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Error Analysis for the One-Dimensional Convection-Diffusion
Equation
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Our aim is to derive uniform error estimates for a class of Petrov-Galerkin
mixed finite element methods for the one-dimensional convection-diffusion equa-
tion. In this we are only partially successful. We obtain such estimates for the flux
of the solution, but not for the solution itself. However, we can obtain uniform
error estimates for the difference between our discrete approximation and a prob-
lem dependent projection of the solution. In fact we get an estimate for the average
of the absolute value of that difference in a cell. As the projection is close to the
normal L2(Q)-projection for all mesh cells where convection and diffusion are of
the same order of magnitude, this shows that local singular perturbation does not
have a global effect. To aid in the above analysis we prove several theorems on the
regularity of the continuous problem.
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1 Introduction.

In this paper we give a general technique to obtain a discretisation scheme for the one-
dimensional convection-diffusion equation starting from Raviart-Thomas[1] or Brezzi-Douglas-
Marini[2] type elements. The technique can also be applied in two or more dimensions. The result-
ing schemes are equivalent to the schemes based on transformed variables (ca. d Slotboom vari-
ables in semiconductor context) introduced by Brezzi, Marini and Pietra[2] but without the
Lagrange multipliers used in the latter schemes. The purpose of this paper is to give an error
analysis for such schemes that yields information on their local accuracy. For this purpose we adapt
the technique used by Douglas and Roberts[4]. Our analysis differs in following two respects from
the approach by O’Riordan and Stynes[5-10] or the approach by Reinhardf{11]. One: it deals with
mixed finite elements as opposed to finite elements. And two: it attempts to deal with problems with
localised singular perturbation. This last aspect is very important for semi-conductor problems,
where we find such a situation in the continuity equations for the charge carriers. In that case the
convection is given by the electric field. Singular perturbation may occur around junctions between
differently doped materials, where very localised and very large electric fields can appear. We
analyse the model equation,

—(auw'—bu)y=f on Q, (1a)
on the domain £=(0,L) with homogeneous boundary conditions,
u0) = u(L) =0. (1b)

Note the absence of a zero order term. In this respect our analysis is less general than that of the
approaches of Stynes and O’Riordan and Reinhardt. Our analysis makes use of the regularity of the
continuous problem and its adjoint. We take the adjoint problem to be
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—(@)Y+bv)=F on Q, (22)
with homogeneous boundary conditions,
v©0) =v(L)=0. (2b)

We proceed as follows. To derive error bounds for the discrete problem, we need to know the
regularity of the solution of (1), upper bounds on the norm of the solution of (1) and upper bounds
on the norm of the solution of the adjoint problem. In section 2, we discuss the regularity of prob-
lem (1) under the condition that b/a is strictly positive. Section 3 derives upper bounds for the
norm of the solution of the adjoint problem. In section 4 we describe the discretisation. Section 5
derives special estimates for projections of the solution of the adjoint problem that are needed later.
Section 6 uses the results from the sections 2 to 4 to derive a priori error estimates. In section 7 we
give our conclusions.

2 Regularity of the problem.

We formulate a theorem on the regularity of problem (1), which gives general formulas for the
solution u of (1) and its flux 6= —(au’—bu). We postpone its proof to sections 2.2 and 2.3. In sec-
tion 2.1 we recall some facts concerning differentiation and integration needed in the proof of this
theorem.

Theorem 1.

We assume that,
1 P |
2 eErrgQ), msxuéfsz 2 >0, (3a)
beLiR), ess igfn b >0, (3b)
1l Liw,rsa, (30)
4 q r

FEWRI(Q), (3d)

where

essinf f = —esssup —f =-

x€E

w, /),

inf )
MC2,\M=0x€
with A the Lebesgue measure on R.
Note that (3b) implies % € L*@).

Under the conditions (3a-d), equation (1) has a unique solution u € W"!(Q) and

Null @ < 11/b]| L=@ IIf]l '@ » (4a)
lullwe@ < @+|1b/allv@) 1/l =@ I/l @ + l|1/a|| v |Ifll Ve (@b)
loll =@ < lIfll v » (40
lellw @ < LIfllve + Ifllwa) - @4d)
Moreover, if we introduce '
X

_ b(®)
x) = dt , 5
76 'io a0) )

7
— Yt

s = [ LU 4 ©

then the functions  and S are well-defined and the solution and the flux have the following abso-
lutely continuous representations,



u(x) = ML[

SO.L) S, L)SO0,x)f(y) dy + , i . SONSx,LYY) dy| , 0]

=X

—o(x) = a(x)u'(x) — blx)ulx) = ®

L X
1 1
50.D), ix SGLIV & — 50, D, / SO & -

The above results stay valid as long as a and b are of fixed sign and are bounded away from zero.
Section 2.1 recalls some important facts concerning the integration and differentiation of Lebesgue
integrable functions. In section 2.2 we use the Green’s function for (1) to derive the formulas for the
solution and the flux. In section 2.3 we prove the rest of the theorem.

2.1. Facts on integration and differentiation of Lebesgue integrable functions.

In preparation for our proof of theorem 1, we recall some facts concerning the integration and
differentiation of Lebesgue integrable functions. We recall the definition of weak differentiability
and the definition of the Sobolev space W*P(Q). We assume that  is a bounded interval.

Definition 1.
Let the absolute value of u be integrable on compact subsets of £. A function v, whose absolute
value is integrable on compact subsets of £, is called the k™ weak derivative of u if it satisfies,

d*¢

dp= (D u—dp V $ECF®Q).
édwu ( )gudxkn ¢ €CF Q)
Cf. section 1, chapter 2 [12].

Definition 2.
The Sobolev space WkP(Q) is the space of I7({2) functions for which all weak derivatives up to order
k are 17 () functions. We use the following norm on this space,

1/p

k dji
Al wea = Ilfll’i'(n)+2l I k@| ¥V fEWP®.
j:
Cf. section 1, chapter 2 [12].
Definition 3.

A real-valued function f defined on a closed bounded interval © is said to be absolutely continuous
— n
on { if, given ¢ > O, thereis a & > 0 such that > | f(y;))—f(x;)| < ¢, for every finite collection of

i=1
n
non-overlapping sub-intervals { (x;y;) }7=1 of € with X |y;—x;| < 8. Cf. section 4, chapter 5
i=1
[13].
Theorem 2.

A function F is an indefinite integral if and only if it is absolutely continuous. Theorem 13, section
4, chapter 5 of [13].

Theorem 3.

Every absolutely continuous function F is the indefinite integral of its derivative F” and if f is an
integrable function on £,

Fo) = FO + [ fOa,

then F’(x)=f(x) for almost all x in Q. Corollary 14, section 4, chapter 5 and Theorem 9, section 3,
chapter 5 [13].



Lemma 1.

If f and g are absolutely continuous on £, then fg and exp(f) are absolutely continuous.
Proof.

Consider the condition

3 1809 —fee)| < e

Continuous functions on a closed interval are bounded, so f and g are bounded. Take
M=max(||f|| L), || g || L=(@))- Now there exists by definition a & such that, for every finite collec-
n

tion of non-overlapping sub-intervals { (x;,y;) }7=1 of @ with >} |y;—x;| < 8,
i=1
S100=Fe)] < 57 and 3 1500-8e)| < 337 -
This implies that
3100 —/50)| < 3 800 e +8C D) -8 G| <
30150050 + ZM1Sp) )] < <.

Moreover, there is a & such that, for every finite collection of non-overlapping sub-intervals
n

{ (x,-,y,-) }:":1 of Q With 2 |y,--—x,~| < 8,
i=1

gn:] [fO)—f(x)]| < eexp(—3M).

In that case,
S lexp(f0) ~exp(fi)| <
Sexp(f0x)) f00) ) | expll 0D =) < .
O
Theorem 4.

Let @=(§n) be a bounded interval of R. Let C§(Q) be the space of all C*() functions with a
compact support in Q, Let W3*(Q) be the closure of CP (2) in W*P(R). All elements of W?(R),
where 1 < p < oo, are absolutely continuous. Cf. page 148 [14]

Proof.

We prove this to get an idea of the character of the space in question. For each 1 € W}?(Q) there is
by definition a Cauchy sequence { #, }32; C CP (), that converges to ¢ in the W*?(Q)-norm. We
denote the first derivative of a function g by g’. We have, #,—¢ in L?(Q) and z,’—¢' in LP(R), so, if
we define
X X
T,)= [ /p)dy and T(x) = [ t()dy for x €Q,
r=¢ r=¢
then for all elements of the sequence { ¢, }, we have £, = T, and theorem 3 implies that
1£—T"||v@ = 0.

Moreover, for a given n,



lt—Tllre < llt—tllve + 1 Ta—Tllre

SO
X

lt—Tlre < lt—tllve + ff("* DY lve < 11— tllve + =94 |lre <
y:

A+n=9|[t—ta || wecg) -

This holds for all n, so ||t—T||Lr(n)—0 This proves that ¢ is the mdeﬁmtc integral of #’. By
theorem 2 this implies that 7 is absolutely continuous. []

2.2. The derivation of expressions for the solution and the flux.

We derive the expressions (7) and (8), we show that these functions satisfy (1), and we prove
the statement about absolute continuity from theorem 1. We proceed as follows. In theorem 5 we
construct the Green’s function[15, 16] of (1) and use this to derive (7) and (8). We then substitute (7)
in (1) and use theorem 3 to show that (7) and (8) satisfy (1). Absolute continuity of (7) and (8) is
shown to follow from theorem 2. First we show that ¢ is well-defined.

Lemma 2.

If (3a-d) hold, then the function ¢, defined by (5) is an absolutely continuous function on £ and its
derivative {/(x) lies in L"({2) and is equal to b(x)/ a(x).

Proof.

The Holder inequality implies that

Ifgllve < Ifllvellgllve - ®

for all p,q,r €[1,00] with }}—+ -;1]- = -,17 For superscripts of L7({2) spaces only, we use the convention

that 1/0=oc0 and 1/00=0. We assumed that %EU’(Q),b € LI(R), so, according to (9)

b/a € L'(8). According to theorem 2, ¢ is absolutely continuous. Theorem 3 implies that ¢/ = b/a
in almost all points of Q. O

Theorem 5.
Assume (3a-d), take ¢ as in (5) and S as in (6). If f € L!(Q) then the function » defined below is a
solution of the equation (1) with right hand side f and with homogeneous boundary conditions.

1
ux) = [ LGN D (10)
y=
with
G(x,y):= _TS%ﬂL_))l [0(y x)S,L)S(0,x) + 6(x—y)SO,»)S(x, L)] (€9))
where @ is the Heaviside function,
0if z <O,
0(z) = % if z=0, (12)
1ifz>0.

Proof.
We see immediately that G € C([0,L]X[0,L]). We use theorem 3 and the chain rule to derive (8)
from (7). According to the chain rule and theorem 3,

=) oy L -1
W) = 200" @+ TeseDn), ] f SO.L)G) dy a(x)s((, D, f SO0 &, (13

equation (8) follows immediately from (13) and the definition of the flux. Absolute continuity of the



solution constructed with the aid of the Green’s function follows from theorem 2, lemma 1 and
equations (7) and (8). We see immediately that u satisfies the homogeneous Dirichlet boundary con-
ditions. When we apply theorem 3 to equation (8), we find, 0’(x) = f(x). O

See also the books by Roach and Yosida[15, 16].

2.3. Upper bounds on the norms of the solution and the flux.

We complete the proof of theorem 1 by proving that (1) has a unique solution in W*!(Q) and
deriving the upper bounds on the norm of the solution and the flux from (7) and (8).

First we verify uniqueness of the solution as follows. Suppose (1) has two solutions
u1,u; € WiP(Q) for a given f. This implies that wy = u, —u, € WHP(Q) is a solution of (1) with
J = 0. Now by definition,

((exp(—¥)wo),aexp(¥)¢) = 0 V ¢ ECF®),

so (exp(—¥)wp)" = 0. According to theorem 4, the function wy is absolutely continuous and accord-
ing to lemma 1 the function exp(—y) is absolutely continuous, theorem 3 now implies that
exp(—y)w is constant. The only wy, € W} (R) that can give this result is wy = 0.

Before we can derive upper bounds on the norms of (7) and (8), we need to derive some
bounds on S(§,7).

Lemma 3.
Assume (3a-d) and take ¢ as in (5). Let S be the function on X Q defined by (6). Then S(0,x) and
S(x,L) are absolutely continuous functions. If 0 < § < § < 7 < 7y < L then

0 < S¢Em) < So,m), (19
and

SEm < (167" || L= (exp(—¥(€) — exp(—¥(m) - 15

Proof.
From (32, b) and the positivity of the integrand (14) follows immediately. From (6) it follows that

T’ — —
sem = | b(‘x) A (1)

We see, that (—exp(—y))’ = exp(—y¢) > 0, so
n — —
SGn) < 1167l [ BN e ax

As exp(—¥) is absolutely continuous according to lemma 1, we find from theorem 3 that

n
] (X HON@) dt = exp(—y(m)—exp(—9(6)

O

Next, we can prove the inequalities (4a-d). We assume that (3a-d) hold. Application of (14) to (7)
yields the following upper bound on u,

exp((x)S(x,L)S(0,x) ANl L
SQ,L) Lo

lu@)| <
We use (14) and (15) to write this as,

luG)| < 1170 @ I/l vy -

This proves (4a). Now (4b) follows immediately from (13). Next, we derive (4c). From (14) and (8)
an estimate for o follows immediately:



|aG)u'(x)—bx)ux)| < ||fll V'@ -
And (44) follows from (4c) and the fact that (1) implies o’ = f.

3 The adjoint problem.

First, we derive a Green’s function for (2). Then we give expressions for the solution and the
flux of (2). Finally we derive upper bounds on the norms of the solution and the flux. The following
theorem accomplishes our first two goals.

Theorem 6.
Assume (3a-d), take ¢ as in (5) and S as in (6). If F € L'(2) then the function v defined below is a
solution of the equation (2) with right hand side F and with homogeneous boundary conditions.

vex) = 6)
x L

| [ S LISONpUONFO) + [ SOx)S0,LYespGONFOIy| -

SO.D |2, . L

X

Proof. _

The Green’s function for the adjoint problem (2) is given by, G(x,y) = G(»,x). See also Roach or
Yosida[15, 16]. According to theorem (2) v is absolutely continuous on [0,L], so v(0)=v(L)=0.
Moreover,

(%) = —a(xV'(x) = an
x L

—SPCAE) | [ 50)exp@ONFOMY + [ SG,LexplONFOI| -
S(O;L) y=0 y=x

And by differentiation of integrals, 7(x) = —%T(x) + F(x). This in turn implies that v

satisfies the adjoint problem. O
It now remains to give upper bounds on the norms of the solution and the flux.

Theorem 7.
Assume (3a-d), take ¥ as in (5) and S as in (6). Assume F € W5'(Q). Now (2) has a unique solution
v € W"!(@). The solution v and the corresponding flux , defined by * = —av’, have the following
properties:

il ve@ < [11/0]| @ | Fll L') » (18a)
[11/6]] =@
vllw@ < |LII1/b]| =@ + 1+__——S(O,L) N17allve [ FIl V@ > (18b)
[|178] L=
oy < |1+— L@ o . 1
Il =@ < |1 SO,0) 1l v (18¢)

Moreover, the solution and the flux are absolutely continuous.

Proof.

The solution is unique, because if it is not, then (2) with F = 0 has a non-trivial solution in
W¢'(Q). This in turn would imply that there is an absolutely continuous wy such that

(awy) +bwy’ = 0 on @,
wo(0)=wo(L)=0.
According to theorem 1 there is a unique absolutely continuous v € W{1(R) such that
(av'—bv) = wy .

But this implies that



(wo,wo) = Wo, (@' —bv)) = —(wo',av'—bv) = —(awo',v)+(bwy',v) .
We use the definition of weak differentiability to write this as,
(wo,wo) = ((awo) +bwy',v) = 0.

This implies that wy=0. Absolute continuity of the solution constructed with the aid of the Green’s
function follows from theorem 2, lemma 1 and equations (16) and (17). Uniqueness of the solution
implies that we may derive upper bounds on the norm of the solution and the flux from the previ-
ously given expressions. We proceed as follows. Application of (14) and (15) to (16) yields the fol-
lowing estimate for v,

[vx)| < ||176] =@ || F | v -

This proves (18a). The inequality (18b) follows immediately from (17). Next, we derive the (18c).
From (14) and (17) an estimate for 7 follows immediately:

157 =@

laxy'(x)| < SO,1)

1+ IFl v -

O

4 The discretisation.

We construct a Petrov-Galerkin mixed finite element discretisation. Qur derivation uses trial
spaces ¥, and W, that are defined as the ranges of the projections I,:V—V} and P,:W—W,,
where we take ¥ = W"!(Q) and W = L!(R). This approach was first used by Raviart and Tho-
mas[1] and Fortin[17]. Our test spaces are derived from the trial spaces by multiplication with an
exponential function. The final result will be equivalent to the standard mixed finite element discre-
tisation for the symmetrised form of the equation but the special derivation allows us to obtain
better a-priori error estimates. We proceed as follows. First we give conditions on the projections P;,

and II;. We show that these conditions guarantee that :gc——(V,,) = W,. Next we give an example of

such projections. Finally we derive the discrete scheme and verify that the resulting discrete prob-
lem has a unique solution.

4.1. The projections onto the trial spaces for the solution and its flux.

As mentioned earlier, we derive our trial spaces from projections P,:W—W and II,:V—V.
We assume these projections have finite dimensional ranges and satisfy the following conditions:

(S:Pht) = (P[,S,t) v st € w s (19)
and
d _d
Phdxv_ de'I,,v Vvevy, (20a)
ILv@Q) =v(00) VvEV. (20b)

We define our approximation spaces as follows. We set ¥, = #(I1;) and W, = R(P,).

Theorem 8.
The map Tj—x—:wl"(ﬂ)-e L!(®) is continuous and surjective.

Proof.
Continuit?' follows immediately from the norms on these spaces. The map is surjective because, for
all f€ L'(Q), theorem 2 shows that the function F, defined by

F(x) = ff(y)a)r for x €Q,
y=0

-8-



is an element of W'!(Q) with derivative f. O

Corollary 1.
The map é—i—: Vi— W}, is surjective.
Proof.

From (20) it follows that the image of ¥} under % lies in W}. From theorem 8 and (20) it follows

that the image is in fact equal to W,. O
The above use of projections can be found in [1, 17].

4.2. An example of a set of trial spaces.

An example of a set of spaces and projections that meet these criteria are the lowest order
Raviart-Thomas spaces with the projections given in [1]. For the one dimensional case, this simply
means that the image of a function under II, is obtained by linear interpolation between the values
in mesh nodes and for P, the image is obtained by taking cell-wise averages. Now ¥, is the space of
continuous functions that are linear on the mesh cells and W}, is the space of functions that are con-
stant on mesh cells.

4.3. The discrete scheme.

We construct a Petrov-Galerkin mixed finite element method as follows. We take ¥, as trial
space for 6. As test space for o we take X,=exp(—y)V;. For u we take W, as test space and
Y, =exp)W, as trial space. Here ¢ is defined as in (5). We define projections onto X, and Y;.

Oy = exp(— )y (exp@)7) , @1
Pyt = exp)Py(exp(—)0) . 22
From (19) it follows that,
& P4t) = (exp(—$)Py(exp@)s),1) = (exp(—Y)Pu(exp()s), Pyt) = (Prs, Pyt) , @3
where 13,, is the adjoint operator of f’,,. By application of the defining formulas we find,
d b 3 d bla 5
—d;’r'l‘ ';-T,Pht = { -‘—i'x—‘l'; 1T, 7, Pyt| . 29
The continuous solution of (1) satisfies
(o,u) EVXW, (25a)
Tl _ |4, b |- 1
[o,a] dx'r—l-a'r,u 0 VseH®, (25b)
d_|_ 2
Ec-o,t =(,t) Ve L. (25¢)
Our discrete scheme has the following form.
(On,uy) E V3 XYy, (262)
Th d b
[O'h,—;] - [‘ET},‘*‘ZT],,U}, =0 V Th EX;, s (261'))
d -
[ZO},,[},} —(f;th) Vy,eWw,. (26¢)
We see that this scheme is equivalent to,
(04, Up) E Vi X Wy, , (273)



exp(— ), d
[Uh,——l')ga_—“‘h—} - [‘Zx“fh, Uh =0 v Th (S Vll N (27b)
[—;?olnth] =(f;th) A4 I € Wh . (270)

This last system has a unique solution. This can be demonstrated as follows. Suppose f=0. As o}, is
continuous, (20) and (27c) imply that o, is constant. Now take 7, =1, from (27b) it follows that
o, = 0. Now corollary 1 implies U, = 0. This completes the demonstration.

5 Properties of the projections.

In the section on a priori error estimates we shall need estimates of terms containing the
difference between a function and its projection under one of the projections introduced in the pre-
vious section. In this section we give estimates for those terms. We start by considering 7—II,7. To
do this we need the following auxiliary lemma.

Lemma 4.
If f € W(Q) then

fO-Tfx) = | o(f’ — Py(fMdy . (28)
.

Proof.
The function f is continuous and differentiable, so

f&)=10) + [ of’(y) dy .
L

Moreover (20) implies that,

W) = T + [ Bu0) & -
y=
O

Lemma 5.
If (v,7= —av’) is the solution of the adjoint equation for the right hand side F, then

[¢—I1)/a)] < |67 || =@ IF—PuF |l v ||| 2@ V £ € L) .
Proof.
We know that

L
vx) = | i G(xy)F(y) dy
y=

where G(x, ) is Green’s function for the adjoint problem. Now consider
av'(x) — exp(— Y X)L (exp)av’) .
We can write this as,
xp(—¥(0) [exp('(x) ~ Ty exp(an)]

We wish to apply the previous lemma. To do this we need the first derivative of exp(y)av’. Equation
(17) implies that

(exp()av’) = —exp(Ux)F(x) .

-10 -



We use this to evaluate the expression (Z, ('r—fI,,'r)/ a),

L x
GaTimya) = [ S2LEED | exp@)F—By(enpP) dy s =

y
L x
exp(—¥(x A
/ O—Pi—ﬂlla(x) | e —Far) dy s
This implies,
L L
e—Tuny/a) < | [ [ SR @b rg) iy | <
y=0x=y
L
folltll @ 167" | =@ | F—PyF)(p) | dy .
=
O

Next, we consider v —Pyv.

Lemma 6.
If (v,7=—av’) is the solution of the adjoint equation for the right hand side F, then

=P live < VLIUb]re I Flle - @9
Proof.

This follows immediately from ||[v—Pyv|| @y < ||v|| 1@ and (182). O

6 A priori error estimates.

We derive estimates for ||6—oy || L@y and || Pyu—u, [| w@y- We start by giving estimates
for ||o—03|| L= and ||o—0; || w ). We proceed as follows. First we show that there is a point
¢ € Q where the function 6—o, is zero, then we determine the first derivative of the function and
use this to determine the desired estimates.

Lemma 7.

Given that (3a-d) are satisfied and o satisfies (25¢) and o, is a solution of (26c), there is at least one
point £ such that (6—o0,)($)=0.

Proof.

We see immediately that exp(—y) € X;. The solution of (1) satisfies (25b), so

[_s.xnuz] ~ 0.

We know that exp(—1) and a are strictly positive and bounded from below, so there must be places
where 6—0, is negative. We know that ¢ € W"!(®) from —o’=f; and o, € V;, C W () s0 6—o,
is continuous. This implies that there is a £ such that (o— 0;,)(§) =0.

d

Theorem 9.
If (3a-d) hold and

cH = | B, £ f(f —PNP)dy | (30)

then C(f) < ||f=Puf|| L' and

-11 -



lo—oi|l =@ < C(f), (€2))
llo—onllw@ < L C(f) + ||f—Pufll v - 2

Proof.
We take ¢ to be a zero of 6—o;. We know that 6—o, € W-1(Q), so we may write,

(@—0x)—(6—on)® = | 5(0— %))y
y=

From (25) and (26) we see immediately that

(6—0rY = f—Pif .
This implies,
(0—0p)(x)—(6—04)(¢) = yzs(f —PN)y -
This implies that
lo—onll @ < f'é‘?zyzf(f —PrN)p)dy .
O

We give an estimate for || IA’,,u —uy || we@°- To derive this estimate we use the dual problem.

Theorem 10.
Under the conditions given in(3a-d),

1 Pe—w |l oy < 21157 || e + G IS~ Pifll L@

where
F—PyF|| v
= wp IHiPlre
Fel'®@ IFl L@
and
| Pru—us]| wo@ < 201671 || L@ (1 + De@) I/~ Pof |l vy »
where
|F—PyF|| v @
D)= sup lva
rew'@ || F|lwoa
Proof. :

Regularity of the adjoint problem gives us a solution (f,7= —at") of (2) for all F € L!(®). For this
solution, we see that according to (26),

(Pru—w,F) = @+Y/n,Pru—u,) = ((ﬁh"')"*"‘!/(ﬁh"')’i)hu*“h) =
(o—o;,,ﬁ,,'r/a) = (6—o04,7/a) — (a—c,,,('r—ﬁ,,f)/a) =
(6=01)>t) — (6—0,,(—T41)/a) = (f—Pufst—Pyt) — (6—03,(r— 47/ d) .
We use lemma 5 and 6 and theorem 9 to derive from this that,

|Pru—w,F)| < 2VL||F|lp@ + [|F—PuF | v@)llo ™ @ I/ ~Pfll v -
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Corollary 2. .
Assume that W, contains the characteristic functions X ) of the cells of the partition

P={0=xy < x; < x3 < -+ < x,=L }. As a direct consequence of theorem 10 and under
the same conditions, we find

[| Pu—up || L' (gx,orx)
X —Xi—1

< 2||67 | @ I~ Pfll vy - (33)

Proof.
We prove this as follows. For F in the proof of theorem 10, take F = exp({)X(s,_,,x)- According to
the Riesz representation theorem L'(2) = L*(Q). We find,

|| exp@¥) || L'(x,_., ) || €XP(— IPU =) || L2(xrxpy < (34
2|15 | =@ Il exp@) || L'(cxrey 1~ Paf Il L'y -

We see immediately that,

0 < (g—Pigg—Pug) = gl — IPgll b -
This implies that,

” exp(‘P) ” i‘((xl—hxl))
1 = .
Nl exp) || L'cesx) s

We apply this to (34) and find,

Il exp@) || L'cx,-0ox) ~

. —x || exp(—¥)(Pu—up) || L=(x, o)) <
i i—1
2/157 | L@ Il exp@) || L'(cxopey If ~ Paf Il L'y -
This implies,
Il exp@) || ' ¢xox) - _ ’
X—x; Il exp(— )Pt —up) || L5,y < 211671 || Loy LS~ Pf |l v’y -
1 11—

Which in turn implies that

| Pu— 4 || L5, x9) _

po—— < 2|67 1@ If—Buf Il @) -
i i—1

O

7 Conclusions.

We see that the accuracy of the solution of the problem with homogeneous Dirichlet boundary
conditions is entirely determined by two factors. One being the accuracy of the approximation of
the right hand side f by P,f and the other being the quality of the approximation of F € wk(Q) by
P,F. As mentioned in the introduction, in the semi-conductor continuity equations the convection is
given by the electric field. Singular perturbation may occur around junctions between differently
doped materials, where locally very large electric fields can appear. From the uniform L%({) error
estimate for the total error in the flux in theorem 9 it follows that local singular perturbation on the
approximation has no influence on the error in the flux. In corollary 2 we get a uniform cell-wise
estimate for the discretisation error with respect to a problem dependent projection that is close to
L%(R) projection on cells where the convection does not dominate the diffusion. The main problem
that must be faced when extending this analysis to two or more dimensions, is the derivation of a
useful estimate for ||o—a||.
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