinement is used. Both solutions resemble very well, and both adaptive grids, although underly-
ing totally different adaptation principles, indeed generate refinements in the same regions. Moreover, just as
in Example III of [37], we see for this PDE (especially in steady-state, i.e. at £=0.35) a concentration of trian-
gles in regions with large second derivatives. This corroborates the conjecture that for parabolic equations in
2D there is a close relation between MFE and equidistribution principles. This is, unfortunately, only an
experimental evidence, in contrast with the one-dimensional situation for which there is some theory avail-
able in this respect.

Tables 3.2 and 3.3 show integration data for increasing values of €4 and €3, respectively. From Table 3.2
we note that the efficiency of MFE depends highly on the choice of €,. For very small values of this parame-
ter the solution is still accurate, but is computed on a grid which moves not very smoothly in time. We also
see, that for larger values of ¢, the adaptivity of the method is influenced, while for too large choices the
grid doesn’t move at all. In this respect, the parameter ¢,, originally introduced in the minimization pro-
cedure to ensure the regularity of the mass-matrix, can also be seen as a smoothing parameter for the grid
movement. The integration performance of MFE is in one aspect disappointing. If we calculate the ratio
JACS/STEPS as a function of &, we see from the table that for ,=1.E —4 this ratio is 0.34, i.e. when using
MFE optimally, whereas for ;=1 (a fixed grid) JACS/STEPS is only 0.12. We may conclude, that the



( 1.00, 1.00)

( 0.00, 0.00)
(_1.00, 1.00)
( 0.00, 0.00)
( 1.00, 1.00)
( 0.00, 0.00)

FIGURE 3.2. Grids and solutions of Example II at #= 0.25237, 0:27653, 0.35000.
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efficiency of MFE, at least for this testproblem, although resulting in accurate solutions, is strongly
influenced by the choice of the intratriangular viscosity constant. The effect of the parameter ¢,, introduced
to keep the steady-state MFE system regular, is less important (see Table 3.3). In fact, &, could have been
chosen equal to zero for this example, since the steady-state solution still possesses a steep profile. Also, the
time-integration process is not much influenced by this parameter, in contrast with the penalty constant ;.
This can be seen in the second column of Table 3.3, where the number of time steps is almost constant for
the smaller values of this parameter. Note, that a fixed (uniform) grid, with an inaccurate solution, is
obtained, if we let €, tend to infinity. In the case of a flat steady-state, as in the next numerical example, this
so-called spring constant plays a more significant role.

e STEPS | JACS | BS | SOLUTION(*) GRID (**)
1.E-6 1984 579 | 5928 O.K. NON-SMOOTH
1.E-4 618 209 | 2188 O.K. ADAPTIVE
1.E-2 502 93 | 1370 O.K. TOO SLOW
1.E-0 423 52 | 1066 BAD FIXED

TABLE 3.2 Example II: Variation of &2.
(*): compared with the solution in [32]
(**): this is, of course, a subjective notion

€3 STEPS | JACS | BS SOLUTION GRID

0 609 188 | 2105 OK. ADAPTIVE
1.E9 | 618 209 | 2188 OK. ADAPTIVE
1.E-6 | 635 186 | 2212 OK. LESS NON-UNIFORM
1.E3 | 783 255 | 2839 | INACCURATE | ALMOST UNIFORM
1.E-0 | 469 75 | 1250 BAD UNIFORM

TABLE 3.3 Example II: Variation of €3.

3.3. Application to convection-diffusion equations
For this type of PDEs a standard form for the righthand-side operator L in (2.1) is

L)=¢Au - B-Vu, (3.6)

where, in general, ¢ is a small coefficient, and P a linear or nonlinear functien of u. Depending on the propor-
tion ¢/B, the PDE defined by (3.6) can be classified numerically as hyperbolic or parabolic. The numerical
difficulties for this type of PDEs, in fact, arise because of this ‘double’ property: for e40 the PDE will be of
the hyperbolic type, whereas otherwise the PDE will possess parabolic properties. MFE test results for this
class of PDEs can be found in [10, 14,21,22,28,29,37]. Since the displacement of solution fronts for this
type of equations is mainly determined by the convection term B-Vu, the complete movement may be defined
by a perturbed characteristic ODE system. In formulas:

r=P+ef, u=¢ch, O<ecxl, 3.7
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where r represents the position vector (x,y)’, and f, 4 are some functions containing first and second order
spatial derivatives of the solution «. Similar to the pure convective case (see Section 3.1), the semi-discrete
MFE equations are now related to equations (3.7), of course without penalty terms (&;=¢,=0). In one space
dimension, we can formulate the function f explicitly, both in the continuous and semi-discrete case, see,
e.g., [12,37]. In[ 4] it is shown that, in two dimensions, the MFE grid speeds are, in a certain sense, approx-
imations to

r=f+¢ ((Au)x/un,(Au)y/u”,)T.

It is clear, that the perturbation term f, though multiplied by the small diffusion coefficient €, may be of
importance in subregions of the spatial domain Q, where the solution of the PDE model possesses large first
and second order derivatives, such as in boundary layers and steep transitions. Therefore, a proper treatment
of the Laplacian-innerproducts in (2.7) is indispensable.

The following two numerical PDE examples will show the performance of MFE for convection-diffusion
equations. First, a simple linear PDE is discussed with the accent on the effects of the semi-discrete diffusion
term, especially its effect in a boundary layer and for steady-state situations. The second example is a
strongly nonlinear system of two PDEs, describing brine transport in a porous medium. Here, the weightfac-
tors w;, which were defined in (2.4), play an important role. An additional aspect in this example is the use of
general second order flux terms.

EXAMPLE III (‘A linear model’):

For this example we have chosen the convection term § to be constant: f = B1,B)" =(1,1 /2)T, and two
different values for &: 1.E -2 and 1.E -3. The domain Q is the unit square and the boundary and initial con-
ditions satisfy

t=0: wu=1 forOsx=<1/11 and 0=y s1/11,
u =0 elsewhere,

t>0: wu=1 for x=0and O0s<y=1/11, and fory =0 and 0=sx < 1/11,

u
on

With these choices, the solution is a front that, starting as a small-sized block near (0,0), moves approxi-
mately with speed |B| and direction B. After having reached the boundary, the solution u tends to a constant
steady-state value of 1 for £—o, as we have Neumann conditions on the remaining part of the boundary.
Note, that this part of the computation is difficult, since the solution at the boundary is lifted from 0 to 1,
while still obeying the Neumann conditions.

In Table 3.4 the time-integration history is presented for e=1.E 2. Figure 3.3 shows the grids and solu-
tions at #=0.3, which is halfway the propagation phase of the front. Using the standard values e2=1.E-4,
¢2=1.E -9 and TOL=1.E -3, MFE is applied to this test problem on a starting grid of 25x25 grid points, of
which 13x13 are distributed uniformly over the block, and the remaining ones uniformly over the rest of the
domain.

There are some interesting remarks to be made regarding the figures in the table. At first, we see a start-up
phase, in which MFE tries to cope with the initial discontinuity  and the initial nonuniform grid. After that,
the propagation phase of the solution dominates the performance of the moving-grid method. This can be
seen from the almost constant time-integration between ¢=0.25 and ¢=0.75. In this phase, MFE approximates
a perturbed characteristic movement (see (3.7)), with a small perturbation term & f. Around t=1.0 the front
hits the boundary, at which point the perturbation f is no longer negligible. As indicated above, this part of
the computation combined with the approach to steady-state takes many time steps. It must be noted, that,
when taking a smaller diffusion coefficient, these effects appear even stronger. For e=1.E -3, the propagation
phase until £=0.75 takes only STEPS =41, JACS =24 and BS =142, letting the characteristic movement of the
grid points show better. On the other hand, the steady-state phase becomes proportionally more expensive.
Until £=100.0, the diffusion takes over the integration process: STEPS =333, JACS =212 and BS=1031.

lag =0, elsewhere.
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t= STEPS | JACS | BS PHASE
0.25 32 20 106 START-UP
0.50 45 25 149 PROPAGATION
0.75 57 34 200 PROPAGATION

1.00 64 37 222 | BOUNDARY EFFECTS
100.00 119 64 381 STEADY-STATE

TABLE 3.4 Example III: Integration history for e=102.

3.4. Application to a real-life problem

EXAMPLE IV (‘Brine transport in a porous medium’):

This problem stems from hydrology and models the transport of salt in a porous medium [15]. In the
present application we consider a particular model for isothermal, single-phase (only fluids), two component
(water and salt) saturated flow, which is constituted by a system of two PDEs basic to groundwater flow: a
continuity equation for the brine mass and a transport equation for the salt mass concentration. These equa-
tions are supplemented with two basic laws, viz. Darcy’s law and Fick’s law. After a few simplifications
(see [33, 38]), the following system of two nonlinear PDEs determines the model

9
np> =-V:(p)) - pq Vo (3.8a)
oP 0]
=-V- 3.8b
Brp ar TP, (P , (3.8b)
where
K b
= -;(VP -pg) (Darcy’s law), (3.9a)
J=-DVw (Fick’s law). (3.9b)

The 2x2 dispersion tensor is defined by

0oy —Or

D= (nDpor+ag |q | M+ !q| qu’ Iq| = (qTq)I/Z’ (390)
To complete the physical model, an equation of state is added, given by
p = poePEFIrre (3.9d)

In equations (3.8) and (3.9), the following notation is used: the quantities w, P, p,n, 1w K, q, Jand g
represent, respectively, salt mass fraction, pressure, density, porosity, viscosity, permeability, Darcy velocity,
dispersive flux and the gravity vector. Further, D, stands for the molecular diffusion, ay for the transversal
dispersion coefficient, oy, for the longitudinal dispersion coefficient, B for the compressibility, y for a salt
coefficient, and py, P, for reference density and pressure values.

The dispersion coefficients o and o; highly determine the character of equation (3.8a). Equation (3.8a) is
of the convection-diffusion (advection-dispersion) type and, as usual, numerically difficult to solve if it is
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(100, 100) ¢ .08,

( 0.00, 0.00) ( 0.00, 0.00)

FIGURE 3.3. Grids and solutions of Example III at ¢=0.3 for
g= 1072 (left), 10~3(right).

advection dominated. With the below selected initial and boundary conditions and the actual choice for ar
and oy, steep travelling salt fronts are generated. Further, a special feature of the model is that the compressi-
bility coefficient B is very small or even zero. If f=0, then the 2x2-matrix multiplying the time-derivative
vector (w,,P,)T is singular and (3.8b) is effectively replaced by an equation without temporal derivatives. As
we will use a stiff (implicit) ODE/DAE solver, viz. the BDF module of the SPRINT package, there is no
need to distinguish between =0 and P=0. Finally, it is known, that the pressure equation (3.8b), can, in cer-
tain circumstances, be approximated in a so-called Boussinesq sense, replacing it by the standard continuity
equation V-q = 0. With the present conditions this results in a very smoothly varying pressure distribution
P(x,y,t). For more information with regard to the PDE model, the interested reader is referred to [33, 38].
The application of MFE to this model needs an extra explanation. There are three additional aspects worth
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mentioning:

1) The first aspect is the appearance of a matrix, not equal to the identity matrix, in front of the time-
derivative. However, for this, only a minor modification is needed to apply the minimization procedure,
which was explained in Section 2.1. No special difficulties are encountered when working out the innerpro-
ducts for the new semi-discrete formulation.

2) The second aspect deals with the treatment of general second-order operators. This has already been
treated in Section 2.2.

3) The third new aspect in this MFE-application is the use of the weight factors w; (see equations (2.6)).
The w; were introduced to make it possible to let the grid movement equations (2.6b) and (2.6c) be dom-
inated by certain PDE components. In the brine transport equation this possibility is very welcome. Since the
pressure gradients dP/dx and dP/dy are expected to vary only slowly, the weight factor w, is taken zero.
This means, that pressure effects are not taken into account in the moving-grid equations (2.6b) and (2.6c¢),
and that the salt concentration changes take the responsibility for the grid movement (w,=1).

In the present MFE-application constant values are taken for the permeability (K=1.E -10), viscosity

(n=1.E -3), porosity (n=0.4) and the molecular diffusion (D,,,=0). Further, the model is subjected to initial
and boundary conditions on the unit square (0,1)x(0,1):

m(x,y: 0)=0, P(xsya 0)=P0_P1y,

y=0and2/11 <x < 8/11 : dw/dn =0, P = p,,
y=0and x elsewhere : w=wy, P = p,,
x=0,1and0< y<1 : dw/dn = 0P/dn =0,
y=1landO<x<1 : 0w/dn =0, P=py-p,,

where wy, po and p, are constants: wg=0.25, po=1.7E +5, p,=0.7E +5. The remaining problem data are:
B=4.5E -10, y=0.6923, pp=9.98E +2, P(=1.E +5 and g=(0,-9.81)7. The dispersion coefficients are chosen:
ar=2.E -3 and o;=1.E -2. ,

Under these conditions, the model describes an injection of salt water of a high concentration through two
gates at the bottom of the domain. Due to the small values of oy and oy, and the boundary conditions
imposed on the pressure component P, the solution w(x,y,?) of the PDE model is a travelling fresh/salt water
front, moving from the lower boundary to the upper boundary. After having reached that boundary, the
dispersion and the Neumann boundary condition take over the process, resulting in a smoothing out of the
two fronts. For ¢ sufficiently large the fronts disappear completely which means that the whole medium is
filled with the high-salt concentration fluid.

MEFE is applied to this model with a starting grid of 31x21 gridpoints, of which 11 gridpoints in the y-
direction are distributed uniformly between 0 and 0.1 and the remaining ones uniformly over the rest of the
domain, a time-tolerance of TOL=1.E -3, and penalty parameter values e5=1.E -4, £3=1.E -8, respectively.

t= STEPS | JACS | BS PHASE
0.25 40 19 118 START-UP
0.50 48 23 144 PROPAGATION
1.00 59 25 174 PROPAGATION
10.00 96 44 287 | BOUNDARY EFFECTS
1.E+6 146 71 423 STEADY-STATE

TABLE 3.5 Example IV: Integration history.
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Figure 3.4 shows the MFE solutions for o at some characteristic points of time. Since the solutions for p do
not change dramatically, we leave them out of the discussion. We clearly see the movement of the grid
points following the two salt fronts. The lower three plots picture the steady-state process, for which finally
MEFE renders a uniform grid. Table 3.5 gives the time-integration history belonging to this run. It is interest-
ing to remark that the figures in Table 3.5 are almost identical to the ones in Table 3.4. The four phases
described in the previous example can also be recognized in this application: (1) the start-up phase, which
costs a considerable number of STEPS for MFE to cope with the initial solution and grid distribution, (2) the
propagation phase of the fronts, with a nearly constant time behaviour, for which the characteristic move-
ment of the grid points is responsible, (3) the phase, in which the salt front hits the boundary and (4) the
steady-state phase. The last two phases account for almost 50% of the integration effort.

For practical simulations of the model there is a need for more general boundary conditions (flux-
conditions) and smaller values for the dispersion coefficients. Smaller oy and o, have the effect to give yet
steeper fronts in ». However, to apply MFE on such cases, we need to consider a more careful treatment of
the general second order flux terms (2.9), since they have a strong influence on the grid movement, espe-
cially in the steep parts of the moving front solution, and near steady-state.

4. CONCLUSIONS

As a member of the class of moving-grid methods, the moving-finite-element method (MFE) is able to
accurately approximate solutions of PDE models in two space dimensions possessing steep local transitions.
In this paper MFE has been applied to PDEs with a different underlying background, viz. containing convec-
tion, reaction and/or diffusion terms. In all examined cases, steep moving front solutions are satisfactorily
followed by the semi-discrete moving-grid points. It must be stressed that compared with standard fixed-grid
methods, a notable advantage of MFE is, that it can be used with a relatively small number of spatial grid
points, when applied to PDEs with sharp transitions.

The effect of the penalty parameters on the semi-discrete ODE system depends on the PDE to be solved.
The first parameter, the intratriangular viscosity constant, €;, has an important influence on the efficiency of
the time-stepping procedure. For small values the grid movement may become irregular, whereas for
slightly larger values of ¢, it can be seen as a grid-smoothing parameter. Too large values of €, yield an
(unwanted) non-moving grid. The second parameter, the intratriangular spring constant, &, needs only to be
used for PDEs with a flat steady-state solution, and, therefore, affects the time-integration process for large
points of time. Further, the steady-state ‘flame front’ solution strengthens the conjecture, that, for parabolic
equations, MFE is closely related to equidistribution principles.

For convection-diffusion equations MFE resembles a perturbed method of characteristics. The PDE diffu-
sion coefficient plays an important role in this respect. Since MFE uses piecewise linear basis functions,
second derivative terms are not well-defined. Several regularizations are possible to treat the troublesome
innerproducts. The diffusion term and, thus the choice of regularization, influences the grid movement
around steep transitions, near boundary layers and also in near steady-state situations.

MEFE is applied to a brine transport problem in a porous medium. The weight factors, introduced to
emphasize or de-emphasize certain PDE components, are utilized to let the grid-movement of the method
merely be driven by the first component, the salt mass fraction, which consists of steep moving fronts, and
not by the second component, the pressure, which varies only little during the whole time-period. A special
treatment, of the general flux term is carried out, using the average of the first derivatives of the solution, to
cope with undefined innerproducts.

Future developments to improve the performance of MFE, could contain: (1) the use of higher order
basis/testfunctions, (2) the incorporation of an initial grid procedure (see [5]), which could also be used for
regridding after grid distortion, and (3) the implementation of general flux (Robin) boundary conditions.
Finally, there is a need for more theoretical results with regard to moving-finite-elements in two space
dimensions.



FIGURE 3.4. MFE solution of Example IV at ¢t=0, 0.1, 0.25, 0.5, 0.75, 1.0, 5.0, 10.0, 1.E +6.
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