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In this paper, we study diagonally implicit Runge-Kutta-Nystrdm methods (DIRKN methods) for use on
parallel computers. These methods are obtained by diagonally implicit iteration of fully implicit Runge-
Kutta-Nystrdm methods (corrector methods). The number of iterations is chosen such that the method has
the same order of accuracy as the corrector, and the iteration parameters serve to make the method at least
A-stable. Since a large number of the stages can be computed in parallel, the methods are very efficient on
parallel computers. We derive a number of A-stable, strongly A-stable and L-stable DIRKN methods of
order p with s*(p) sequential, singly diagonal-implicit stages where s*(p) = [(p+1)/2] or s*(p) =
[(p+1)/2]+1, [.] denoting the integer part function.
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1. Introduction

Consider the initial-value problem for systems of special second-order, ordinary differential
equations (ODEs) of dimension d

(1.1)  y'"®) =f(y®): y{to)=yo, y(t)=y0o, y:R—RI, f:RI5RI t)<t<tenq.

One possibility for solving such problems is the use of singly diagonal-implicit Runge-Kutta-
Nystrom methods (SDIRKN methods). Compared with linear multistep methods (LM methods),
SDIRKN methods have the disadvantage of requiring the solution of a sequence of implicit systems
of dimension d per step, whereas LM methods require the solution of only one such system per step.
On the other hand, a number of SDIRKN methods available in the literature possess excellent stability
properties, which are much better than those of the best LM methods. In spite of that, LM methods
are still more popular than SDIRKN methods, because of their lower costs on a sequential computer.
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However, on parallel computers, this situation may change. In this paper, we shall construct DIRKN
methods tuned to parallel computers, such that each processor has to compute relatively few stages
sequentially. We require that on each processor, these stages are singly diagonal-implicit , so that
effectively the sequential costs of the parallel DIRKN method (PDIRKN method) are equal to those
of an SDIRKN method. In fact, these methods are based on a fixed number of iterations of k-stage
indirect RKN methods of Radau IIA and Gauss-Legendre type (methods of indirect type are
understood to be methods that are derived by applying an RK method for first-order ODEs to the
first-order form of (1.1)). Furthermore, the iteration parameters are chosen such that A-stability is
obtained as soon as the order of the corrector is reached. The resulting methods require k = [(p+1)/2]
processors, where p denotes the order and [-] denotes the integer part function. We present a number
of A-stable, strongly A-stable and L-stable PDIRKN methods of order p with s*(p) sequential, singly
diagonal-implicit stages, where s*(p) = [(p+1)/2] or s*(p) = [(p+1)/2]+1.

In order to appreciate these methods, we have summarized in Table 1.1 the characteristics of a
number of already available SDIRKN-type methods of orders p=3 until p=8. We included DIRKN
methods of both direct and indirect type (for a specification of indirect RKN methods we refer to [10]
and to the Appendix of the present paper). Furthermore, we also listed a few indirect paralle]l DIRKN
methods derived from parallel DIRK methods. Both the sequential and parallel methods are
(effectively) singly diagonal-implicit, so that the number of sequential stages s* refer to the number of
singly diagonal-implicit stages to be computed on each of the k processors.

By means of numerical experiments we will compare the performance of the methods
constructed in this paper with that of a number of the methods listed in Table 1.1.

Table 1.1. DIRKN methods of order p requiring s* singly diagonal-implicit,
sequential stages on k processors.

Method P s* k Main properties Type

Ngrsett [14] 3 p-1 1 A-stable indirect
Crouzeix [6] 3 p-1 1 Strongly A-stable indirect
Sharp, Fine & Burrage [16] 3 p-1 1 A-stable, reduced phaselag  direct

Cash [3], Cash & Liem [4] 3 P 1 S-stable indirect
Burrage [1] 3 p+1 1 A-stable, B-convergent direct

Ngrsett & Thomsen [15] 3 p+1 1 L-stable indirect
Iserles & Ngrsett [12] 4 p-2 2 L-stable indirect
Ngrsett [14] 4 p-1 1 A-stable indirect
Sharp, Fine & Burrage [16] 4 p-1 1 A-stable, reduced phaselag  direct

Cash [3], Cash & Liem [4] 4 p+l 1 S-stable indirect
Cooper & Sayfy [5] 5 P 1 A-stable indirect
v/d Houwen, Sommeijer & Couzy [9] 5 p 3 L-stable indirect
Cooper & Sayfy [5] 6 p-1 1 A-stable indirect
Sommeijer [17] 6 p-1 3 A-stable indirect
v/d Houwen, Sommeijer & Couzy [9] 6 P 3 L-stable indirect
v/d Houwen, Sommeijer & Couzy [9] 7  p+1 4 L-stable indirect

8 P 4

L-stable indirect




2. Diagonal-Implicit Iteration
Our starting point is the fully implicit Runge-Kutta-Nystrém (RKN) methods of the form

k
Yo+l = Yo + hy'n + b2, b; f(Y),
i=1

k
(2.12) Y'ne1=¥n+hy, dif(Y}),
i=1
_ k
Yi=y, + cihy'h + hzz ajj f(Yj), i=1,..,k
j=1
where b=(bj), c=(ci) and d=(dj) are k-dimensional vectors, and A=(ajj) is a nonsingular k-by-k
matrix. This method will be referred to as the corrector method
We employ a similar iteration technique as applied in [11] which automatically leads to DIRKN
methods. However, we now determine the iteration parameters such that the method is A-stable,

strongly A-stable or L-stable as soon as the order of the corrector is reached.
Let Yi(W denote the pth iterate to Yj, and define the transformed stage vector quantities Xj and
X (cf. [8])
(2.1b) Xi:=Yi-x;, XiW:=Y®W-xj xi:=yn+cihyn i=1, ..,k
In terms of Xj and x;, the stage vector equation in (1.2) reads

k
Xj= hzz ajj fXj +xj5), i=1,..,k
i

For each of these equations, we define the iteration process

k
(2.22) X - & h2f(X;® + x;) = h2( 2, aij f(XD + x7) - 8 f(Xi®D + x;)),
i

wherei=1,...,k; 0 =1, ..., m, and where the §; are positive iteration parameters that will be used
- “to control the stability of the method. In order to start the iteration process, we compute the initial
approximations X;(© by means of the predictor formula

(2.2b) X;O = 0§; h2f(X;O+x;),

where either 6 = 0 or 6 = 1. These formulas will be referred to as predictor formulas of type I and I,
respectively.



In [11] it was shown that the formulas for the step values defined in the corrector (2.1) can be
presented in the form

k k
Yn+1=Y¥n + hy'n + Z oiXj, Yne1=Yn + h-l z ﬂixi,

i=1 i=1

where 0 and B are the components of the vectors a:= bTA-1, B:= dTA-L. This suggests defining
the step values yp41 and y',, 1 corresponding to the iterated method as

k k
(23) yn+1=Yn+hyn+ 2 0;X;(m), Yn+e1=Yn+ h-1 Z BiXi(m)-

i=1 i=1

It is easily seen that for m fixed the method {(2.2),(2.3)} fits into the class of DIRKN methods
that can be characterized by the Butcher array

X©0) | 6D
XO|AD D
X2l 0 AD D

Xmf 0O O O0..0 A-D D
2.4 ,
O O O.. O bTAA-D) bTA'ID
O O O.. 0 dTA}(A-D) dTA'ID

where D is the diagonal matrix with diagonal entries ;.

Since the k systems that are to be solved in each iteration step of (2.2) can be solved in parallel
and each has a dimension equal to that of the system of ODEs, the iteration process (2.2) is on a k-
processor computer of the same computational complexity as an (m+6)-stage SDIRKN method on a
one-processor computer. Thus, the method {(2.2),(2.3)} has only s* := m+0 sequential, singly
diagonal-implicit stages.

Theorem 2.1. Let p be the order of the k-stage corrector method (2.1) and let m := [(p+1)/2]. Then
the method {(2.2),(2.3)} is an s-stage DIRKN method of order p with s* sequential, singly
diagonal-implicit stages, where s and s* are defined by s = k[(p+1)/2] + 1 + 6(k-1) and s* =
[(p+1)/2]+6.



Proof. The expressions for s and s* immediately follow from the Butcher array (2.4). The order of
the method is obtained by considering the iteration error of the method. Obviously, (2.2b) defines a
first-order predictor formula (i.e., X;(® - X; = O(h2)), so that by means of (2.2a)

(2.5) Xjm .X; = O(h2+2m),

In order to avoid confusion, let us denote the step values associated with the corrector by up.1 and
u'y.1. Subtracting the corrector step values and the iterated step values shows that

k
Un+l - Yo+l = Z ai(Xj - Xj(m)) = O(h2+2m)

i=1

k
Wnel - Yool = b1 2, Bi(X; - Xi(m) = O(hl+2m),
i1

Let y(t) be the local exact solution. Then the local truncation error is given by

Y(tn+1) - Yn+1 = Y(tn+1) - Unt1 + Upsl - Ynel = O(hr+1) + 0(h2+2m),
(2.6)
Y'(ta+1) - ¥'n+1 = Y'(tn41) - U'ne1 + Wnil-Ynel = O(hP+1) + 0(h1+2m)’

where p is the order of the corrector. Thus, we need only m = [(p+1)/2] iterations to reach the order
of the corrector, so that s* := m+6 = [(p+1)/2]+6. []

It follows from (2.6) that there three sources of local errors which together constitute the global
error, i.e., the truncation error of the corrector (of order p+1) and the iteration errors corresponding
to ¥n+1 and y'n,1 (of orders 2m+2 and 2m+1). In addition to these orders, the order constants also
play a role. The magnitude of the order constant associated with the corrector is usually rather small.
The order constants of the iteration errors decrease with m and are expected to be rather large for
small values of m (see also Table 4.1). As the value of m is relatively small, the iteration errors may
easily dominate the global error, so that the order of the corrector is not always shown in actual
computation. For example, if the iteration error corresponding to yn,1 dominates, then the effective
* order p* is given by p* = 2m+1 = 2[(p+1)/2] + 1. Likewise, if the iteration error corresponding to
¥'n+1 dominates, then p* = 2m = 2[(p+1)/2].



3. Stability
The linear stability of the method {(2.2),(2.3)} is determined by applying it to the scalar test
equation y"=Ay, where A runs through the eigenvalues of of/dy, which are supposed to be negative.

Defining the matrix
(3.1) Z(z):=z[I-zD]'[A-D], Peg(z):=z[I-zA]'l[A-6D][I-0zD]"}, z:= Ah2,
and the vectors
. { Un+l o f Yn+1
(3‘2) Wn+1 Loand (hu'n+1 ’ vn+1 L (hy'n+1 ’
it can be shown (cf. [11]) that the following recumion_s hold:

bTA‘IZm(Z)P (z)e bTA'lzm(z)Pe(z)c
(33)  Wnei- Vas1 = Em@Va, Em() :=( 9 )

dTA-1Zm(z)Pg(z)e dTA-1ZM(z)Py(z)c

1+zbT(-Az)le 1+zbT(-Az)-lc
B4 Wnei=M@Va, M) ‘=( ATAn e LrdT@An e )

Hence, by eliminating the corrector values wpy1 from (3.3) and (3.4), we find the recursion

(3.5)  vn41=[M(2) - Em(2)]vn.

We shall call the matrix M(z) - Em(z) the stability matrix of the method and its spectral radius the
stability function , i.e., the function:

Rm(z) := p(IM(2z) - Em(2)])-

The method {(2.2),(2.3)} is called A-stable if Ry(z) assumes values in (-1,1) for z < 0, strongly A-
stable if it is A-stable with Ry (z) is bounded away from 1 outside the neighbourhood of the origin,
and L-stable if it is A-stable with Rpp(ee) = 0.

Putting m = [(p+1)/2], we obtain pth-order accuracy for any D. We shall exploit the matrix D to
obtain pth-order A-stable, strongly A-stable or L-stable methods. However, it turns out that various
choices of D generate such highly stable methods. From these methods we selected the methods with
smallest truncation error. Recalling that the truncation error of the PDIRKN method will usually be
dominated by the iteration error, we are led to consider the iteration error defined by (3.3). Since the
nonstiff error components in the iteration error corresponding to small values of | z | are sufficiently
damped by the matrix Ep(z) (note that En(z) = O(zm+1)), we shall concentrate on the stiff error
components. From (3.2), (3.3) and (3.4) it follows that

Wn+1 - Vnt1 = Em(2)Vn = Em(2)[M(2) - Em(2)]Vn-1 = Em(2)[M(2) - Em(2)]"vo.



Restricting our considerations to the iteration error associated with yp.1, we deduce that
Un+1 - Yn+1 can be bounded by

(3.6) |lups1-yne1ll =1l 1TEm(z)[M(2) - Em(z)1?vo ||
<|| e1TEm(z) || || IM(z) - Em(2)1* || || voll
= const. V"1 [Rm(2)]" || e1TEm(2) | || vo |l asn — oo,

where v denotes the maximum dimension of the Jordan box corresponding to the maximum-
modulus-eigenvalues of the matrix M(z) - Ey(z). This estimate shows that the stiff error components
can be suppressed if the stability function Ryy(z) is small for large | z |-values. We remark that a
similar estimate can be derived for u'p4] - y'n+1. The following theorem may be helpful in selecting
methods possessing this property:

Theorem 3.1. Let the predictor be given by (2.2b) and let the corrector (2.1) be obtained from a
consistent RK method for first-order equations given by the parameter arrays {A*,b*,c}, then the

following assertions hold:
(@) If 6 =0, then

1-(m*TA*Qpe 1-(b*)TA*Qne

R(o0) =
m(*) p( 5TQme  1- (*)TQme

) , Qm = (A*)2[I- [I- D(A%2]m].

(b) If © = 1, then Ry(e0) = | 1 - (b*)T(A*)-1e | for all m and D, and if the RK method {A*,b*,c} is
stiffly accurate, then Rpy(e<) = O for all m and D.

Proof. If the corrector (2.1) is obtained from an RK method for first-order equations {A*,b*,c},
then

(3.7) A = (A*)2, b= (A*)Tb*, c=A*e, d=b*.
: ' /'/“\\\
Furthermore, we have that Z(e0) = I- D-1A and Pg(ec) = (8 - 1)I, where 0 is either 0 or 1. Hence,

1-bTQmee 1-bTQuec

3.8) M(e)-Ep(~) =
(3.8) (=) - Em(=°) ( _ dTQmee 1- dTQmec

), Qme := A°l[I + (6 - 1)[I- D-1A]m].

(a) On substitution of © = 0 and (3.7) into (3.8), part (a) is immediate.
(b) For 6 = 1 and using (3.7), we see that (3.8) reduces to



1 - (b*)T(A*)-1 1- (T
(3.8) M(“)’Em(“)‘—‘( (b%) (A7) (b )

-(09T(A*)2e  1-(b*)T(A*)le

Because of the consistency we have that (b*)Te = 1, so that the eigenvalues of
M(es) - Epy(e<) are given by 1 - (b*)T(A*)-le . If the corrector {A*,b*,c} is stiffly accurate, then

(3.9) eklec=1, (b¥)T=exTA*,
so that Ry(°) vanishes for all m and D. []

This theorem shows that for explicit predictors of type I (0 = 0), the behaviour of the stability
function at infinity depends on D, so that we can exploit the matrix D by selecting methods with the
smallest value Ry (o). It is interesting to note that we obtained strongly A-stable PDIRKN methods
although the corrector is only A-stable (e.g., in the case of Gauss-Legendre correctors listed in
Table 4.1).

For implicit predictors of type II (8 = 1), the behaviour of the stability function at infinity is
completely determined by the corrector, so that D cannot be used for selecting small values of Rpy(e0)
in the estimate (3.6). However, (3.6) indicates that the iteration error is also influenced by the
maginitude of || ;TEm(z) ||. Since e;TEm(z) vanishes at infinity, we selected methods with a small
value of || ¢1TEm(z) || in the whole interval (-e2,0).

4. Survey of PDIRKN methods -

In Table 4.1, we list the main characteristics of the A-stable, strongly A-stable and L-stable
PDIRKN methods we found by means of the approach described in the preceding sections. In this
table, Emax denotes the maximum value of || €TEm(z) || in the interval (-o2,0) and E., denotes the
value of || e;TEm(e) ||. The predictors are of the form (2.2b) with 8 = O (predictor I) and 6 = 1
(predictor II), and the correctors used are the indirect collocation-type RKN methods based on the
Gauss-Legendre and Radau IIA RK methods for first-order equations. Specification of the
parameters of the resulting methods can be found in the Appendix to this paper.

Comparing the main characteristics of the methods listed in Table 4.1 with those listed in
Table 1.1, we conclude that the computational costs per step of the lower-order methods (order three
or four) are comparable, but the higher-order methods in Table 4.1 are much cheaper. On the other
hand, the error constant Ep,x of the iteration error associated with yp.1 is relatively large. However,
as we have shown in the discussion of Theorem 2.1, the order in h of these iteration errors is also

larger, which may compensate the large error constants. Hence, we may hope for improved
efficiency for the new PDIRKN methods.



Table 4.1. PDIRKN methods of order p requiring s* singly diagonal-implicit,
sequential stages on k processors.

{Predictor - Corrector} iteration parameters; p s* k Stability Emax Ew
{I-Radau ITIA} (11/200, 107/225) 3 p-1 2 Strongly A-stable  0.35 0.06
{II - Radau I1A} (1/5, 1/5) 3 p L-stable 0.14 0.00

{I - Gauss-Legendre} (1/5, 11/20) 4 p2 2 Strongly A-stable 1.35 1.35

{II - Gauss-Legendre} (223/10000, 311/1000) 4 p1 2 A-stable 0.25 0.00
{I-Radau [IA} (1/40, 1/4, 3/5) S p2 3 Strongly A-stable 0.73 0.16
{II - Radau ITIA} (639/5000, 17/1250, 409/2500) 5 p-1 3 L-stable 0.51 0.00

{I - Gauss-Legendre} (1/5, 172, 3/4) 6 p3 3 Strongly A-stable 1.44 0.51
{II - Gauss-Legendre} (1/100, 1/5, 9/20) 6 p2 3 A-stable 1.32 0.00
{I-Radau IIA} (1/5, 4/5, 4/5, 19/20) 7 p3 4 Suongly A-stable 143 0.77
{II - Radau IT1A} (9/200, 1/40, 9/40, 91/200) 7 p2 4 L-stable 1.09 0.00

{I - Gauss-Legendre}  (13/20, 13/20, 3/4, 19/20) 8 p4 4 Strongly A-stable  1.60 1.60
{II - Gauss-Legendre} (1/10, 1/5, 3/10, 2/5) p-3 A-stable 1.55 0.00

oo
oH

5. Numerical experiments

We shall numerically investigate the following aspects of the PDIRKN methods: (i) the stability,
in particular, the damping of perturbations of the initial conditions, (ii) the effective order, in relation
to the order of the generating corrector, (iii) the predictor, mutual comparison of the explicit and
implicit prdictor formula, and (iv) the efficiency, in comparison with available sequential SDIRKN
. methods from the literature.

All problems are taken from the literature and possess exact solutions in closed form. Initial (and
boundary) conditions are taken from the exact solution.

5.1. Stability test

We first test the stability properties of the various PDIRKN methods by integrating a
nonautonomous problem with varying stiffness:



10

200(t)+1  -o(t)+1

0 -1
" = = Y - , <t< 4 ,
y'@® (Z(a(t)_l) a(t)-z)y“)’ y =(3), y@=(3). 0st<4000
5.1)

oft) = V1463 + —

1+t3 '

The Jacobian matrix of the system has the eigenvalues -1 and - ou(t), so that the spectral radius, and
therefore the stiffness, increases with t. We compared the numerical solution of (5.1) with the
numerical solution obtained by perturbing the initial conditions, i. €., instead of the initial conditions
y(0) and y'(0) we used the initial conditions y(0) + €e and y'(0) + €e. Denoting the numerical
solutions by yp and y*,, we may expect from any stable method that || y, - y* || does not increase

with n. For various PDIRKN methods, Table 5.1 lists the values Cp := || yn-y*all/ll Yo-yY*oll =
Il Yn- y*nll/ € for n = 5000. The methods are specified by the generating Predictor-Corrector pair

where the predictor is indicated by its type. It turned out that C, is almost independent of € for € <
1/10. The results in Table 5.1 demonstrate the strong damping of the initial perturbation by the
PDIRKN methods.

Table §.1. Values of the amplification factor Cy, for problem (5.1) with n = 5000 for various
Predictor-Corrector pairs.

Type I - Methods p s* k Ca Type II - Methods p s* k Cn

I-Radau ITA 3 2 2 064E-13 1I-RadaullA 3 3 2 0.17E-06
I- Gauss-Legendre 4 2 2 0.27E-05 II-'Gauss-Legendre 4 3 2 0.11E-01
I - Radau ITA 5 3 3 020E-10 II-RadaullA 5 4 3 0.62E-01
I-Gauss-Legendre 6 3 3 0.39E-09 II-Gauss-Legendre 6 4 3 0.66E-07
I-RadauITA 7 4 4 043E-07 1I-RadaullA 7 5 4 041E-02
I-Gauss-Legendre 8 4 4 O0.26E-08 II-Gauss-Legendre 8 5 4 0.21E-00

5.2 Effective order and efficiency of the explicit and implicit predictor

In this section, we show that the effective order of the PDIRKN methods may exceed the order
of the corrector. In addition, we compare the efficiency of the explicit and implicit predictor. In all
experiments the accuracy is given by means of the number of minimal correct digits (NCD) defined
by NCD(h) = -log( || global error at the endpoint of the integration interval ||o,), and the computational
effort is measured by the total number of sequential stages per unit interval, that is, by M = Ns*,
where N is the number of integration steps per unit interval.

Table 5.2 lists results for the problem (see [13])
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2498 4998

52) y'()=
G2 yo (-2499 24999

)y(t), 0<t<100,

with exact solution y(t) = (2cos(t), -cos(t))T. These results show that for the higher-order methods
(i.e., p 2 5), the effective order p* is usually greater than p (see the discussion of Theorem 2.1).
Furthermore, except for the third-order Radau corrector, the superiority of the implicit predictor of
type II is clear, inspite of the additional implicit stage. Therefore, in the following, we shall confine
our considerations to the type II predictor.

Table 5.2. Effective order p* and values of NCD and M for problem (5.2).

Predictor - Corrector p  s* k M=25 M=50 M=100 M=200 p*

I - Radau ITA 3 2 2 2.8 3.8 4.7 5.6 3
II- Radau TA 3 3 2 24 3.3 4.2 5.1 3
I - Gauss-Legendre 4 2 2 3.3 4.5 5.7 6.9 4
II - Gauss-Legendre 4 3 2 4.0 5.4 6.7 8.0 4
I - Radau ITA 5 3 3 4.2 6.0 7.8 9.6 6
II - Radau ITA 5 4 3 5.1 6.8 8.5 10.0 5
I - Gauss-Legendre 6 3 3 3.9 5.8 7.6 9.4 6
II- Gauss-Legendre 6 4 3 4.6 6.7 8.8 11.0 7
I - Radau ITA 7 4 4 4.5 6.9 9.3 12.0 8
IT - Radau IA 7 5 4 5.4 8.1 10.8 9
I - Gauss-Legendre 8 4 4 4.4 6.8 9.2 12.8 8
Il - Gauss-Legendre 8 5 4 5.2 7.7 10.1 ‘

5.3. Efficiency tests
In this section, we compare the efficiency of the PDIRKN with methods from the literature. We
selected the following methods from Table 1.1:

Ngrsett 3 third-order method of Ngrsett
Ngrsett 4 fourth-order method of Ngrsett
SFB3 third-order method of Sharp, Fine & Burrage

SFB4 fourth-order method of Sharp, Fine & Burrage



B3
CSs
CS¢

third-order method of Burrage
fifth-order method of Cooper & Sayfy
sixth-order method of Cooper & Sayfy.

5.3.1. Linear Kramarz problem. Table 5.3 presents results for these sequential methods and
for our PDIRKN methods when applied to the Kramarz problem (5.2). In most cases, the PDIRKN
methods are by far the most accurate ones. Notice that the CSg method does not show its order 6 in
the high accuracy range. This is caused by an insufficient accuracy of the method parameters

Table 5.3. Values of NCD and M for problem (5.2).

Methods p s* k M=25 M=50 M =100 M =200
Ngrsett3 3 2 1 2.1 3.0 3.9 4.8
SFBj3 3 2 1 1.8 2.7 3.6 4.5
B3 3 4 1 1.2 2.1 3.0 3.9
II- Radau TA 3 3 2 2.4 3.3 4.2 5.1
Ngrsett4 4 3 1 2.8 3.8 4.9 6.1
SFB4 4 3 1 3.2 4.5 5.7 6.9
IT - Gauss-Legendre 3 2 4.0 5.4 6.7 8.0
CSs 5 1 4.1 5.6 7.1 8.6
II - Radau ITA 5 4 3 5.1 6.8 8.5 10.0
CSg 1 5.5 7.0 8.4 9.0
Il - Gauss-Legendre 6 4 3 4.6 6.7 8.8 11.0
II - Radau TA 7 5 4 5.4 8.1 10.8

Il - Gauss-Legendre 8 5 4 5.2 7.7 10.1

5.3.2. Linear Strehmel-Weiner problem. In [18] we find the following linear, stiff problem:

-20.2
(5.3) y'(t=| 7989.6
9.6

with exact solution

0 -9.6
-10000 -6004.2 |y(t) +
0 -5.8

150cos(10t)
75co0s(10t)
75co0s(10t)

], 0<t<100



cos(t) + 2cos(5t) - 2cos(10t)
y(t) =| 2cos(t) + cos(5t) - cos(10t) |.
-2cos(t) + cos(5t) - cos(10t)

Unlike the Kramarz problem, this problem has slowly and rapidly oscillating solution components
(nonstiff and stiff solution components) which are appearing with comparable weights. This implies a
severe test for the PDIRKN methods because of the strong damping, and therefore inaccurate
approximation, of the stiff solution components. In spite of that, they are generally superior to the

sequential methods.
Table 5.4. Values of NCD and M for problem (5.3).
Methods p s* k M= 100 M =200 M =400 M =800
Ngrsetts 3 2 1 1.1 2.0 2.9 3.8
SFB3 3 2 1 0.8 1.7 2.6 3.5
B3 3 4 1 0.3 1.1 2.0 2.9
II - Radau ITA 3 3 2 1.4 2.3 3.2 4.1
Ngrsetty 4 3 1 1.2 2.5 3.8 5.0
SFBy4 4 3 1 2.3 3.4 4.7 5.9
II - Gauss-Legendre 2 3.1 4.9 6.7 7.3
CSs 5 1 3.0 4.5 59 7.4
II - Radau ITIA 5 4 3 4.9 6.6 7.6 9.0
CSe 6 1 3.6 5.5 7.5 8.2
IT - Gauss-Legendre 6 4 3 3.2 53 7.4 9.4
II - Radau TA 7 4 3.9 6.6 9.4 10.0
- II-Gauss-Legendre 8 4 4.4 6.5 8.8 10.0

5.3.3. Nonlinear Strehmel-Weiner problem. In [18] we also find a nonlinear, stiff problem:

¥"1(1) = 71(2) - y2(1)3 + 6368y(t) - 6384y(t) + 42cos(10t),

(5.4)

¥"2(0) = -(Y1(0) - y2(1))3 + 12768y,(t) - 12784y,(t) + 42cos(10t),

,0<t<10
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with exact solution y(t) = y2(t) = cos(4t) - cos(10t)/2. Table 5.5 demonstrates that the PDIRKN
methods similarly compare with the sequential methods as for the linear Kramarz and Strehmel-

Weiner problems.
Table 5.5. Values of NCD and M for problem (5.4).

Methods p s* k M=100 M=200 M =400 M =800
Ngrsetts 3 2 1 2.9 3.9 4.8 5.7
SFB3 3 2 1 2.7 3.6 4.5 5.4
B3 3 4 1 23 3.6 5.2 6.2
II - Radau TA 3 3 2 3.3 4.1 5.1 6.0
Norsetty 3 1 3.0 4.2 5.3 6.5
SFBy4 4 3 1 3.7 4.9 6.1 7.3
Il - Gauss-Legendre 4 3 2 4.8 6.1 7.4 8.7
CSs 5 5 1 4.9 6.4 7.9 9.4
II - Radau ITA 5 4 3 5.8 7.6 9.4 11.1
CS¢ 6 5 1 5.9 7.6 9.2 9.9
II - Gauss-Legendre 6 4 3 55 7.6 9.7 11.8
II - Radau ITA 7 5 4 6.4 9.0 11.6

II - Gauss-Legendre 8 5 4 5.8 8.2 10.6

5.3.4. Fehlberg problem. An often used test problem is the orbit equation (cf. [7])

2y, (1)
y'®= '4t2}’1(t) -
Y120 + y52(0)
(5.5) ,Vm/2 <t<3m
2y1(®

¥'9(0) = -4t2y,(t) +

V7120 + y,2()

with the exact solution y;(t) = cos(t2), ya(t) = sin(tz). In this experiment, the sixth-order method of
Cooper & Sayfy can compete with the PDIRKN method of order six.
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Table 5.6. Values of NCD and M for problem (5.5).

Methods p s* k M=98 M =196 M =392 M =783
Ngrsetty 3 2 1 0.9 1.8 2.7 3.6
SFB3 3 2 1 0.6 1.5 2.4 3.3
Bj 3 4 1 0.2 0.9 1.9 2.7
IT - Radau ITA 3 3 2 0.9 2.0 2.9 4.0
Ngrsetty 3 1 0.7 1.5 2.7 4.0
SFB4 4 3 1 1.2 2.4 3.6 4.8
Il - Gauss-Legendre 4 3 2 1.7 3.2 4.5 5.9
CSs 5 5 1 1.7 3.1 4.7 6.2
II - Radau IA 5 4 3 2.1 3.8 5.6 7.3
CSs 6 5 1 1.9 3.5 53 7.1
IT - Gauss-Legendre 6 4 3 1.2 3.1 5.1 7.2
II - Radau ITA 7 5 4 1.1 33 5.9 8.5
IT - Gauss-Legendre 8 5 4 1.1 3.2 5.6 8.0

5.3.5. Semi-discrete partial differential equation. Consider following initial-boundary-
value problem (see [11]):

92u 4n2u2 92u

5.6 =
(5.6) ot2 1+2x—2x28x2+

4n2u[ 4 cos2(2nt) - 1], 0<t<1, 0<x<1,

with Diriclet boundary conditions and exact solution u = (1 + 2x - 2x2) cos(2nt). By using second-
. order symmetric spatial discretization on a uniform grid with mesh Ax = 1/20 we obtain a set of 19
ODEs. Table 5.7 shows that the PDIRKN methods are at least competitive and often more efficient
than the sequential methods of the same order (notice that in Table 5.7 the " * " indicates bad
convergence in the Newton iterations ).
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Table 5.7. Values of NCD and M for problem (5.6)

Methods p s*¥ &k M =200 M =400 M =800 M = 1600
Ngrsett, 3 2 1 35 43 5.1 59
SFBj3 3 2 1 3.6 4.5 54 6.3
B, 3 4 1 * 43 54 6.4
II - Radau ITA 3 3 2 3.7 5.1 6.0 6.8
Ngrsett, 3 1 3.4 4.2 5.2 59
SFB4 4 3 1 5.5 6.4 7.6 8.8
II - Gauss-Legendre 4 3 2 50 6.3 7.8 9.2
CS, 5 5 1 4.0 5.3 6.6 1.7
II- Radau IIA 5 4 3 4.2 5.2 6.3 7.7
CSg 6 5 1 3.1 44 55 6.9
II - Gauss-Legendre 6 4 3 3.8 4.7 6.2 8.1
II - Radau ITA 7 5 4 * 4.7 6.0 8.5
IT- Gauss-Legendre 8 5 4 3.6 4.4 55 7.0

6. Concluding remarks

In this paper, we have shown that diagonally implicit iteration of fully implicit, pth-order RKN
correctors leads to parallel DIRKN methods of order p with relatively few sequential stages. For
Radau ITA and Gauss-Legendre correctors, the iteration parameters are determined in such a way that
the methods are A-stable, strongly A-stable or L-stable. Numerical experiments clearly demonstrate

the superiority of the parallel methods over the sequential SDIRKN methods available in the
literature.
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A. Appendix

A.l. Indirect collocation-based Runge-Kutta-Nystrom methods
By writing (1.1) in the first-order system of ODEs form and by applying Runge-Kutta methods with Butcher

array,

A

IdT

we get indirect Runge-Kutta-Nystrom methods with following Butcher array:

A2

dT&
ar
A.2. Butcher arrays of indirect collocation-based Runge-Kutta-Nystrom methods
For completeness, we give the Butcher arrays of the indirect RKN methods generated by Radau IIA and Gauss -

Legendre RK methods of two, three and four stages together with corresponding vectors o and B (see (2.3)), for the
stiffly accurate Radau IIA methods o = ekT.

A.2.1. The indirect Radau ITA Runge-Kutta-Nystrom method with k = 2

0.333333333333 0.111111111111 -0.055555555556
1.000000000000 0.500000000000 0.000000000000

0.500000000000 0.000000000000
0.750000000000 0.250000000000

with B = (-4.500000000000, 2.500000000000)T

A.2.2. The indirect Gauss-Legendre Runge-Kutta-Nystrom method with k = 2

0.211324865405 0.041666666667 -0.019337567297
0.788675134595 0.269337567297 0.041666666667

0.394337567297 0.105662432703
0.500000000000 0.500000000000

with B = (-16.392304845413, 4.392304845413)T
a = (-1.732050807569, 1.732050807569)T



A.2.3. The indirect Radau ITA Runge-Kutta-Nystrom method with k = 3

0.155051025722 0.021835034191 -0.019857254099 0.010042630197
0.644948974278 0.177190587432 0.038164965809 -0.007375963530
1.000000000000 0.318041381744 0.181958618256 0.000000000000
0.318041381744 0.181958618256 0.000000000000
0.376403062700 0.512485826188 0.111111111111

with B = (5.531972647422, -7.531972647422, 5.000000000000)T

A.2.4. The indirect Gauss-Legendre Runge-Kutta-Nystrom method with k =

0.112701665379 0.011111111111 -0.008288518805 0.003528240383
0.500000000000 0.102402546475 0.027777777778 -0.005180324253
0.887298334621 0.218693981839 0.163844074360 0.011111111111
0.246471759617 0.222222222222 0.031306018161
0.277777777778 0.444444444444 0.277777777778

with B = ( 1.666666666667,
o = (32.909944487358, -16.000000000000, 7.090055512642)T

-1.333333333333,

1.666666666667) T

A.2.5. The indirect Radau ITA Runge-Kutta-Nystrom method with k = 4

0.088587959513 0.006728344412 -0.006260584380 0.006465233729 -0.003009080475
0.409466864441 0.068145660054 0.020150312614 -0.007623261099 0.003158844969
0.787659461761 0.155303251991 0.142674406078 0.013937669505 -0.001711613723
1.000000000000 0.200931913739 0.229241106360 0.069826979901 0.000000000000
0.200931913739 0.229241106360 0.069826979901 0.000000000000
0.220462211177 0.388193468843 0.328844319980 0.062500000000

with B = (-6.923488256444, 6.595237669626, -12.171749413180, 8.499999999998)T

19



A.2.6. The indirect Gauss-Legendre Runge-Kutta-Nystrom method with k = 4

o = (-54.681428514064, 26.155201475250, -22.420557316693

10.946784355507)T

0.069431844203 0.004038191451 -0.003295860945 0.002644782952 -0.000976722963
- 0.330009478208 0.043563580902 0.013818951406 -0.004340134194 0.001410729739
0.669990521792 0.105864352634 0.106518360965 0.013818951406 -0.001758015359
0.930568155797 0.148798496193 0.198470498852 0.081671359796 0.004038191451
0.161851320862 0.218465536295 0.107607041136 0.012076101706
0.173927422569 0.326072577431 0.326072577431 0.173927422569

with B = ( -1.640705321739, 1.214393969799, -1.214393969799, 1.640705321739)T

20



