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1. Introduction

In 1978 Gosper [6] published an algorithm for indefinite summation of terminating hypergeometric
series. Procedures incorporating this algorithm are for instance included in the standard library
of Maple V [3]. Recently Zeilberger [13], [14] showed that definite summation of terminating
hypergeometric series can often be reduced in an algorithmic way to Gosper’s indefinite summation.
He wrote a long Maple procedure implementing his algorithm and he kindly made available his code
to all interested people. See [4] for some Maple output produced by this procedure. Zeilberger’s
algorithm turned out to have a g-version, for which Zeilberger wrote a less widely distributed Maple
procedure.

The author [7] wrote a critical survey paper about Maple’s potential to handle hypergeometric
series. There he also briefly described Gosper’s and Zeilberger’s algorithms. It is the purpose of the
present paper to describe these two algorithms as well as their g-versions in a very rigorous way.

A companion to this paper are two Maple V procedures, called zeilb and gzeilb, implement-
ing the Zeilberger and g-Zeilberger algorithm, respectively. These procedures are highly rewritten
versions of the original procedures written by Zeilberger. It is the intention that this Maple code
matches the rigor of the present paper. Thus the present paper together with the source code should
convince the reader that the output produced by the procedures can be trusted. Furthermore, in-
put and output are arranged in such a way that evaluation formulas of terminating hypergeometric
or g-hypergeometric series as given in Bailey [1] respectively Gasper & Rahman [5] (in particular
Appendix II) can be compared very easily with the results appearing on the computer screen.
Those who are interested to inspect, test or use the code can request for it by sending email to
thkQ@fwi.uva.nl. :

One warning is appropriate. At the moment that this manuscript had to be finished, not yet
enough time had been available for heavy testing of the procedures. It can be expected that the
procedures will gradually be further developed, on the one hand by fixing some (hopefully minor)
bugs, on the other hand by enlarging their scope such that more results in the formula books will

become available by computer verification.
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The contents of this paper are as follows. In section 2 the idea of Zeilberger’s algorithm
is explained by a simple example. Section 3 describes Gosper’s algorithm, section 4 Zeilberger’s
algorithm and section 5 the g-versions. Finally section 6 provides the help information for the
functions zeilb and qzeilb. '

Definitely not included in this paper is the theoretical background concerning holonomic sys-
tems (cf. Zeilberger [12] and Cartier [2]) and further generalizations of the method of Zeilberger’s
algorithm (cf. for instance Petkov3ek [10] and Wilf & Zeilberger [11]).

A slightly shortened version [8] of this paper was submitted to a Conference Proceedings. The
present version of the paper will be regularly updated together with the Maple procedures zeilb
and qzeilb.

Acknowledgements. I thank Doron Zeilberger for sending me his preprints and the source codes of
his Maple procedures. George Gasper provoked me to use Minton’s summation formula as a testing
case. André Heck was always very helpful in answering questions about Maple. The piece of code
in zeilb where Grébner basis techniques are used for rewriting the system of linear equations was
provided by him.

2. A simple example
Consider the Chu-Vandermonde summation formula

(=n)e (B) _ (c=b)n
2 Fy (—n,b;¢;1) _Z O - . T 0,1,2,..., (2.1)
and its special case for ¢ 1= —n:
Z(b)" (b+1)", n=01,2,.... (2.2)

Here the shifted factorial is defined by

I‘(a.+ k)

(a)k = —"—IT(k—)'—, k€Z. (2.3)

In identity (2.2) there is an arbitrary upper boundary n for the summation, while the summand
is independent of n. We call it indefinite summation. Verification of (2.2) is straightforward by
checking that

(b + 1)n (b + 1 11.--1 (b)n

o - (n-]_)' = b n:1,2,...;

(6+1)o _ (8)o

T TR (2.4)

However, in identitity (2.1), the summand depends on the upper boundary n of summation.
There would be no explicit evaluation for an arbitrary upper boundary m. It works just for upper
boundary n or for any upper boundary m = n,n+1,... or oo (since the terms in (2.1) with k > n
vanish). So n is a natural upper boundary for the summation. We call this definite summation.
Observe also that verification of (2.1) is not as straightforward as was possible for (2.2) by means
of (2.4).

In fact, we can find an indefinite surnmation formula which implies (2.1). Put

Z(n) := Y A(n,k), (2.5)
k=0



where
(=n)e (B)e
k) := bt .
An, ) = S (26)
We want to prove that
z(n) = (C - b)n/(c)n ) (27)
or equivalently, that £(0) = 1 and
B(n)+o(n)E(n-1)=0, n=1,2,..., (2.8)
where
__c— b+n-1
a(n):= e aol (2.9)

Now the indefinite summation formula

m

> (A(n, k) + o(n) A(n — 1, k))

k=0

- (= + Dm (B)m+1
(c+n—-1)(c)mm!

(2.10)

can immediately be proved by checking that

(—n+ )m (0)m41 _ (—n 4 1)m_1 (b)m
(c+n—-1)(c)mm! (c+n-1)(c)m-1(m—1)!

= A(n,m)+ o(n) A(n-1,m), m=12,...,

(2.11)

and
('—n + 1)m (b)m+1
(c+n—1)(c)mm!

= A(n,0) + o(n) A(n — 1,0). (2.12)

m=0

(Note that, in (2.6), (2.9), (2.10), (2.11) and (2.12), n can be arbitrarily complex. It can be
considered as a parameter, just as b and ¢.) Now (2.10) for m = n yields

n

n n—1
Z(n)+ o(n)B(n—1) =Y A(n,k) + o(n) D A(n—L,k) =) (A(n,k) + o(n) A(n - 1,k)) = 0,
k=0 k=0

k=0
(2.13)
since the right hand side of (2.10) vanishes for m = n. Hence we obtain (2.8).
Note that (2.10) can be rewritten as an indefinite summation for a certain hypergeometric
series which is truncated arbitrarily:

m

Z (-n)e ®)e(bn(n+c—b—-1)"14+1)r  (-n+L)m(b+1)m
()e(dn(n+c—b—1)"1) k! - (¢)ym m! )

k=0



4

3. Gosper’s algorithm

Let F be the field of rational functions in some fixed number of indeterminates (not including k)
over Q. Let F(k) denote the field of rational functions in k over F and let F[k] be the ring of
polynomials in k over F. Let a(k) (k = 0,1,...) be a sequence of nonzero elements of F such that
a(k)/a(k — 1) is in F(k). Call a sequence s(k) (k = —1,0,1,.. .} in F an indefinite sum for the a(k)
if

s(n) — s(m) = z a(k), n,m=-1,0,1,..., m<mn, (3.1)
k=m+1
or, equivalently,
s(k)—s(k—1)=a(k), k=0,1,.... (3.2)

Then the s(k) are unique up to a constant term. Gosper’s algorithm will do the following:
1) It determines whether there is a solution s(k) to (3.2), nonzero for k = 0,1,2,..., such that
s(k — 1)/s(k) is rational in k over F.
2) If the answer to 1) is positive then it will produce this solution explicitly.
In order to justify the algorithm we need a few lemmas.

Lemma 3.1. Let b(k) be a nonzero element of F(k). Then there are elements p(k), r1(k) and
72(k) of Fk], unique up to a constant factor, such that

_ _p(k) mn(k)
b(k) - p(k _ 1) Tz(k) ? (33)
ged(ri(k),r2(k+ 7)) =1 (3.4)
for all integers j > 0, and
ged(ry (), p(k — 1)) = 1 = ged(r2(k), p(k)).- (3.5)

Proof. We first prove the existence statement. Suppose that, for some ¢ =1,2,..., identity (3.3)
holds together with (3.4) for j = 0,1,...,7 — 1 and with (3.5). This is certainly possible with
i:=1 and p(k) := 1. We now describe a successive rewriting of p(k), r1(k), ro(k) such that this
process comes to an end and the end result has the desired properties. If r1(k) has a prime factor
(k) such that y(k — i) is a factor of 72(k) then put 71 (k) := ri(k)/v(k), 72(k) := ro(k)/y(k — 1),
p(k) := p(k) v(k)7(k—1)...7(k—i+1). Then (3.3), (3.4) for j =0,1,...,4-1,and (8.5) still hold
when p(k), r1(k), r2(k) are replaced by pi, 71(k), 73(k), respectively. In order to see this for (3.5)
observe that any common factor of p(k) and 73(k) must be y(k — j) for some j = 0,1,...,4 - 1.
But this cannot be a factor of r,(k) while (k) is a factor of 7;(k), Similarly, any common factor
of p(k — 1) and 7 (k) must be y(k — j) for some j = 1,2,...,i. But this cannot be a factor of r1(k)
while y(k — 4) is a factor of ry(k).

Next we prove the unicity statement. Suppose p(k), 71(k),72(k) and p(k), 71(k), 72(k) are two
triples satisfying (3.3), (3.4) for all integers j > 0, and (3.5). Then

p(k) 1 (k) Bk — 1) (k) = B(k) 71(k) p(k — 1) 72().
Suppose (k) is a prime factor occurring in p(k) with higher multiplicity than in p(k). We may
assume that for all positive integers i the prime factor y(k-+4) does not occur with higher multiplicity
in p(k) than in §(k). Then (k) must be a factor of 71(k). Let j > 0 be the maximal integer such
that 4(k — j) occurs in p(k) with higher multiplicity than in p(k). Then y(k —j — 1) must be a
factor of 75(k). Thus ged(ri(k),r2(k + j + 1)) # 1, which is a contradiction. Similarly we show
that no prime factor occurs in p(k) with higher multiplicity than in p(k). Thus p(k) equals p(k) up
to a cons:ant factor. Hence 7(k)/r2(k) and 71(k)/72(k) are equal up to a constant factor, which
implies t} > unicity statement. U
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Lemma 3.2. Let b(k) be in F(k) such that b(k) is a nonzero element of F for each k = 1,2,....
Let b(k) be written as (3.3), where p(k), r1(k), r2(k) are in F[k], satisfy (3.4) for all integers j > 0,
and also satisfy

ged(ri(k), p(k — 1)) # 0 # ged(r2(k), p(k)) fork=1,2,.... (3.6)

Then p(k) #0in Ffor £k =0,1,2,... and ri(k),r2(k) #0inFfor k=1,2,....

Proof. Clearly, because of (3.3), (3.4) and (3.6), r1 (k) and r,(k) must be nonzero fork = 1,2,....
If p(k) = 0 for some k = 0,1,2,... then there will be a highest nonnegative integer j for which
P(7) = 0. Then b(k) will have a pole at k = j + 1, which is contrary to the assumption. O

We now assume that, for each integer k > 0, a(k) is a nonzero element of F and that
ak) _ _p®) n®) .,
a(k—1)  p(k—1) ro(k)’ T

such that (3.4) holds for all integers j > 0. Assume also that p(k) # 0 in F for £ = 0,1,2,... and
r1(k),r2(k) # 0in F for k = 1,2,.... Because of Lemma 3.2 these inequalities will be certainly
satisfied if (3.5) or the weaker (3.6) are valid. It follows from (3.7) that

a(k+1)ra(k+1)  a(k)ri(k+1)

i (3.7)

= . k=0,12,.... 3.8
ok + 1) 0 (38)
Let s(k) and f(k) be elements of F defined for k = —1,0,1,... such that
ra(k+ 1) a(k +1)
k)= k), k=-1,0,1,.... 3.9
s(h) = B2 DAL 43 (39)
In view of (3.8) we also have

s(k) = T‘—(Ic—g(%-;—“(—@ f(B), k=0,1,2,.... (3.10)

Note that, for £ = 0,1,2,..., we have s(k) # 0 iff f(k) # 0 (because the other factors in (3.9) are
nonzero). We will always assume that s(k) and f(k) are nonzero elements of F for k = 0,1,2,....

Lemma 3.3. Under the above assumptions the identities
s(k) — s(k — 1) = a(k) (3.11)
and
ri(k +1) f(k) - ra2(k) f(k — 1) = p(k) (3.12)
are equivalent for each £ =0,1,2,....
Proof. Identity (3.11) can be equivalently written as

ro(k+1)a(k +1) _ ra(k) a(k) DT
and identity (3.12) can be equivalently written as
ri(k+ 1) a(k) _ 7a(k) a(k) =4
B 1) = T k- 1) = a)

(use that a(k) and p(k) are nonzero for k = 0,1,2,...). Now apply (3.8). 1
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Lemma 3.4. Under the earlier assumptions, let (3.11) and (3.12) be valid for £ = 0,1,2,....

Then s(k — 1)/s(k) is in F(k) iff f(k) is in F(E).

Proof. By (3.11) and (3.10) we have

s(k-1) _a(k) __ p(k) 1 [
s(k)  s(k)  m(k+1) f(k)

Lemma 3.5. Under the earlier assumptions, let f(k) be in F(k) such that (3.12) holds. Then

f(k) is in F[E].

Proof. Assume that f(k) is not a polynomial. Then

f(k)=%,

1-—

where ¢(k) and d(k) are polynomials in k over F without common factors and d(k) has positive

degree and
d(k)d(k—1)p(k) = ri(k + 1) e(k) d(k — 1) — ro(k) c(k — 1) d(k). (3.13)

Let j be the largest integer such that
g(k) := ged(d(k),d(k + 7)) # 1.
This j exists and 7 > 0. Then
ged(d(k — 1),d(k + 7)) = 1 = ged(d(k — 1), 9())

and

ged(d(k — j — 1),d(k)) = 1 = ged(g(k — j — 1), d(k)).

Now g(k) divides d(k) and is relatively prime to d(k — 1) and c(k). Hence, by (3.13), g(k) divides
ri(k + 1), so g(k — 1) divides r1(k). Also, g(k — j — 1) divides d(k — 1) and is relatively prime to
d(k) and c(k —1). Hence, by (3.13), g(k — j — 1) divides r5(k), so g(k — 1) divides r3(k + j). Thus
r1(k) and r,(k + 7) have a common factor of positive degree, contradicting (3.4). [l

In the following we will mean by deg(g(k)) the degree of a polynomial g(k) and we will put
this equal to —1 if g(k) = 0.

Lemma 3.6. Under the earlier assumptions, let f(k) be a nonzero element of F{k| and a solution
of (3.12). Then:
(a) If deg(ri(k + 1) + ra(k)) < deg(ri(k + 1) — r2(k)) then

deg(f(k)) = deg(p(k)) — deg(r1(k + 1) — 72(F)).
(b) If 1 := deg(ri(k + 1) + r2(k)) > deg(ri(k + 1) — rp(k)) then let e; be the coefficient of k' in
r1(k + 1) + r2(k) and d;_; be the coefficient of E'-1in vy (k4 1) — ro(k).
(b1) If —2d;_; /e is not a nonnegative integer then
deg(f(k)) = deg(p(k)) ~ 1+ 1.

(b2) If —2d;_1 /e; is a nonnegative integer then

deg(f(k)) < max{—2d;_;/e;, deg(p(k)) — 1+ 1}.



Proof. Rewrite (3.12) as

)= (b + 1) = rs) FETETD) 4 () 4y L2120,

By our assumptions, p(k) is a nonzero polynomial and ri(k + 1) — r2(k) and ri(k + 1) + r2(k)
will not be both equal to zero. Case (a) is now evident. In case (b) let f(k) have degree m with
coefficient ¢,, of k™. Then

p(k) = (dl—l + ';' mel) Cm Epitm-l + O(kH-m—Z).
Cases (bl) and (b2) are now evident. 0

Lemma 3.7. Under the earlier assumptions, if (3.12) has solutions f(k) belonging to F{k] then
these form a zero or one dimensional set. In case of dimension one, the solution space has the
form fo(k) + ¢ fi(k), where fo(k) is some special polynomial solution of (3.12), f1(k) ia a nonzero
polynomial solution of

7‘1(’0 + 1) fl(k) — Tz(k) fl(k — 1) = 0, (314)
and c is an arbitrary element of F. If such a solution fj(k) of (3.14) exists then f;(k) # 0 for
k=-1,0,1... and r,(0) # 0.

Proof. Clearly, if (3.12) has two distinct polynomial solutions then their difference fi(k) is a
nonzero polynomial solution of (3.14), unique up to a constant factor. If fi(k) = 0 for some
k = -1,0,1,... or if 7,(0) = 0 then f;(k) = O for infinitely many values of k, which would
contradict that fy(k) is a nonzero polynomial. 1

We can now describe the successive steps of Gosper’s algorithm. Let a(k) be given.
Step 1. Check that a(k),for k = 0,1,2,..., is a nonzero element of F. Also check that a(k)/a(k—1)
is in F(k).
Step 2. Determine p(k),ri(k),r2(k) in (3.7) by the algorithm given in the proof of Lemma 3.1
(existence statement).

Step 3. Find, by Lemma 3.6, an upper bound d for the degree of a nonzero polynomial f(k)
satisfying (3.12). If d is negative then there will be no solution s(k) of (3.11) with the desired
properties.

Step 4. Put
d
F(k) =" fik, (3.15)
=0

where the f; are yet unknown elements of F. Find the most general solution of the system of linear
equations in the f; obtained by putting the coefficients of the various powers of k in

ry(k + 1) () = ro(k) F(k — 1) — p(k) (3.16)

equal to 0. If no solution is found then there will be no solution s(k) of (3.11) with the desired
properties. Otherwise, the solution space may have dimension 0 or 1.

Step 5. In case the solution space has dimension 0, check if f(k) # 0 for k£ = 0,1,2,.... When
this is not the case, there will be no solution of (3.11) with the desired properties.
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Step 6. Obtain the desired solution(s) s(k) of (3.11) from (3.9). Then

n

s(n) — s(-1) = Y, a(k). (3.17)

k=0

Our Maple program implements Gosper’s algorithm for

ay k... (an)e 2%
a(k) := ((_ﬁ%‘_%ﬁ—))f L (3.18)

being the coefficients of a truncated hypergeometric series. Here o,...,ap, P1,...,0s and z are
elements of F. In order that a(k) is in F for each ¥ =0,1,2,..., we require that

Bi,...,B:s#0,-1,-2,.... (3.19)
Also, in order that a(k) # 0 for k = 0,1,2,..., we require that
ay,...,ap #0,-1,-2,... and z#0. (3.20)
Now a(k)/a(k — 1) is certainly in F(k):

a(k) (+k-1)...(ar+k-1)z
a(k—-1) (Bi+k-1)...(B.+k-1)k

Remark 3.8. If, in (3.18),

ary.. 0 #1,2,3,... (3.21)

then k will be a factor of r5(k), so 72(0) = 0 and s(—1) = 0 by (3.9). Hence, for such a;’s, (3.11)
has at most one solution s(k) and such a solution will satisfy s(—1) = 0. We will always make this
assumption (3.21).

Example 3.9. Consider (2.2), so

a(k) := (—%)T’i ) (3.22)

F := Q(b) and conditions (3.19), (3.20) and (3.21) are satisfied. From

a(k) b+k-—-1
a(k-1) k

(3.23)

we get

p(k)y=1, r(k)=b+k—1, ri(k)=Ek.
Hence
1'1(k+1)+’l‘2(k): 2k + b, 1"1(k+1)—1’2(k)= b,

so we are in the case (bl) of Lemma 3.6 and every nonzero solution f(k) of (3.12) will have degree
0. Equation (3.12) becomes

(b+ k) f(k) - kf(k-1)=1,

so f(k) = b~!, which is nonzero for k = 0,1,2,.... Now equation (3.9) yields
k+1 (B)rs1

s(k):T(k+1)! k:—l,o,l,..-.



Thus, indeed, s(—1) = 0 and

(b + 1)k
ko

s(k) = k=0,1,2,....
Example 3.10. 'We continue the previous example, but we now assume that b in (3.22) is a fixed
positive integer. Then F = Q and condition (3.21) is no longer satisfied. We can rewrite (3.22) as

(1)
o) =Gy

which is a polynomial of degree b — 1 in k. (In the previous example, a(k) was certainly not
polynomial in k.) From (3.23) we now get

kE+1)
p(k) = L‘(Z—:—% = a(k), rl(k) = 1, Tz(k) =1.
We are now in case (b2) of Lemma 3.6 and find that f(z) must have degree < b. Equation (3.12)
becomes

1) - gtk - 1) = AL,

Its general solution is

f(k) = w + const. .
Then (3.9) becomes
| s(k) = f(k).
We obtain -
s(n) — s(—1) = (—J;'—)”

It is curious to observe that the specialization of (3.22) to some special positive integer value
of b causes Gosper’s algorithm to solve a system of b + 1 instead of 1 linear equations. For large b
this will consume much more computing time.

4. Zeilberger’s algorithm

Let F be the field of rational functions in some fixed number of indeterminates (not including k
and n) over Q. Let A(n, k) be such that

(i) A(n,k) €F for n,k=0,1,2,...;

(ii) A(n,k) is a nonzero element of F(n) for k = 0,1,2,...;
(iii) A(n,k) = 0 for integer n,k with 0 < n < k;
(iv) A(n,k)/A(n,k— 1) is in F(n, k);

(v) A(n,k)/A(n— 1,k) is in F(n, k).

Put

B(n):= En:A(n,k), n=0,1,2,.... (4.1)
k=0
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Fixl=1,2,.... Zeilberger’s algorithm will search for oj(n) (j = 1,2,...,1) in F(n) such that X(n)
satisfies the Ith order recurrence

1
T(n)+ Y, 0i(n)B(n—j) =0, n=LI+1,1+2,.... (4.2)
j=1

In particular, if such a recurrence can be found for [ = 1 then ¥(n) can be obtained by iteration of
(4.2) from the starting value X(0) = A(0, 0).

Zeilberger’s algorithm reduces the problem to Gosper’s algorithm as follows. Let the o;(n) be
yet undetermined elements of F(n). Put

i
a(k) := A(n, k) + Z oi(n) A(n — 4, k). (4.3)

=1

Then a(k) (k = 0,1,...) is a sequence of elements of F(n). Assume that the o;(n) are such that
the a(k) are nonzero elements of F(n). From (4.3) we obtain

ak) 14X 0i(n)A(n—j,k)/A(n, k) A(n, k)

a(k=1) " 14 £}, 0j(n)A(n - j, k- 1)/A(n, k- 1) A(n,k — 1) (4.4)

so a(k)/a(k — 1) is in F(n)(k).

Now suppose Gosper’s algorithm has supplied explicit oj(n) and an explicit solution s(n) =
S(n,k) of (3.2), where s(k) is, for each & = —1,0,1,..., an element of F(n), nonzero if k =
0,1,2,.... (In a moment we will discuss the details of this application of Zeilberger’s algorithm.)
Suppose that s(—1) = 0. Then, by (3.17),

m m

1 m
S(n,m) = s(m) = Za(k) = Z A(n, k) + Zuj(n) ZA(n -Jj, k), m=0,12,.... (4.5)
i=1 k=0

k=0 k=0
Suppose that also S(n,n) = 0. Then, by (4.1) and Assumption (iii) on the A(n, k), the case m =n

of (4.5) yields (4.2).
We now discuss the details of the application of Gosper’s algorithm. Write

A(n,k) _ B(n,k)

An-1,F)  Cln k)’ (46)
where B(n, k) and C(n, k) are coprime elements of F[n, k], and
A(n,k)  D(n,k) (4.7)

A(n,k~1) ~ E(n,k)’

where D(n,k) and E(n,k) are coprime elements of Fin, k]. Then B(n,k), C(n,k), D(n,k) and
E(n, k) are nonzero elements of F(n) for £ = 0,1,2,.... We obtain from (4.4) that

a(k)  po(k) rio(k)
a(h-1) po((l)c Y 'r:o(k) ’ (4.8)
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where
-1 l Jj-1 1-1
po(k) = [[ B(rn—i,k)+ > oj(n) [[ C(n - i,k) [ B(n - 4,k), (4.9)
=0 j=1 i=0 i=j
-1
rio(k) := D(n, k) [ B(n - i,k - 1), (4.10)
i=0
-1
rao(k) := E(n, k) [] B(n - i, k). (4.11)
i=0

Then r19(k) and ryo(k) are elements of F(n)[k] and nonzero elements of F(n) for each k = 1,2,....
Now use the algorithm of Lemma 3.1 in order to write

rio(k) _ _pi(k) ri(R)
rao(k) — pr(k —1) ra(k)’

where p; (k),r1(k), 72(k) are elements of F(n)[k], such that

(4.12)

ged(ry(k),ra(k +4)) =1
for all integers 7 > 0 and
ged(ri(k), pr(k — 1)) = 1 = ged(r2(k), pr(k)).

Put
p(k) := po(k) p1 (k). ' (4.13)
Then (4.8), (4.12) and (4.13) yield (3.7).
Note that, by (4.9), (4.3) and (4.6)

w0 = 5

-1
[I B(n-i,k).
i=0

Thus, by (3.9) and (4.13):

ra(k+1) f(k) A(n, k+ 1)
pu(k+1) [[Zh B(n— i,k +1)’

S(n, k) = s(k) = k=-1,0,1,.... (4.14)

We can now describe the successive steps of Zeilberger’s algorithm. Let A(n, k) be given.
Step 1. Check conditions (i)-(v) of the beginning of this section. Write A(n,k)/A(n,k — 1) and
A(n,k)/A(n — 1,k) as in (4.6) and (4.7).

Step 2. Determine p; (k), r1(k), r2(k) in (4.12) by the algorithm of Lemma 3.1. Check if 7,(0) = 0,
otherwise the algorithm fails. Determine p(k) (with yet undetermined o;) by (4.13) and (4.9).
Step 3. Find by Lemma 3.6 an upper bound d for the degree over F(n) of a solution f(k) of
(3.12) which lies in F(n)[k]. (Here we take for deg(p(k)) the degree of p(k) with yet undetermined
a;(n), so, with a priori knowledge of the oj(n), d might have been lower.) If d is negative then the
algorithm fails.
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Step 4. Now substitute (3.15) in (3.16) and obtain a system of linear equations over F(n) in the
fi(i=0,...,d)and o; (i = 1,...,1) by putting the coefficients of the various powers of k in (3.16)
to 0. Solve this system of equations. If no solution is found then the algorithm fails. Otherwise,
the solution space may have dimension 0 or higher. In case of higher dimension, we will have some
free parameters with which we extend the field F.

Step 5. With the solutions from Step 4 substituted, we have to reevaluate some expressions in
order to be sure that the conditions are still valid under which Gosper’s algorithm works. Check if
p(k) is a non-zero element of F(n) for £ = 0,1,2,... and if ¢(0) is a nonzero element of F(n). Then,
by (3.7), a(k) is a nonzero element of F(n) for £ = 0,1,2,.... Checkif f(k) #0fork=0,1,2,....
If one of the checks gives negative answer then the algorithm fails.

Step 6. Obtain the solution s(k) = S(n,k) of (3.11) from (3.9). Then s(—1) = 0 by (3.9) since
72(0) = 0. Now we have to check if posssibly for certain n = 1,1+ 1,1+ 2,... the fi(n) and oi(n)
have poles. Suppose there are no poles for integer n > ng > I — 1. Consider (4.5) only for such
n. Check if possibly S(n,n) # 0 for some integer n > ng. We can do this by inspection of (3.9).
Because of (4.3) and Assumption (iii) on A(n, k) we have a(k+ 1)|x=, = 0 for integer n > ng. Thus
we have to check if possibly ra(k + 1)|k=r has a pole or p(k + 1)|x=, has a zero for integer n > ny.
If this is the case then we can get integer n; > ng such that §(n,n) = 0 for n > n,. Define Z(n)
by (4.1). Then the recurrence (4.2) is valid for n > n;.

Our Maple program implements Zeilberger’s algorithm for sums (4.1) with
Aln, ) := (=n)k (a2 + i_zn)k oo (ar + z:rn)k o+,
kU (B4 Gin)k - (Bs + Gan)k
being the coeflicients of a hypergeometric series
—n,qz +i2n,...,0, + 0
e [ Pr+in,...Bs + jsm ’z]
We assume that no upper indices coincide with lower indices of the hypergeometric function, that

03,...,0r, B1,...,B, and 2 are elements of F and that ¢,,...,%,,71,...,js € Z. In order that
A(n,k) is in F for n,k = 0,1,2,... we require that

B dZ ifj=-1,-2,... (4.15)
and
B #0,-1,-2,... ifj,=0. (4.16)
In order that A(n, k) # 0 as element of F(n) for k = 0,1,2,... we require that z # 0 and
a #0,-1,-2,... ifi=0. (4.17)
Now A(n, k) = 0 for integer n, k with 0 < n < k. We get
A(n, k) —n+k—-1(az+im+k—-1)...(ar+i,n+k—1)
Ank-1)  k  (Bitimtk—1). (B timtk-1)" (4.18)
aIld r . s I3
A(n, k) __n H (o + zt(.n — 1)+ k), H (B: + ji(n — 1)), , (4.19)
An—1,k) n—k - (a+i(n—1)), iy (Be+Je(n — 1) + k),

where the shifted factorial (a) is defined by (2.3), also for negative integer k. Clearly, the right
hand sides of (4.18) and (4.19) are elements of F(n)(k).
We can now perform Step 1 and Step 2. In order to obtain r2(0) = 0 in Step 2 we require that

o #1,2,... ifi,=0. (4.20)
Next ‘we can perform Steps 3, 4, 5 and 6.
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Example 4.1.  Consider (2.1), so A(n, k) is given by (2.6), F := Q(b, c) and conditions (4.15),
(4.16), (4.17) and (4.20) are satisfied. Let the desired order of recurrence ! be equal to 1. Then

a(k) := A(n, k) + o1(n) A(n — 1, k),

An,k)  n
Aln—1,k)  n-—k’
An,k) (-n+k-1)(b+Ek~-1)
Aln,k—1) (c+k-1)k '

Then we get (3.7) with
p(k) = -n+o1(n)(k—-n), r(k)=(k-n-1)(k+b-1), ry(k)=Fk(k+c—1).

We are in the case (bl) of Lemma 3.6 and find that deg(f(k)) < 0. So f(k) = fo(n). We have to
solve

(ri(k +1) — r2(R)) fo(n) — p(k) = 0,

i.e. the system

{(b—c—n+1)fo(n)—a'1(n)=0,
—nbfo(n) + n + noy(n) = 0.

As unique solution we find

1 n+e—b-1
— ., am)=-
c+n-—-1 n+c—1

fo(n) =

Now all checks of Step 5 have positive answer and in Step 6 we find that ny and n; are equal to
0. Thus we obtain (2.8) with o(n) given by (2.9) and hence we obtain (2.7). We also obtain (2.10)
from (4.14).

Example 4.2. Let my,...,m, be nonnegative integers and let n be integer such that n >
my + -+ -+ m,. Minton [9] showed that

_n,b,c1+m1,...,cp+mp_1] nl (1= b)my .- -(cp—b)m,

F —
P2 pH[ b+1,e1,...,¢p

- (b + 1)n (bl )mx .- -(bp)mp

Put the left hand side equal to X(n). Then

pX
(n) = n , n>my+ e my.
Zn-1) b+n

So we have the complication here that the evaluation of the ratio X(n)/%(n — 1) is not valid for
the lowest values of », up to m; + - -+ + m,. Let us analyse this with Zeilberger’s algorithm in the

simple special case

~n,b,e+ 1 e
E(n) = 3F2 [ b + 1.c ;1} = Z A(n, k),
’ k=0

with
(=n)s be+ k)

K (bt k)’

A(n, k) =
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Then F := Q(b,c), and conditions (4.15), (4.16), (4.17) and (4.20) are satisfied. Let the desired

order of recurrence [ be equal to 1. Then
a(k) := A(n, k) + o1(n) A(n — 1, &),

An,k) n A(n, k) —nt+k—1(c+k)(b+k-1)
An—1,k) n—-k' Alnk-1) k B+k)(ct+tk—-1)"

Then we get (4.8) with

po(k) = —n+o1(n)(k—n), r(k)=n(-n+k—-1)(c+k)(b+ k- 1),
rao(k) =nk(c+ k—1)(b+ k).

Hence we get (3.7) with

pk)=(c+k)(—n+oi(n)(k-n)), r(E)=(-n+k—-1)(b+k—1), ri(k)=Fk(b+E).

We are in the case (b1) of Lemma 3.6 and find that deg(f(k)) < 1. Solution of the resulting equation

(3.12) yields
n ¢ nk

b+n’ f(k)=n+b+(n+b)(n—1)'

o1(n) = —

Now all checks of Step 5 have positive answer. In Step 6 we find that f;(n) has a pole at n = 1.

We obtain ng =1 = n;. Thus
= forn=2,3,....
b+n

5. The g-case
Consider the ¢g-Chu-Vandermonde summation formula

_ (050, (c/bi0)n
nbic;q,q) = =—="b" n=012,...
»hile 29) ,;, Ge(Gde © (Go)n

and its special case for ¢ := ¢~ ™:

z":(b;q)qu: Cgid)n 1o
e (G0 Y

Here the g-shifted factorial is defined by

(a5 )k = —(t(z:;;ql)]‘;; » k€Z; (49w = ,-I;Io(l - ag’).

. (5.)

(5.2)

(5.3)

As with (2.2), formula (5.2) is an indefinite summation which can be verified immediately. Formula
(5.1) is a definite summation which can be treated along similar lines as (2.1). Write the sum in

(5.1) as (2.5) with
A(n, k) := (47”3 ) (b3 ) ¢, k£=0,1,2,....
(¢ D)r (g5 )
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Then A(n, k) = 0 for integer n, k such that k > n. Since (5.1) evidently holds for n = 0, the general
case of (5.1) would follow from (2.8) with

=b+ g“le
a(n) = —i—_q;"—:i_: .

Now the indefinite summation formula
-n+l.

3 n) A(n - = (¢ 1) m (55 @my1
kg(A(n’k) o) A= LE) = T2 (6.0 (3:.00m (5-4)

can be immediately be proved by checking that

(" m B Dmer @D B a1 m
(1 =g 1) (¢; 9)m (¢ D)m (1—cq""‘)(c;q)m_l(q;q)m_l—A(’ )+ o(n) A —1,m)

form=1,2,..., and that

(7" Q) (b5 Qmt1 — Aln ) Alm—
0= ) (6 ) (G D |~ A O+ o(m) A(n=1,0).

Note that, in the above formulas, g™ can be treated as a complex parameter. Since the right hand
side of (5.4) vanishes for m = n, (2.8) will follow by (2.13).

Surprisingly, Gosper’s and Zeilberger’s algorithms can be carried over to the g-case almost
unchanged. Let us briefly indicate which adaptations have to be made in our descriptions of these
algorithms. '

In §3, F will now be the field of rational functions in some fixed number of indeterminates
including g (but not including k) over Q. The ¢-Gosper algorithm will look for solutions s(k) to
(3.2), nonzero for k = 0,1,2,... such that s(k —1)/s(k) is rational in ¢* over F. Throughout in §3
replace F(k) by F(¢*) and F{k] by Flg*]. :

In Lemma 3.1, p(k) will be only unique up to a factor which is a constant times some power
of ¢*.

In Lemma 3.5 the conclusion will be that f(k) is in F{g¥,¢™*], i.e. a Laurent polynomial in 7"
over F.

In the reformulation of Lemma 3.6 let deg(g(k)) and ldeg(g(k)) mean the highest occurring

degree m, and the lowest occurring degree m; in a nonzero Laurent polynomial

my
g(k) := Z c;¢°%, mi,mp €Z, my<my, Cm; #0# Cm,

Jj=my
We now have:

Lemma 5.1. Under the suitably reformulated assumptions of §3, let f(k) be a nonzero element
of Flg*, ¢~ %] and a solution of (3.12). Then:
(a) If 1deg(r1(k)) # ldeg(r2(k)) then

1deg(f(k)) = 1deg(p(k)) — min{ldeg(ry(k)),1deg(r2(k))}-
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(b) I I := ldeg(r1(k)) = ldeg(r2(k)) then let d; and e; be the coefficients of ¢* in 7, (k) respectively
Tz(k).
(bl) If ?log(ei/d;) ¢ Z then :
ldeg(f(k)) = ldeg(p(k)) - 1.

(b2) If ?1og(er/d;) € Z then

ldeg(f(k)) > min{?log(e;/d;), 1deg(p(k))} — I.

Also:
(a)' If deg(r1(k)) # deg(rz(k)) then

deg(f(k)) = deg(p(k)) — max{deg(ry(k)), deg(r2(k))}.

(b)' I 1:= deg(r1(k)) = deg(rz(k)) then let d; and e; be the coefficients of g*! in 7, (k) respectively
’I'z(k).
(b1)' If 91og(e;/d;) ¢ Z then
deg(f(k)) = deg(p(k)) L.

(b2)" If 9log(e;/d;) € Z then

deg(f(k)) < max{?log(e;/d;), deg(p(k))} — 1.

Remark 5.2. 'We may relax the assumptions on p(k) by allowing that p(k) is a Laurent polyno-
mial instead of an ordinary polynomial in ¢*. Suppose m is the lower bound found for Ideg(f(k))
in Lemma 5.1. Now put

f(k) = g~ ™k f(k), p(k):= q_mkp(k), T1(k) :=ri(k), 72(k) := ¢7 ™ ra(k).

Then (3.7) and (3.12) are still satisfied with f(k), p(k), 71(k), 72(k) instead of f(k), p(k), r1(k),
r2(k), and f(k) is in F{g*] but p(k) is possibly in F[g*, ¢~*]. If 5(k) has terms with negative powers
of ¢* them (3.12) will have no solution.

Steps 1-6 in §3 can now be performed in the ¢-case with the obvious minor adaptations. In
particular, in Step 3 we determine a lower bound for ldeg(f(k)), then rewrite f(k), p(k), r1(k),
r2(k) as in Remark 5.2, and finally find an upper bound d for deg(f(k)). If 1deg(p(k)) < 0 or if
d < 0 then the algorithm fails. In Step 4 we put

d
F(k):=" fiq
i=0

Our Maple program implements the g-Gosper algorithm for

a(k) := (01; Q)i - - - (r; @) ((—1)% gFle—1)/2)s—r+1
' (Br; Q- - - (Bs; Ok (5 2)x ‘

Here ay,...,a.,p1,...,8, and z are elements of F. In order that a(k) isin F for each k = 0,1, 2,...
we require that

ﬂlw"'rﬁa ;é l)q_lyq—zv"
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Also, in order that a(k) # 0 for k£ = 0,1,2,..., we require that
a,..., 0 £1,¢7 ,¢7%,... and z#0.
Now a(k)/a(k — 1) is certainly in F(¢*):

a(k) _ (1= arg®)...(1 — apgt=1) (—gk~1) "+ 2
a(k — 1) A-fie™ D). (- B ) (1 - ¢¥)

If
QApy..y Ay #q)qzi"'

then 1 — ¢ will be a factor of r;(k), so r2(0) = 0 and s(—1) = 0 by (3.9). We will always make
this assumption.

For the g-version of Zeilberger’s algorithm we make slight adaptations of Zeilberger’s algorithm
as described in §4. In assumptions (iv) and (v) let A(n,k)/A(n,k—1) and A(n, k)/A(n~1,k) be in
F(¢™, ¢*). Throughout replace rational or polynomial dependence on 7, k by a similar dependence
on g™, ¢*. The other adaptations in Steps 1-6 of §4 can be madein a similar way as for the ¢g-Gosper
algorithm. In connection with Remark 5.2 observe that the substitution p(k) := g~ ™*p(k) will be
caused by a substitution p; (k) := ¢~ ™*p; (k) (cf. (4.12) and (4.13)), while po(k) (cf. (4.9)) remains
unaffected.

Our Maple program implements the g-Zeilberger algorithm for sums (4.1) with

(T e (00 O (8 @ Ok vk k(k—1)/2yar 41 (o ey
Alm k)= (2; Q)x (g™ Br; O)x - - - (479 Bai @) ((=1)% ) (™0

being the coefficients of a g-hypergeometric series

¢ [q_naqnizah-'-;qni'ar.q qnvc]
T qﬂjxﬂl’._.,q"’.‘hﬂs '

We assume that no upper indices coincide with lower indices of the g-hypergeometric function, that
@z,...;0p, P1,...,B5 and ( are elements of F and that 43,...,%p,j1,...,J5,v € Z. Asin (4.15),
(4.16), (4.17), (4.20) we require that

qlogﬂg¢Z if jt:—'l,—2,...; qlogﬁtyéO,—l,—2,... if thO,
ogoy ¢ Z if i,=0; (#0.

We get
A(n,k) 3 (1 - q—n+k—1) (1 _ qni3+k~1a2) .. .(1 _ qni,+k—1a,.) (_ k—-l)s—r—}—l no ¢
Ank—1) (1—g*F)(1—grintk=1By) .. (1 - gnetkm15,) ! !
and . ) s )
An,k)  _ 1-¢" pp @0 a ), 1 (¢ 9B )5k
Aln—1,k) ~ 1—g kL (¢ Diagg);, o (648 g);, ~

where the g-shifted factorial (a; q)x is defined by (5.3), also for negative integer k.
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6. Implementation of the algorithms in Maple

FUNCTION: zeilb — summation of terminating hypergeometric series by Zeilberger’s algorithm.

CALLING SEQUENCE:
zeilb([al, a2, ...], [b1,02,...1, 2, n, I, t)

PARAMETERS:
[al, a2, ...] — list of numerator coefficients
[b1, b2, ...] — list of denominator coefficients
z — argument of hypergeometric function
n — truncate hypergeometric series as a sum from 0 to n
| — required order of recurrence looked for in Zeilberger’s algorithm
t — optional, positive integer determining talklevel of output, default max(1,printlevel)

SYNOPSIS:
— The function zeilb{a,b, z,n,l) tries to evaluate (if [ = 0 or 1) the truncated hypergeometric

series

(L)% (02)k ... B!

z": (el (a2) ... 2*

k=0

or to find a recurrence relation in n of order I (if [ > 2) for it.

— If 1 > 1 then one of the numerator coefficients must equal —n.

— If I = 0 then Gosper’s algorithm is applied.

—Ifl = 0 or 1 and if evaluation of the sum is possible for all n = 0,1,2,... as a quotient
of products of shifted factorials then the function will return in this form, with the notation
fac(c, k) being used for the shifted factorial (¢)g.

— In all other cases, where the algorithm succeeds, the function will return as a recurrence
expressing INH(n) in terms of INH(n-1), INH(n-2), ..., INH(n-1), followed by the inequality
n > nl for which the recurrence is valid. Here INH(n) denotes the series given by the input, in
its dependence on n. The variable INH is global.

— If the algorithm fails then nothing is returned.

— If1 > 0,t > 2 and the algorithm succeeds then a short proof of the outcome will be printed.
There inh(n, k) denotes the kth term of INH(n). The variable inh is global.

— This function should be defined by inputting the file zeilb with the read command.

EXAMPLES:
> read zeilb:
> zeilb([-n,bl, [c],1,n,1);
fac(- b # ¢, n)

fac(c, n)

> zeilb([b]l,[ 1,1,n,0);
(b + n) fac(b, n)

fac(1, n) b
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> Zeilb([“n,b,0+1] » [b+1 ,C] ,1)n:1);
n INH(n - 1)

> zeilb(['n,b] N [C] ,z’ngz);
(zn-2n+zb-c¢c+2-2z) INH(n - 1) (z - 1) (n - 1) INH(n - 2)

FUNCTION: qzeilb — summation of terminating g-hypergeometric series by the g-version of
Zeilberger’s algorithm.

CALLING SEQUENCE:
qzeilb([al, a2, ...1, [#1,02,...1, ¢, 2, n, I, t)

PARAMETERS:
[al, a2, ...] — list of numerator coeflicients
[b1, b2, ...] — list of denominator coefficients
g — base of g-hypergeometric function
z — argument of ¢-hypergeometric function
n — truncate g-hypergeometric series as a sum from 0 to n
| — required order of recurrence looked for in Zeilberger’s algorithm
t — optional, positive integer determining talklevel of output, default max(1,printlevel)

SYNOPSIS:
— The function qzeilb(a,b,q, z,n,l) tries to evaluate (if I = 0 or 1) the truncated g-hypergeo-

metric series
Z (al,Q)k(GZ, Ok ... ((—1)kgHk-1/2yr—st1 Sk
(61;0)e (62 q) - - (¢ )

or to find a recurrence relation in n of order ! (if I > 2) for it. Here r is the number of
terms in the list of numerator coefficients and s the number of terms in the list of denominator
coefficients.

— If 1 > 1 then one of the numerator coefficients must equal g

- If I = 0 then the g-version of Gosper’s algorithm is applied.

— If I = 0 or 1 and if evaluation of the sum is possible for all n = 0,1,2,... as a quotient of
products of g-shifted factorials then the function will return in this form, with the notation
qfac(c, g, k) being used for the g-shifted factorial (c; q).

— In all other cases, where the algorithm succeeds, the function will return as a recurrence
expressing INQH(n) in terms of INQH(n-1), INQH(n-2), ..., INQH(n-]), followed by the in-
equality n > nl for which the recurrence is valid. Here INQH(n) denotes the series given by
the input, in its dependence on n. The variable INQH is global.

— If the algorithm fails then nothing is returned.

- If1 >0, t > 2 and the algorithm succeeds then a short proof of the outcome will be printed.
There ingh(n, k) denotes the kth term of INQH(n). The variable ingh is global.

— This function should be defined by inputting the file gzeilb with the read command.

— This funcion does not work properly with the present version of simplify/power in Maple V.
One should install the bugfix of simplify/power which has been distributed.

-n
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EXAMPLES:
> # assume that simplify_power is the bugfix file for simplify/power
> op(4,op(readlib)) [‘simplify/power‘]:=
readlib(‘simplify/power‘, 51mp11fy_power‘):
> read qzeilb:
qzeilb([q~(-n),bl,[c],q,q,n,1);
n
b qfac(c/b, q, n)

v

qfac(c, q, n)

v

qzeilb([b] ,[ ] ,q’qsn’o);
(n + 1)
(-q+bgqg ) qfac(b, q, n)

gfac(q, q, n) q (b - 1)

> qzeilb([q“(—n) ,b,q*c] > [q*b,C] »4,94,n, 1);
n
(-1+q) b INQH(n - 1)
------------------------ » 1 <n
n
q b-1

v

qzeilb([q"(-n) ,b] Py [C] »q,Z ,n,2) ’
2 2 n n 2 n n n 2
(-zq +q q -(q) cq+cq q+qg zbgq-(q) c) INQH(n - 1)

n n
(zbq-q c¢) (-q +q) INGH(n - 2)
F o e e e e e e , 1 <n
n n

qq (-q c+q

> qzeilb([a"2,q*a,~-q*a,b,c,d,a"4xq" (n+1)/b/c/d,q"(-n)],
> [a,-a,a"2%q/b,a"2*q/c,a"2*q/d,bxcxd*a~(-2)*q~(-n) ,a"2*q~(n+1)],q,q,n,1);

2 2 2
a q 2 a q a q
gfac(----, q, n) qfac(a q, q, n) gfac(----, q, n) gfac(----, q, n)
bd bec cd
2 2 2 2
a q a q a q a q
qfac(-~---, q, n) gqfac(----, q, n) qfac(----- , 4, n) qfac(----, q, n)

b d bcd c
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The last computation required CPU time 91.78 on a Sun4/280S and about 5 times as much
on a Macintosh IIsi with floating point unit.
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