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In this paper, we analyse parallel iteration of Volterra-Runge-Kutta methods (PIVRK methods) for solving
second-kind Volterra integral equations on parallel computers. We focuss on the determination of the
region of convergence C and on the stability region Sy, of the iterated method obtained after m iterations.
Results are presented for the convolution test equation. It turns out that the stability region S, does not
necessarily converge to the stability region 8 of the corrector. However, for finite m, 8y, need not to be
contained in C or 8 and may be much larger than C.
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1. Introduction
So far the design of numerical methods for integrating the second-kind Volterra equation (VIE)

t

(1.1) yt) =gt + J K(tx,yx)) dx, to<t<T
10

on parallel computers has not received much attention. There are two straightforward approaches for
constructing parallel VIE solvers. The most obvious approach is based on Picard iteration:

t
(1.2) yih =g® + J- K(tx,yj-1(x)) dx, to<t<T.
to

Because of the explicit nature of the iteration (1.2) it is suitable as a starting point for numerical
discretization on parallel systems. In the case of initial-value problems for ordinary differential
equations (ODESs), such so-called waveform relaxation methods have been investigated (see Bellen
[1], Bellen et al. [2] and Gear [7, 8] where further references can be found). With appropriate
modifications, these Picard-based waveform relaxation methods for ODEs can be applied to VIEs.

An alternative approach solves (1.1) by step-by-step methods which contain sufficient
parallelism to take advantage of parallel architectures. It is this approach that will be considered in this
paper. In particular, we shall consider Volterra-Runge-Kutta methods (VRK methods). The rather
costly lag term evaluations appearing in such methods can be efficiently computed on multi-processor
computers, so that we shall concentrate on the solution of the implicit relations to be solved in each
integration step. Using similar predictor-corrector techniques as proposed for parallel ODE solvers
(cf. [10, 11, 12], we develop a diagonally implicit iteration method for approximating the solution of

Report NM-R9207

ISSN 0169-0388

Cwi

P.O. Box 4079, 1009 AB Amsterdam, The Netherlands



the corrector equation. Each iteration in this method requires the sequential solution of just one system
of equations whose dimension equals that of the VIE.

The main issue in this paper is the derivation of stability conditions for parallel, iterated VRK
methods (PIVRK methods). The actual construction of such methods with good stability properties
and its application to test problems will be subject of future research.

2. VRK Methods

For notational convenience, we shall assume that the VIE (1.1) is a scalar equation. However,
all results in this paper can be straightforwardly extended to systems. Discretizing the integration
interval [tp,T] by step points {ty: n = 0,...,N}, and denoting the numerical approximations to the
exact solution value y(tp) and to

tn

2.1) F(tth) = gt + I K(t,x,y(x)) dx
to

by yn and Fy(t), respectively, the general s-stage VRK method is defined by
(2.22) Yn+1 = Fn(ta+h) + hbTK (tpe + ha,tye + he,Yp),

where the s components Yy, j of the stage vector Yy, are determined by the stage vector equations
(2.2b) Yn,i = Fn(tn"'elh) + hAiK(tne+hai,tne + hc,Yn), i= 1, ey Se

The VRK parameters are stored in the s-by-1 column vectors a, aj, b, ¢, 8 = (8;), and in the 1-by-
S row matrices Aj = (ajp. In (2.2), e denotes the unit vector (1, ... ,1)’1‘ and component-wise notation
is used for functions with vector arguments. In order to avoid confusion, we denote the entries of a;
by a*jj. We observe that for Pouzet-type VRK (PVRK) methods, we have a = e, 0 = c, aj = cie.

2.1. Parallelism in VRK methods

The bulk of the computational effort per step goes in the evaluation of the s lag terms
Fn(ta+6ih). This makes VRK methods so much more expensive than, for example, direct quadrature
methods which require only one lag term per step. However, since these s lag terms can be evaluated
independently, the sequential computational costs can be reduced by a factor s if we have s processors
at our proposal. Thus, on parallel systems the sequential costs of VRK methods per step are
comparable with those of direct quadrature methods.

2.2. Parallel iteration of the stage vector equation

By using a sufficient number of parallel processors, the sequential computational costs of
evaluating the lag terms can be reduced to such an extent that solving the s stage vector equations
(2.2b) may easily dominate the overall costs per step. This leads us to looking for parallel methods
for solving (2.2b). Since this system of equations is quite similar to the stage vector equation
associated with implicit RK methods for ODEs, we may resort to parallel methods devised for solving
implicit RK methods. Such methods have been proposed in a number of papers and fit into the family
of iteration schemes:

(2.3) YniV+D - hDiK(tye + ha;, tye + he, Y (V+D) =
Fn(tn + 6;h) + h[A; - Dj] K(tpe + haj, the + he, Yp(V),



wherei=1,..,sand v =0, 1, ..., m, and where Yp(?) is an initial approximation to Y. The 1-by-
s row matrices Dj are assumed to have zero entries except for the ith entry which will be denoted by
di. Notice that (2.3) reduces to fixed-point iteration (or predictor-corrector iteration) if the d; vanish.
Evidently, the iteration method (2.3) is suited for implementation on parallel computers,
because in each iteration the components Yn,i(""'l), i=1,...,s, can be computed independently. For
references to papers where the above type of iteration methods have been used, we refer to [9].
Once Y,™) is computed, we find yp41 according to the step point formula

(2.4) Yn+1 = Fn(ta+h) + hbTK(tye + ha,tpe + he,Y,(M).

However, if for some value i* of i the equalities

(2.5) Oi*=1,A;+*=bTandajx=a

hold, then it follows from (2.2) that Yp j* = yn+1, 0 that instead of (2.4) we may use the formula
(2.6) Yn+1 = Yn,i*(m)-

However, it should be remarked that the order in h of the iteration error is reduced by one (compare a
similar situation in the case of diagonally implicit iteration of RK methods for ODEs [10]). We shall

call the two iterated VRK methods {(2.3), (2.4)} and {(2.3), (2.6)} PIVRK methods of Type 1 and
Type 2, respectively, and we denote them by PIVRK1 and PIVRK2.

3.  The Region of Convergence of PIVRK Methods
From (2.2b) and (2.3) we derive the iteration error recursion

(3.1) YniV+D) - Yp - hDi[K(tne + hai, tge + he, Yn®+D) - K(tge + haj, tge + he, Yn)]
=h(A; - Dj) [K(tne + haj, tne + he, Ya™) - hAiK (tqe+ha;,tre + he,Yn) ],

In the special case where the kernel K is linear in its third argument, we may write

(32)  Yni*D-Yui- hDiLoi[ Ya®*D - Yu] =h(A;- Dy Log[ Ya® - Yy ],

where the Ly, j(h) are diagonal matrices. This recursion can be written more compactly in the form

(3-3) Yn(v+1) - Yn =Zq [Yn(v) - Yn],

where Z, is the iteration matrix of the PIVRK method.
In this paper, we confine our considerations to the convolution test equation

t

(3.4) yO =1 + J [A + pu(t-x)ly(x) dx, A <0, p <0,
i

so that the iteration matrix is given by

Zn=R(z, W, D) := [I - zD + w2DCJ![z(A - D) - w2(B - DC)], z:=h\, w:=-h\ 4,
(3.5)

B = (bjj) := (ajj(a*jj - ¢j)), C = (cj) :=diag (a*ji - ¢;), D := diag (dj).



We note that for w =0, i.e. i = 0, the test equation (3.4) reduces to the familiar ODE test equation
and the PIVRK method reduces to the so-called PDIRK methods analysed in [10].

The spectral radius of the iteration matrix Zy will be called the convergence function. From (3.3)
we conclude that we have convergence if, and only if, the convergence function P(R(z, w, D)) is less
than 1. This can always be achieved by choosing sufficiently small stepsizes h. In order to obtain the
convergence condition on h explicitly, we derive the region in the (z,w)-plane determined by the
condition p(R(z, w, D)) < 1. In computing these regions, we often found that in the third quarter
plane (z<0, w<0), they contain an infinite region bounded by the parabola z = -pw2 + qw + r with
non-negative p, q and r (this parabola corresponds to a straight line in the (z,w2)-plane originating
from one of the linear Hurwitz conditions). This motivates the following definition:

Definition 3.1. Let the region of convergence of the PIVRK method be defined by the set C(D) where
the convergence function is less than 1. Then the PIVRK method will be called Ag-convergent, By-
convergent and Vo(p,q,r)-convergent if C(D) contains the sets {(z, 0): z < 0}, {(0, w): w < 0} and
{(z, w): z < -pw2 + qw + 1, w < 0}, respectively. It is called Vo-convergent if it is Vo(0, 0, 0)-
convergent. []

Remark 3.1. From (3.5) it immediately follows that a necessary condition for Ag-convergence and
Bo-convergence is given by p(I - D-1A) <1 and p(I - C-1D-1B) < 1, respectively. Hence, in the case
of fixed-point iteration, where D = O, the corresponding method can be neither Ag-convergent nor
Bo-convergent. Furthermore, for iterated Pouzet-type VRK methods, where C = O (because aj = cie),
Bg-convergence is also excluded. In fact, for such methods the iteration matrix R(0, w, D) reduces to
-w2B, so that the set {(0, w): w < 0} is given by the finite interval (-(p(B))-122, 0). Notice that this
interval does not depend on the matrix D. []

Remark 3.2. From the definition of the variables z and w it follows that for a Vo(p,q,r)-convergent
method with vanishing p the iteration method converges if the test equation satisfies the condition

(B.6a)  A<-g\-p + o

Hence, V(0,q,r)-convergent methods with r > 0 applied to test problems with

(3.6b) A< -q\/ -u .

do not impose a condition on the stepsize h. Unfortunately, we did not yet find Vo(p,q,r)-convergent
methods with p =0, so that we obtain a condition on the stepsize. In the particular case of V(p,q,r)-
convergent methods with p > 0 and q = 0 the iteration method converges if the stepsize h is less than
hmax Where hmax is the largest root of the equation -ppth2 + Ah =r. If r > 0, then -ppthmax + A > 0,
so that we have the sufficient convergence condition

(3.7a) h < —}“—,K<O, p<o.
pH

This inequality shows that 1/p may be considered as a sort of convergence boundary and that the

convergence condition is not a serious limitation on the stepsize for problems where A << py.. We
observe that for small values of IAl, V1/p plays the role of a convergence boundary:

(3.7b) hsﬂ/ L, A=0, p<o.]
-pu.



Remark 3.3. In order to achieve V((p,q,r)-convergence for small values of p, one may follow a
similar approach as in [10] which leads us to the minimization of the value of the convergence
function along the "parabolic" direction z = -pw2+qw-+r as w — -oo, It is easily verified that

(3.8) p(R(-pw2+qw+r, w, D)) = p(I - (pD + DC)-1(pA + B)) as w — -oo,

so that one may try to choose D such that p(I - (pD + DC)-1(pA + B)) is minimized for small p.
Examples of such methods are given in [6]. []

Next, we shall specify a triangular-shaped region which is at least contained in the region of
convergence. For that purpose, we need the following lemma:

Lemma 3.1. Let O denote the zero matrix and let the set E(D) be defined by
ED):= {(z,w):2<0,w<0,IIR(z, w, D) llo < 1}.

If the entries of the diagonal matrices C and D are nonnegative, then E(O) is contained in E(D).

Proof. Let (z, w) be in E(O). Then it follows from the definition of R (see (3.5)) and the condition on
the matrices C and D that

S
2 | zajj - w2bjjl < 1
p=

for all i. Hence,

s s
2 | z(ayj - 8;5d;) - w2(bjj - dicyj) | < - zd; + wlc;i + z |zajj - w2bj;l < 1 - zd; + w2cj;.
Fl =1

It is now easily verified that (z, w) lies in E(D) by writing

s
(1 - zd; + wzcii)-l 2 I z(ajj - Sijdi) - w2(bij -dici 11, i=1,..,s.[]
=1

By means of this lemma and the observation that the set E(D) is obvioilsly contained in the
convergence region C(D), we can prove the following theorem:

Theorem 3.1. Let the region T(D) be defined by

TD) := {(z,w):z<0,w<0, IB-DCllew?2 <1+ IIA-DIImz}.

If the entries of the diagonal matrices C and D are nonnegative, then both T(O) and T(D) are contained
in the convergence region C(D). '



Proof. Let (z, w) be in T(D), then
IB-DClloow?2<1+ lA-Dlloz=1- ll (A - D) lle.

On the other hand, it follows from the definition of R and the condition on the matrices C and D that
I R(z, W, D) lloo <l Z(A - D) - W2(B - DC) lloo < Il Z(A - D) lloo + Il W2(B - DC) lloo,

so that Il R(z, w, D) ll.. < 1. From the definition of E(D) it then follows that (z, w) lies in E(D).
Hence, T(D) is contained in E(D). In particular, T(O) is contained in E(O), so that by virtue of
Lemma 3.1, T(O) is contained in E(D). Thus, both T(O) and T(D) are contained in E(D) and
therefore in the convergence region C(D). []

3.1. Vo(p,0,r)-convergent PIVRK methods of Pouzet type

It is of interest to investigate the convergence regions of PIVRK methods. In this paper, we
have restricted our considererations to Pouzet type correctors and matrices D derived in [10] for ODEs
(in order to save space, we refer for a precise specification to the formulas given in [10]).

For a number of PIVRK methods, Table 3.1 lists the values of the convergence boundaries 1/p
and V1/p associated with the Vo(p,0,r)-convergence regions. From this table and from (3.7) the
convergence conditions for h can be derived.

Table 3.1.
Convergence boundaries 1/p and V1/p associated with PIVRK
methods generated by correctors and matrices D specified in [10].

Corrector D p tp

2-stage Radau ITIA [10, §4.6a)] [10, §4.6b;] 2.
2-stage Lagrange [10, (4.4a)] [10, (4.4b)] 2.
3-stage Radau [10, (4.10a)] [10, (4.10b)] 2.
3-stage Lagrange [10, (4.9a)] [10, (4.9b)] 2.

WWWno

4.  The Region of Stability of PIVRK Methods

The main purpose of this paper is the stability analysis of iterated VRK methods with respect to
the convolution test equation (3.4)..For the stability analysis of the VRK method itself (i.e., the
corrector (2.2)), we refer to [4] and [5] where further references can be found.

Let the lag term Fy(t) in (2.2) be of 'extended' type. Then

(4.1) ¥n = Fn(tn).

Furthermore, if J; denote the 'integrated’ stage vector, then

n-1 n-1
42)  Fy®):=g®+ hjZO bTK(te+h(a-e),tie + he,Y;), T = go bTY;.
= J

Applying the VRK method (2.2) to the test equation (3.4) reduces (2.2) to the recursion
4.3) Yn = Fn(tn)e - w26Jp + [zA - w2B] Yy, yn+1 = Fn(ty) - w2l + [zb - w2b;]Y;

(cf. [3, p. 474]), where by := (bj(a; - c;)).



We shall derive similar recursions for the iterated methods. It is readily seen that the analogue of
(4.2) becomes

n-1 n-1
4.4) Fq(t) := gt)+ hz bTK(te+h(a-e),tje+hc,Yj(m)), Ja = hz bTYj(m).
=0 =0

First, Type I methods will be considered. Using (4.1) and (2.4), the analogue of (4.3) becomes
[I-zD + w2CD]Y,(V+D) = ype - w20J, + [z(A - D) - w2(B - CD)]Y, ™),

@ Yn+1 = Yn - W2 + [zb - wZbp]Y,p(m),

Let us define the functions

(4.6) Qum:=R™-[RM-T]S1, S:=1-2zD+w2CD - z(A - D) + wX(B - CD) =1 - zA + w2B,

where R is the iteration matrix defined by (3.5) (for brevity, we omit the arguments of R).
Furthermore, let the initial approximation be chosen according to

4.7) Yn© = Fy(yqe + h0) = ype - w20J,.

Then, by observing that for extended lag term formulas:

(4.8a) Jn+1 =T + bTY, M)

(cf. [3, p.481]), we deduce from (4.5)

(4.8b) Yo = Qu [yne - w26Jnl, yns1 = yn - W2n + [zb - w2by]TY ;).

Elimination of Y,(™) from (4.8) yields the recursion
@8) (™) =MnGz w,D)(J) ,
where the stability matrix My (z, w, D) is given by

(4.9) My (z, w, D) = ( 1+ [zb - w2b1]TQmne w2(-1 + [zb - w2b1]TQme) )

bTQme 1-w2bTQn,0

Likewise, we find for Type 2 methods the stability matrix

esTQme  -w2esTQmo
410)  Mm(z w,D) = .
@10 Mn(z w. D) ( bTQme 1 - w2bTQm0

The spectral radius of Mm(z, w, D) will be called the stability function. The analogue of Definition
3.11is given by '



Definition 4.1. Let the region of stability of the PIVRK method be defined by the set Sy(D) where the
stability function is less than 1. Then the PIVRK method will be called Ag-stable, Bg-stable and
Vo(p.q.r)-stable if 8y (D) contains the sets {(z, 0): z < 0}, {(0, w): w < 0} and {(z, w): z < -pw2 +
qw +1, w <0}, respectively. It is called Vy-stable if it is V((0, 0, 0)-stable (cf. BD.0

Remark 4.1. The stability region Sp,(D) converges to the intersection of the convergence region C(D)
and the stability region 8 of the corrector as m tends to infinity. This can be explained by observing
that the stability region 8(D) converges to a fixed stability region 8. if Qm converges to the fixed
matrix -S-1 as m — eo. This happens if, and only if, the matrix R = R(z, w, D) in (4.6) has its
eigenvalues within the unit disk, that is, if (z,w) lies in the convergence region C(D). Furthermore,
since the stability matrix Mp(z, w, D) converges to that of the corrector if (z,w) lies C(D), we may
conclude that 8(D) converges to the intersection of C(D) and the stability region 8 of the corrector.
As a consequence, the stability region of an PIVRK method does not necessarily converge to that of
the corrector. However, for finite m 8;(D) need not to be contained in C(D) or S and may be much
larger than C(D).[]

Remark 4.2. From the Remarks 3.1 and 4.1 it follows that PIVRK methods of Pouzet-type cannot be
Bo-stable (because they cannot be Bo-convergent). []

Remark 4.3. Similar to V((0,q,r)-convergent and Vo(p,0,r)-convergent methods, V(0,q,1)-stable
and Vo(p,0,r)-stable methods impose a condition either on the parameters A and i (cf. (3.7a)) or on
the stepsize h (cf. (3.7b)). Similar to the terminology used for characterizing the convergence region,
we shall call the quantities 1/p and V1/p the stability boundaries associated with the stability region. []

4.1. Necessary stability conditions

We shall derive necessary conditions for stability by requiring that the stability function is at
least bounded along certain directions in the (z,w)-plane. We shall distinguish stability alon
horizontal directions (w constant), vertical directions (z constant) and parabolic directions (z = -pw
with p constant).

Theorem 4.1. Let m be fixed and let the matrices K, U and G be defined by
“4.11) K=1-DlA, U=I-(DC)!B, G=1- (pD + DC)"1(pA + B),

where DC is assumed nonsingular. Then the conditions in Table 4.1 are necessary conditions to have
a bounded stability function p(Mmp(z, w, D)) along horizontal, vertical or parabolic directions.

Table 4.1.
Necessary stability conditions for bounded stability functions along various directions.
Type horizontal direction vertical direction parabolic direction
1 bTKme = ( bTUMG =b1TUMe =0 bTGMO = (b; + pb)TGme = 0

2 noconditionrequired bTUMQ =( bTGmg =0




Proof. For large values of |z, Iwl and Izl = lpw2| we may respectively write

(4.12) Qm= Km+——+0( ) Qm= Um+——+——+0( )
Qm=Gm+-“,—2+0(-&47),

where K, U and G are defined in (4.11), where Ly, does not depend on z (but may depend on w2),
where Vi, and Wy, do not depend on w (but may depend on z), and where Hy, only depends on p.
Substitution of (4.12) into (4.9) and (4.10) yields along horizontal directions

(49)  Mmp(z,w,D)= z( bTIgme bT%me ) +

1+bTLme - w?b1TKMe bTLm6 - wi(1 + b1TK™B) ) | 0(l)

-w2e T
(4.10)  Mp(z w, D) = (esTKme wies KO ) o(1).

pTKme 1 - w2pTKmg

Similarly, we find along vertical directions

. -b;TUMe -1 + (zb - b1)TUMO - b1 TV, 6
(4.9 My (z, w, D) = w2 ( 0 bTUmG

Tyme - h4T T -b:T
+(1+sze b1'Vme zb!Vp6-b1'Wpo )+O(-—1—)

pTume 1-bTv,6 w2

0 -e.TUMQ esTUme  -eTv,0
410"  Mp(z w, D) = w2 ; oy bTV.
( ) m(z, W, D) =w (0 -pTumg ) ( bTume 1-bTVv,0 ( )

Finally, along parabolic directions, the matrix (4.9) assumes the form

- T
49" Mm@z w,D)=wt (g T )+w2 ( (b 7h) G bTeme ]+0(1),

where we refrained from writing out the entries E; and Ej. The matrix (4.10) can be obtained from
(4.10") by replacing U with G and Vi with Hpy,.

For large values of Izl and |wl these matrices are dominated by the first few matrix terms. Hence,
a necessary condition for stability is that the eigenvalues of these dominating matrices are bounded by
1. If these dominating matrices have entries depending on z or w, respectively, then we should

require that these matrices have zero eigenvalues. This requirement leads to the necessary conditions
in Table 4.1. []
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4.2. Vo(p,0,r)-stability

In order to get insight into the number of iterations needed to reach a sufficiently stable method,
we investigate the stability regions of Pouzet methods arising from the correctors and matrices D
derived in [10] for ODE:s. It turned out that for these matrices D the Type 1 methods do not satisfy the
necessary condition bTKMe =  of Table 4.1 and are therefore not Vo(p,0,r)-stable (however,
although their stability regions are finite, they are quite large, so that they may still be of use for
mildly stiff problems).

For Type 2 methods, Table 4.2 lists the stability boundaries 1/p and V1/p associated with the
Vo(p,0,r)-stability regions (finite stability regions are indicated by *). The last column in this table has
been obtained using the property that 8;(D) converges to the intersection of C(D) and the stability
region 8 of the corrector. In general the stability regions of the PIVRK methods do not converge to
that of the corrector. Typically, the stability region of the corrector contains an additional wedge along
the negative w-axis. However, the PIVRK method does not converge here, so that the PIVRK
method cannot be stable in this strip (for detailed stability plots, we refer to [6]).

Table 4.2.
Stability boundaries 1/p and vV1/p associated with PIVRK2
methods generated by correctors and matrices D specified in [10].

Corrector, matrix D m=2 m=3 m=4 m=5 m=6 m=7 m=8 .. m=oo

2-stage Radau IA 1.1 20| 1.6 20| 1.7 24 | 20 20| 2.0 20} 2.0 20| 20 20] 2.0 2.0
[10, (4.6a), (4.6b)]

2-stage Lagrange 09 24107 30|11 24 |11 30|11 30| 1430} 1.1 30| 1.1 3.8
[10, (4.4a), (4.4b)]

3-stage Radau TA * % 08 39|08 39|12 39|10 38]1038] 12 3.1] 15 34
[10, (4.9a), (4.9b)]

3-stage Lagrange * % 1.0 31 12 31|13 3416 3.1} 133416 3.1 16 3.1
[10, (4.92), (4.9b)]
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