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1

In the classical machine repair problem there is a pool of repairmen maintaining a finite number
of machines. Since each repairman can serve only one machine at a time, an interference problem
exists as soon as the number of machines requiring maintenance exceeds the number of repairmen
available. The machine repair problem is also known as machine interference problem and as
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Introduction

finite source queueing problem.

In this paper we focus on controlling a production system by adjusting the repair rate. Our
system consists of two units and a single repairman. The system is considered to be ‘up’ if
one unit is operating and the other one is either under repair or kept in spare position (cold
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standby). At breakdown of the operational unit, this unit is sent into the repair facility to be
repaired. The spare unit takes over the working position. The system goes ‘down’ if a unit is
still under repair at breakdown of the other one. Then, at completion of the ongoing repair the
repaired unit enters the operating position, a repair is started on the failed unit, and the overall
system recovers to ‘up’ state.

After inspection of a failed unit the repairman knows how much work is to be performed.
Then he has the option to choose either a slow or a fast repair rate to carry out this amount
of work. When the system breaks down while the repairman is working at slow rate, he has an
additional opportunity to switch to the fast rate.

In Section 2, we prove that if there are no positive fixed costs associated with overall system
break-downs, then the policy which minimizes the long-run average costs is a two-dimensional
Control Limit Rule (also called threshold policy). If fixed costs are incurred every time the
system breaks down, then the optimal policy is not necessarily of Control Limit type. This is
illustrated by an example where a 4-region policy is shown to be the optimal one. In Section 3,
assuming a two-dimensional Control Limit Rule to be imposed on our system, we present explicit
expressions from which the long-run average costs, all moments of system up- and down-times,
and an additional number of operational characteristics can be calculated.

An extensive survey of papers on various types of machine repair problems that appeared
since the 1976 survey of Pierskalla & Voelker [1976] can be found in Cho & Parlar [1991]. In many
papers structural results are derived on optimal policies such that the long-run average costs are
minimized. Systems are controlled for instance by reduction of the number of repairmen (e.g.
Winston [1978], Albright [1980]); by opening or closing the repair-shop (e.g. Hatoyama [1977));
by taking operating units out for preventive maintenance (e.g. Kawai [1981], Hatoyama [1977]);
ete.

Relatively few papers consider direct control of the repair rate of the repairmen (Cra-
bill [1974], Winston [1977], Albright [1980], Weber & Stidham [1987], Karmeshu & Jaiswal
[1981]). They all assume the repair rate to depend on the number of units that have broken
down and are waiting for repair. A general conclusion is that the optimal repair rate is a
non-decreasing function of the number of failed units. In these papers, however, failure- and
repair-times are exponentially distributed; fixed costs related with changing the repair rate or
with a system breakdown are not considered; and the repair rate is chosen independently of the
actual amount of work that is to be performed. In our situation failure- and repair times have
general probability distribution functions. We also investigate the influence of fixed costs on the
structure of the optimal policy. Furthermore in our model we allow the repair rate to depend
on both the number of failed units and on the amount of work to be carried out on the unit
that is under repair.

Throughout this paper we make the following assumptions.

Assumption 1 The amount of work that is required to restore a failed unit into ‘as good as
new’ condition, is known before the repair is started.

This amount of work becomes known after inspection of the unit. This information is used to
decide whether to start a repair at fast or at slow rate. At system breakdown, the residual
amount of work is equal to the original amount of work minus the amount of work carried out
during operation of the last working unit.



Assumption 2 It is not possible to switch back to slow rate during a fast repair.
Assumption 3 The repairman returns to slow rate at completion of every repair.

Assumption 2 and 3 are explained by assuming that a regular maintenance crew is present
permanently, working at a certain (slow) rate. If necessary, an additional crew is hired to
increase the repair rate. The additional crew is hired on a contractual base for one repair-task
only. So, even if two consecutive repairs have to be carried out at fast rate, a fixed cost is
charged for each of them.

We use the following notation:
e o7 := slow repair rate,
® o9 := fast repair rate (o3 > 01),
e c; := variable cost rate for repairing at rate o1,
® ¢y := variable cost rate for repairing at rate oo,
e K, := fixed costs to start a repair at (or switch to) fast rate oy,
e ¢, := variable cost rate during down time (e.g. loss of production),
e K;:= fixed costs at start of system down-period,
e L := lifetime of a unit (i.i.d. with general distribution function F(I); I > 0; F(0) = 0),
e F(l):=1~F(); 1 >0,
0
e uy = ‘/0 [dF(l) < oo,
e W := amount of work for a repair (i.i.d. with general distribution function G(w); w > 0),
o G(w)i=1-Gw); w>0,

o Luw = / w dG(w) < .
0

Now we make an additional assumption on the variable down costs cg.
Assumption 4 There exists a policy with average costs (AC) less than cg, i.e. ¢g > AC.

If Assumption 4 is not fulfilled, then either the production system should be closed or the design
should be adjusted to make the system profitable.

This paper is organized as follows. Section 2 considers the optimal control of the repair unit.
First, in Section 2.1, we describe our system by a Semi Markov Decision Process. In Section 2.2,



we give a definition of a Control Limit Rule. Then, in Theorem 2.1, we show that at system-
breakdown, the repair rate is switched to the fast rate o according to a Control Limit Rule. In
the next two theorems we assume Ky = 0 (no fixed costs at system-breakdown). In Theorem 2.2,
we prove that the repair rate to start a repair is chosen according to a Control Limit Rule. For
the special case that no additional opportunity exists to switch to o2 at system-breakdown, in
Theorem 2.3, we prove the repair rate to be chosen according to a Control Limit Rule as well. If
K4 > 0, then the optimal rate to start a repair is not necessarily chosen according to a Control
Limit Rule. This is illustrated by a counterexample in Section 2.3. Assuming a two-dimensional
Control Limit Rule to be applied, in Section 3 we present performance measures such as long-run
average costs, all moments of system up- and down-times, system availability, etc.

2 Optimal control

The repair rates are chosen such that the long-run average costs are minimized. While repairing
at slow rate o1 (fast rate o), a cost ¢; (cp) per unit of time is incurred. Fixed costs Ky are
charged every time when either a fast rate o is chosen at the beginning of a repair, or when
the repair rate is switched from oy to oo at the beginning of a down-period. Due to loss of
production an additional variable cost rate cq is incurred during down time. There are fixed
costs Ky every time the system breaks down. Lifetimes (L) of the units are i.i.d. according
to a general distribution function F'(l); { > 0 with finite mean pz. The amounts of work that
have to be performed on failed units form a sequence of i.i.d. random variables with general
distribution function G(w); w > 0 with finite mean uw. Repaired units are ‘as good as new’.

2.1 Semi Markov Decision Process

The system is inspected at two types of decision epochs. Either when a new unit enters operation
and a repair is started on the other one, or when the operating unit just failed and repair on
the other unit has not been finished yet (system breakdown). Inspection reveals the system to
be in a state z € X. The infinite state-space X is defined by:

X = {(U,w), (D,o1,w), (D,02,w); w> 0},
where

U(D) denotes that a new repair is to be started (an ongoing repair has to be
continued at system breakdown),

01,09 denotes the current repair rate,

w denotes the amount of work (still) to be carried out on the unit currently
under repair.

If a new repair is started, then after inspection the repairman finds the system in a state
(U, w) and has to choose either a slow or a fast rate to perform this repair. If the repairman is
working at slow rate, then at system breakdown, he has to decide to continue working at slow
rate or to switch to fast rate. Formally if at an inspection epoch the system is in state z € X,
then the repairman has to choose an action ¢ € A(z). The finite action-space A(x) is given by:



Az) = {o1,02} if z € {(U,w), (D,01,w); w >0} (2.1)
g9 if z € {(D, 09, w); w > 0},

where
01,02 denotes the rate at which the current (residual) repair will be continued.

A stationary policy 7 is employed, i.e. the repair rate chosen depends on the present state of
the system only:

7(z) € A(z); = € X. (2.2)

This controlled dynamic system is a Semi Markov Decision Process because the following
properties are satisfied (cf. Tijms ([1986]). The time until, and the state at, the next decision
epoch depend only on the present state z € X and the chosen action ¢ € A(z), and are thus
independent of the past history of the system. Also the costs incurred until the next decision

epoch depend only on the present state and the action chosen in that state.
Let

7(z;0) = expected time until the next decision epoch, given that the current
state of the system is z € & and an action o € A(z) is chosen.
c(z;o) = expected cost incurred during the time until the next decision epoch,

given that the current state of the system is z € X and an action
o € A(z) is chosen.

P(.|z;0) = probability distribution of the state of the system at the next decision
epoch, given that the current state of the system is z € X, and action
o € A(z) is chosen.

In Appendix A we show that, in case G(.) has finite support, there exists a bounded function
v(z), € X and a constant g, which satisfy the following set of average cost optimality equations.

v(z) = min { c(z;0) — g7(z;0) +/ v(y)dP(y|z;0) }; reX. (2.3)
c€A(x) yeXx

According to Ross (Ross [1970]), for any policy which, when in state z, selects an action mini-

mizing the right-hand side of (2.3), we have that the long-run average costs are minimized and

are equal to g. So to find the optimal policy 7* we have to investigate which decision is to be
made such that (2.3) is minimized.

In our model 7(z;0) and ¢(z; o) are given by the following expressions:



7(D,o1,w;01) = —,

g1
w
7(D,01,w;02) = —,
g2
w
T(D,O’z,'w;O'g) =
b
T(va;al) = UL,
7(U, w; 09) = ur,

w
c(D,o1,w;01) = Kd+(cl+cd);‘;
1

w

c(D,o1,w;02) = Kd+K2+(C2+Cd);2“a

w
c(D,o9,w;00) = Ky+ (co+ Cd);;

c(Uw;o) = e [ /0 %ldF(l)+%F(aﬂl)]
w o
= [H - /O F(t)dt] ,
c(U, w; 02) = Ko+co {g;— - /0;5 F(t)dt] .

Substituting these expressions for 7(z; o) and c(z; o) into (2.3), gives us the optimality equations
for our Semi Markov Decision Process:

w

(U, w) = min {c1 [;f'ﬂl - /0 %F(t)dt] + /0 " o(D, 01, w—-l)dF(I) + F(2)Z, (2.4)

Ky +co [% - /OEF(t)dt] +/0;2— v(D, 02, w—aol)dF(l) + F’(%)Z } - guL,

’U(D,O’l,‘w) = mln{ (cl + Cd _g)%sK2 -+ (02 +cg —g);_l;' } + Kd +Z’ (25)
o(D, 09, w) = (cg +cq— g)g); + K4+ 2, ' (2.6)
where

Z = /0 ~ o(U, w)dG (w).



2.2 Control Limit Rule

From (2.1) we observe that there are two types of decision epochs in which an actual decision
should be made: (U,w) and (D,o1,w). (Due to Assumption 2 in (D,09,w) the repair rate
remains unchanged). For any stationary policy 7, we define (cf. (2.2)):

my(w) = w(U,w),
mp(w) = w(D,o1,w).

Definition 2.1 For any stationary policy m, we call 7y a Control Limit Rule CLR(my) if there
exists some threshold value my such that:

my(w) = g2 iff w > my.

O

For 7p a similar definition of CLR(mp) applies. If 7y is CLR(my) and 7p is CLR(mp)
then the overall system is controlled by a two-dimensional Control Limit Rule CLR(my,mp).
The optimal policy is denoted by 7* with corresponding 7} and 7},.

In Theorem 2.1, we prove that in state (D, o1, w) the repair rate is switched from o1 to o9
according to a Control Limit Rule CLR(mp), no matter what (stationary) policy is followed
in states (U,w). For K; = 0, and using the result of Theorem 2.1, we prove in Theorem 2.2
that in state (U, w) the fast rate o, is chosen according to a Control Limit Rule CLR(my) as
well. In Theorem 2.3, we consider a restricted version of the model presented so far. In this
adapted version we assume that it is not possible to change the repair rate during an ongoing
repair. This means that in state (U, w) a repair rate is chosen which holds for the entire repair
task. For such situations with Ky = 0, in Theorem 2.3 again we prove that the optimal rate is
chosen according to a CLR. However, if Ky > 0 then the optimal policy in state (U,w) is not
necessarily a CLR. A counterexample and an intuitive explanation are given in Section 2.3.

Theorem 2.1 7}, is a Control Limit Rule CLR(mp).
Proof: From (2.5) we conclude that o7 is chosen in state (D, oy, w)-iff

w w
K2+(Cz+cd—9);2" < (61+Cd—g)a <

w[cﬁc‘i‘g—cﬁcd_g > K. (2.7)
01 02
If
C1+Cd—g<c2+cd—g
o1 - )

then (2.7) will not hold for any w > 0. So, the repairman will never switch to o9 (mp = c0).
If

c1+cg—g > cat+cg—g
o1 02




then o4 is chosen iff

w > mp,
where
mD:=K2/[Cl+cd“g_c2+cd_g . (2.8)
g1 )
So, o3 is chosen according to a Control Limit Rule. O

Remark 2.1 In Theorem 2.1 we have not used any information about the structure of the
(stationary) policy employed in state (U, w). Actually, assuming an arbitrary stationary policy
to be employed in state (U, w), one can construct an alternative Semi Markov Decision Process
on the embedded states {(D, s, w); w>0,0 € {01,02}} only. From the corresponding optimality
equations it is easy to see that the conditions for the repairman to choose o7 in state (D,o1,w)
are similar to those found in the proof of Theorem 2.1. So, in state (D, 01, w) the repair rate is
switched from o1 to o3 according to a Control Limit Rule CLR(mp), no matter what stationary
policy is followed in state (U, w). O

In Theorem 2.1 we have shown that the best way of switching to o, at the beginning of a
down-period, is according to a CLR. Therefore, in Theorem 2.2 we assume 7p to be CLR(mp),
where mp is the optimal Control Limit in state (D, o1, w), as defined by (2.8).

Theorem 2.2 If K; = 0 and either %1- > g?; or F(l) is IFR, then w{; is a Control Limit Rule
CLR(my).

Proof: Consider the optimality equations (2.4) upto (2.6) with K, = 0. First we substitute (2.6)

into (2.4). By changing the order of integration, this simplifies the second minimization term
of (2.4):

Ky + ¢ [;"_2 _ /0 ;;F(t)dt} + /o " o(D, 03, w—03l)dF(l) + F(2)Z =

Kz + %w +(ca—g) /0  F(t)dt + Z. (2.9)

For the remainder of this proof we distinguish three cases.

c1+cg—g < cotcg—g

g1 o2

Case (i)

From the proof of Theorem 2.1 we know that in this case in state (D, 01, w) always o is chosen.
In (U, w) there is even less reason to work at fast rate, as no variable down costs ¢4 are accounted
(initially) and Ky = 0. So, one would expect o1 to be optimal in this case. This is just what
happens. From (2.5) we see:



v(D,01,w) = (c1 +cq — g)% +Z. (2.10)

Substitution of (2.10) into (2.4), and using (2.9) yields:

w(Uyw) = mind e (ea—g) [ " FEdt, Kot Lt (ca—g) |7 Pty +2-gu.(211)

01,92

Now o9 is chosen iff

K2+Ez_w+(cd—g)/;£F(t)dt < c—l-’LU‘{‘(Cd'—g)/;I—F(t)dt ad
o9 0 a1 0

(ca=9) [ F(o)ds+ [c—l - fﬁ] w > Ky (2.12)
;“-’2- J1 )
However,
(Cd_g)/;IF(t)dt-l- [ﬂ—c—z]w < [cl+cd_g - c”cd—g]w <o. (2.13)
2 g1 02 o1 P

o2

By combining (2.12) and (2.13) we conclude that o; is chosen for all w > 0 (my = o).

Case (i) 2T %=9 @2tcu—g

and w < mp.
g1 a9

As in the previous case (i), we note that if condition (ii) holds in a down state (D,o1,w), then
01 is chosen (due to Theorem 2.1). Again we prove that o is optimal in (U, w) as well, which
is intuitively clear. In (2.4) v(D,o1,w — a1l) only occurs for

0fw—-—0ol <w<Lmp.

So, again (2.10) is to be substituted into (2.4). From (2.11) we see that o5 is chosen if (2.12)
holds. However,

(cd-g)/aF(t)dtJr[c—l—c—z]w < [Cﬁc‘i"g—cﬁcd_g mp = Ky, (2.14)
o5 L B ) o1 o9 -

by Definition 2.8. Now again by combining (2.12) and (2.14) we conclude that o is chosen for
all w > 0.

c — ——
Case (i) 2T%@=9 ctc—g

and w > mp.
o1 g2

In this situation a non-trivial Control Limit is to be expected. Furthermore in this case we will
actually use the condition that either & 2 2 or F(I) is IFR. From Theorem 2.1 we know that
o2 is chosen in state (D, 01, w — 01l) iff

w—oill >mp < 0<1< (w-mp)loy,

9



»sen otherwise. We use this result to simplify the first minimization term in (2.4):

D,o1,w—01l)dF(l) + F’(%)Z =

)
> -0l
[Kg +(cateq—g)2 - S Z] dF(l)
2
o [ ea= 0222 2] ar) + F(2)z =
E2Y = 71
o1 [P o
-9 2 /0 Pt)dt+ (1 +ca—g) [, Ft)dt+2 (2.15)
2 o1
ution of (2.9) and (2.15) into (2.4) we finally find that o3 is chosen iff
> CH(w), (2.16)
1= / Y1 = F(t))dt,
0
= /f[l — F(t)dt, (2.17)

o2

o _ q+w-g_w+%—ﬂ)
= (e g)/ (al[ o1 o2 '

nption 4 ¢y > g, and thus C' > 0. From (2.16), it is easy to see that the optimal
1if 0 < C < 1. We have not been able, however, to derive a similar general result
thout the additional assumptions of the Theorem. Furthermore, since C' contains
ion 0 < € <1 cannot be checked beforehand, which makes it useless for practical

. sufficient conditions, that guarantee the optimality of a CLR, we note that

mp .
—_— 91 — . 1 —
) =C /m 1~ F@ldt > 0 ; lim CH(w)=0.
a2

< CH(mp) ; K(oo) > CH(o0). (2.18)

that K(w) and CH(w) intersect at least once; K (w) lies below CH(w) initially
ZH(w) finally. A first conclusion from (2.18) is that there exists some 0 < @ < oo,
is chosen for all w > .

6) and (2.18) we see that a necessary condition for a CLR to be optimal, is that
H (w) intersect only once. A sufficient (not necessary) condition to guarantee this

10



K'(w) > CH'(w), forw > S, (2.19)
where K'(w) and H'(w) denote the derivatives of K(w) and H(w) respectively:

K'(w) := &1—1 [1—F(“'—TTQ] > 0, (2.20)
H'(w) = 11 [1-F(2)] - %[1—F(g‘;)] € R, (2.21)

and
S := first intersection point; K(S) = CH(S); K'(S) > CH'(S).

A sufficient condition which guarantees (2.19) is:
a5 & (2.22)
01 g2

From (2.21) we see that in this case
CH'(w) < C [— -~ —] [1- F(ezze)]

g1 a2

_ [Cl+cd"'g_02+cd_g]"1 [Cd-g_cd_g] l[l— (w—mg)] <K’(w)
o1 o9 o1 (o) g1

So, if (2.22) holds then the optimal policy is CLR.

Another condition sufficient for (2.19) to hold, is that the lifetime distribution function with
density function f(l) is IFR, i.e. F(I) has an Increasing Failure Rate:

f(z) f(y)
1-Fz) = T-F@)

for z < y, (2.23)

which is explained as follows. From (2.17) and (2.21) we see:

H() = 0; H'(0) > 0; H(co) = 0. 7
In Lemma B.1 we prove that, if F(l) is IFR then H(w) is unimodal, i.e. H(w) reaches its
maximum in w}; (say) and

H(w) >0 for 0<w<wy,

H(w) < 0 for w>uwl.
If S > wj then (2.19) is certainly satisfied because H'(w) < 0 for w > S. If S < w}; then
consider

L(w) := ————Z:EZ§

Now (2.19) is satisfied if

for S < w < w.

11



>C for S <w < w. (2.24)

condition to guarantee (2.24) is for § < w < wiy:

>0 &
Lomg) af() - igf(,%)

wmey S IR = A= FE)]

sfied if F(I) is IFR. Thus (2.19) is satisfied, which is a sufficient condition for a CLR
. O

>m 2.2, the condition c% > 22 has an intuitively appealing interpretation. Repairing
ts ¢; per unit of time, while o; units of work are performed per unit of time (i = 1, 2).
otes the cost of performing one unit of work at rate o;. If 2L > 2 then working
o2 reduces both variable repair costs and the expected length of a down-period.
large that K is sufficiently compensated by these reductions, there is no reason to
become optimal again for larger values of w.

01 < ;% is less evident, because working at slow rate is cheapest. Both K» and
il variable repair costs have to be fully compensated by a reduction of the expected
Once w and o are given, the expected down time is determined by the lifetime
F(l). Theorem 2.2 states that 7}, is a Control Limit Rule if F(I) is IFR, which
clear. We have not been able, however, to develop intuitive arguments to explain
ol Limit Rule would not be optimal if both & < 2 and F(I) is non-IFR. Thus we
iat a CLR is optimal in (U, w) irrespective of the form of the lifetime distribution

ecture is strengthened by Theorem 2.3, which considers a restricted model where
te cannot be switched during an ongoing repair. This is equivalent with setting
he general model considered in Theorems 2.1 and 2.2. For this restricted model we
orem 2.3 that 7j; is a CLR, without any limitations on either F(I) or the variable

repair rate remains unchanged at system-breakdown, we have to consider embedded
only. Thus we have to consider a modified Semi Markov Decision Process with
g state space A and action space A(z) given by:
= {w; w>0},

{01,002}, z€X.

>(z; o) are given by:

) = / 1 wdF(l) + / 1dF(l)
= —+ /l F(t)t,

12



w ©
T(wyo9) = — +/ F(t)dt,
02 %
cwio) = e+ KyF(2) 4, / ot (E _ z) dF ()
g1 0 01
= o+ KaF(2) + ey / T F(8)dt,
01 0
(w;on) = Kp+ cz% + KuF(2) + ¢4 fo 7 F(t)dt.

As in the general case, it can be shown that for this model there exist v(z), £ € X and g which
satisfy the average cost optimality equations (cf. (2.3)):

o(w) = min { (c1 — g)al"l- + KaF(2) + o /0 T )t g f;: F(t)dt, (2.25)

Ko+ (e2 =) + KaF (&) s [ Fat— [ F(t)dt} + [ v(wiew)

Theorem 2.3 If K; = 0 then in the restricted model my; 8 a Control Limit Rule CLR(my ).

Proof: If K; = 0 then from (2.25) we see that o is chosen if:

Ko+ (eataa=g) L —ca [ P11~ FOldt—g [Tt - Flas >

(r+ea=g) —ca [P (1= F@dt—g [T 1~ F)lar =
o1
Kz~ [cl+cd—g—C2+Cd_g]w+(cd—g)/a[1—F(t)}dt >0 o
(75} (2] % ’
Hw) > Cw - K, (2.26)

where H(w) is defined by (2.17) and

O e [Cl tea—g o +Cd“g] lea — g%,
g1 ()]

K = Ks/(cqg— g).
Due to Assumption 4 K > 0. In Lemma B.2 (Appendix B), it is shown that

H(aw) > oH(w) forw>0and0<a<.

13



1 (2.26) is satisfied for some my > 0, i.e. o is chosen if w = my. Then
} 2 C’mu - K.
s.emma B2, for0<a<1:

7) > aH(my) > a(C’mU -—I_{) > Camy — K.

v<my: Hw) > Cw - K.

the optimal repair rate for some my > 0, then o, is the optimal choice for all
. This is exactly the definition of a Control Limit Rule (cf. Definition 2.1). O

terexample: four-region policy

en the optimal policy in (U, w) is not always a Control Limit Rule. It may be a
n1, mg, m3) policy which is defined as follows:

v € {(0, m1] U (m2, m3]} then o; is chosen,
v € {(m1, mg] U (ms,00)} then o9 is chosen,

:m1 < mg < m3g < oo,

ity of this four-region policy is intuitively argued as follows. If w € (0,m;] then
ty of a system-breakdown is negligible. So, there is no need to switch to the fast
€ (ma, my) there may be a considerable chance of a system-breakdown occurring
v repair, incurring fixed costs K4. One may prevent the system from breaking
ching to o3. Then the expected down-costs are reduced such that Kj is sufficiently
. If w € (mg, mg] then there may be a considerable chance of a system-breakdown,
pairing at fast rate. So, in this case K has to be compensated mostly by a reduction
pair- and down-costs. If this reduction is too small then ¢; becomes optimal again.
the reduction of variable costs may be such that switching to oy is justified.

- reasoning is illustrated by a small example.
= 100 (deterministic),

€W := {4,104,204, 1000},
W=uw) = 025 weW,

=1, o9=2,
=1, e =2, ¢4 =10,
, Ko >0.

14




This example inhibits all properties just mentioned. If w = 4 then the system will not break
down, even when o7 is applied. If w = 104 then the system breaks down when o; is applied,
whereas the system keeps operating when o5 is applied. If w = 204 then the system breaks
down, even if o9 is applied.

Several policies are excluded from consideration beforehand. In Theorem 2.1 we have shown
that the optimal switching policy at the beginning of a down-period is of CLR-type. So, only
CLR-policies are considered in state (D, o1, w). Furthermore all policies that choose o9 in state
(U, 4) are non-optimal, because a fixed cost Kj is incurred whereas no variable cost savings are
made.

For each of the remaining twenty policies we have derived explicit expressions for the average
cost as function of K and K (using a regenerative approach, which is explained in Section 3.1).
Now consider a four-region policy 74, which does never switch rates in a down state, and which
chooses 0 in (U, w) if w € {4,204} and o5 if w € {104,1000}. By comparing the average cost
function of w4 with all other average cost functions, we conclude that 4 outperforms all Control
Limit Rules if the following three conditions on Ky and K5 are satisfied:

Ky < 13026 — 27.08K,, (2.27)
Ky > 1344 — 5.43K,,
Ky > 1.02K, —12.

74 is optimal if (2.27) is replaced by
Ky < 1344 — 1.90K,.

Since the amount of work W is completely known to the repairman after inspection, its
distribution function G'(w) does not have any influence on the form of the optimal policy. Note
that in both the intuitive reasoning and in the example, the repair policy is tuned to the chance
of the occurrence of a system breakdown, which in turn is determined by the lifetime distribution
F'(I). We expect the optimality of a non-CLR in state (U, w) with K3 > 0 to depend strongly on
the form of F(I). If F(I) is a continuous distribution function and if 02 (variance of L) deviates
significantly from zero, then no accurate prediction of L can be given. In this case the long-run
average cost function will be quite insensitive to the form of the repair policy applied. So, even
if a non-CLR is the optimal policy, the best CLR will be close to optimal. If o2 is close to zero
then it may be possible to fine-tune the repair policy to the quite deterministic lifetimes of the
units such that a non-CLR is optimal.

3 Performance measures under CLR(my, mp)

3.1 Average cost under CLR(my, mp)

In this section we compute the long-run average cost AC(my, mp) of controlling our two-unit
standby system by a two-dimensional Control Limit Rule CLR{my, mp). This formula may be
useful when searching for the optimal values of my and mp.

The time epochs at which one unit starts operating and an (instantaneous) inspection is
carried out on the other one, are regeneration points for the system. The evolution in time of
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can be modeled by a regenerative process, i.e. after every regeneration point the
ves as if it has just been started. The time between two regeneration points is called

m the theory of regenerative processes (cf. Tijms [1986]) we know that the average
n can be obtained from:

Efcycle cost]

UsMD) = g length]

(3.1)
d length of a cycle is obtained from:
e length] := u; + P (L < %V—) E[Down], (3.2)

robability of a system-breakdown within a cycle is given by:

W) = /omUF(E"’;)dG(w) + /;: F(2)dG(w), (3.3)

m] := expected length of a system down-period,
1puted in Section 3.2. The expected cost during one cycle is computed from:
e cost] := ciEftime 01] + KoP(o3 is chosen)

+ cpE[time o9] + P (L < %V—) (K4 + cqE[Down]), (3.4)

1 0;] denotes the expected time the repairman is working at rate o; per cycle

voq] = /D—diG(w)
0 01

+/mU [/0 LR + %F(E;T"“l)] dG(w),

mp

[ [ 9 4R dG(w) + / ¥ 4G(w),
mp JO g9

(] my

]

30'2]

5 chosen) = / Y F(®2R)dG(w) + G(my).

mp
sible to derive a closed form expression for AC(my, mp). After reduction, (3.2) and
» be evaluated using some numerical routines.
lents of system up- and down-times under CLR(my, mp)

un average measures as defined in Section 3.1 provide insufficient information about
ay a system will be operating. For planning purposes it may be important e.g. to
edict the length of an arbitrary down-period. In such situations it is useful to know
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the moments (mean, variance, etc.) of system up- and down-times, which are obtainable from
_ the corresponding Laplace transforms:

o0 o0
ou(s) = / e P{Up>t)dt ; ¢p(s) = / e P(Down>t)dt , s>0.
0 0

Furthermore ¢1(s) denotes the Laplace transform of the lifetime distribution function. Using
the regenerative nature of our system (cf. Section 3.1), in Theorem 3.1 we present a closed form
expression of ¢y (s). Theorem 3.2 gives ¢p(s).

Theorem 3.1
¢u(s) = ¢(s) /[L = 7(s)], >0,

where
my

00 =y
v(s) == [ 7' e7*'G(o1t) dF(t) +/ e **G(oat) dF(t) - G(mu)/ et AR ().

Proof: We consider an arbitrary regeneration cycle (cf. Section 3.1) to begin at time 0 with
L := lifetime of the unit operating in that cycle,
R := repairtime of the unit under repair in that cycle.

We need the conditional probability that the repair will have been completed before the operating
unit fails, given that it fails at time /; i.e. we need the conditional repairtime distribution given
that no additional opportunity to switch repair rates has occurred yet:

P(RLI|L=1) = P(%gz;wsmu)+P(a—V‘ggz;W>mU) (3.5)
G(a1), if0<I<mL,

=y Glo) +Glo) - G(my), T <i<TY, (3.6)
G(0al), if ™0 < < oo,

Due to the regenerative nature of our system the distribution of the length of a system up-period
is obtained from:

P(Up>t) = P(L>t) +/OtP(Rgl;Up>t—-l|L=l)dF(l)

t
— F@) + / P(R<I|L=1) P(Up> t—1) dF(l).
0
Taking Laplace transforms and using (3.6) we obtain

su(s) = éu(s) + /:;e"“ /;OP(Rgllel) P(Up > t—1) dF(l) dt

= u(s) + /:;P(RSI | L= e / e DPWUp > 1) di dF()

= ¢1(s) + du(s) /0 TeSP(R< 1| L=1) dF ()
= ¢r(s) + du(s)(s),

17




which completes the proof of Theorem 3.1. a

Let

m

%1 —st m ’:g —st muy —got
N(s) = / e / F(2 - t)dG(w) dt + / e / Fe=ost)qG(w) dt
0 o1t 1 . mTzQ oot :

mp

o1

o0 w al"— m
+ / ™% [ F(u) du dO(w) — [ et at / " P(22) 4G ().
my 0 —2 mp

o2

Recall from Section 3.1 that the probability of a system-breakdown occurring in a cycle is
denoted by P (L < g) , which is defined by (3.3). Now the Laplace transform of the length of
a system down-period is obtained from:

Theorem 3.2
ép(s) = N(s) /P(L< %). (3.7)

Proof: See Appendix C. o

3.3 Additional long-run average measures under CLR(my, mp)

Several important operational characteristics can now easily be calculated using the expressions
found in Sections 3.1 and 3.2. For instance:

e E[Up]/(E[Up]+ E[Down]) := availability of the system (which is the fraction of time the
system is operational),

e P(L < %)/E[cycle] := mean number of system breakdowns occurring per time unit,

1/E[cycle] := mean number of repairs performed per time unit,

G(my) := fraction of the total number of repairs that are fully carried out at rate oo,

P(oy is chosen) — G(my) := fraction of the total number of repairs that are started at
rate o1 and completed at rate og after an intermediate switch at system-breakdown,

Eltime 03]/ E[cycle] := fraction of time the repairman is working at rate o3, i = 1,2,

(E[cycle] — 3°%=2 Eltime ai]) /Eleycle] := fraction of time the repairman is idle.
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4 Concluding remarks

Several questions are still open for further research.

At first, for the general model, in Theorem 2.1 we have shown that in state (D, o1, w) it is
average cost optimal to switch to the fast repair rate oy according to a CLR. For K; = 0, in
Theorem 2.2, we have shown that in state (U, w) the optimal repair rate is chosen according to
a CLR if either a2 & or F(l) is IFR. We conjecture, however, that in this state the optimal
repair rate is chosen according to a CLR without any restrictive conditions, i.e. even if both
or < 2 and F(I) is non-IFR. This conjecture is strengthened by Theorem 2.3, which proves

o1 o2
general optimality of a Control Limit Rule in a restricted model.

Let
mg, mg, g the optimal Control Limits, and the minimum average costs, of
the general model considered in Theorem 2.1 and 2.2.
m, g% the optimal Control Limit, and the minimum average costs, of the

restricted model considered in Theorem 2.3.
For K4 = 0, the following relationship is intuitively clear.

mg > mE > m§. (4.1)

After choosing the proper repair rate in the restricted model, it takes some time before the system
eventually breaks down, thus mf > m$. This inequality follows easily from (2.7) and (2.26),
since gf > g%. In the restricted model there is no additional opportunity to switch repair rates,
thus we expect m§ > m¥. From (i) and (44) in the proof of Theorem 2.2, it is immediately
clear that m§ > m@. However, we have not yet found the right arguments to prove the first
inequality of (4.1).

By numerical experiments one can investigate monotonicity of the average cost function
AC(my,mp) as a function of my and mp. This result may lead to considerable savings of
computation time when efficiently searching for the optimal Control Limits m}; and m%.

Most intriguing is the form of the optimal policy for Kz > 0. At the end of Section 2.3 we
argued that the best Control Limit Rule will be (close to) optimal if 02 deviates significantly
from zero. This conjecture may be verified by numerical experiments after properly discretizing
the probability distribution functions. Other questions may be answered such as: When is the
best CLR a good alternative to an optimal non-CLR? What is the influence of K and F({) on
the form of the optimal policy? Are there optimal policies with more than four regions? (We
believe not) Etc.

Sensitivity results may be obtained by varying input parameters during the numerical ex-
periments. One might for instance vary the fast repair rate, the slow repair rate, variable down
costs (loss of production), or one might apply a non-optimal Control Limit Rule, etc.
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Appendix A. Existence of an average cost optimal policy

In this appendix we outline the proof of the existence of an average cost optimal policy, under the
additional assumption that G(w) has a finite and F'(I) has an infinite support. First we make
use of Theorem 2 of Ross [1970], which guarantees the existence of an average cost optimal
policy, provided the following two conditions are satisfied:

Condition A.1 There exist finite numbers § > 0 and € > 0 such that
P(T(z;0)<6) < 1—¢ forallz € X, o € {01,032},

where T'(z;0) denotes the time until the next decision epoch, given the current state z and
current action o.

Condition A.2 There exist a bounded Baire function v(.) on X and a constant g satisfying
the optimality equation (2.3).

Theorem 2 of Ross [1970] states that under Conditions A.1 and A.2 any policy which, when
in state z, selects an action minimizing the right hand side of (2.3) is average cost optimal.

Condition A.1, however, is not satisfied in our model, since for i = 1,2
; co) 1 = Al
mlggf{ (z;05) } 0 (A.1)

To overcome this difficulty, we slightly modify our original Semi Markov Decision Process
into an equivalent Semi Markov Decision Process for which Condition A.1 does hold. This
modification is based on a preliminary analysis of the average cost optimality equations (2.4)
upto (2.6). Note that (A.1) is caused by those states # € X which are represented by (D, o, w)
for small values of w (i = 1,2). Hence we modify our Semi Markov Decision Process such that
those states are removed from X. Due to (2.6) the states (D, o3, w) can be removed without any
difficulty for all w > 0: simply insert (2.6) into the second term of (2.4) (cf. (2.9)). Moreover,
we note that oy is the minimizing action in (2.5) (independently of the value of g > 0) in those
states (D, o1, w), with w < w*, where

«._ 01Ky

W= > 0.
c1+c¢y

So by removing those states from the state space for which the optimal action can be deter-
mined on forehand, we arrive at the following modified Semi Markov Decision Process, which is
equivalent to the original one (i.e. the average cost optimality equations for both models have
exactly the same solutions).

Xm = {(Uw); w20} U {(D,01,w); w>w*},
Am = Am($) = {01’02}’ $€Xm,
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Tm (U, w; 01) = pL+ /%F(t) dt, 0 <w< w*,
Tm(U, w;07) = pr+ /i: {F(t)‘— F (9’%1"3:)} dt, w > w*,
o1
Tm (U, w; 03) = purL+ /O%F(t) dt, w >0,
Tm(D,01,w;0;) = (%, w>w, 1=1,2,
em(Uywio1) = 51}3+KdF( )+cd/;”—1F(t) dt, 0< w<w,
em(Uyw;or) = { / [1— F(&)] di + / F() - F (2520)] dt} +
o tr0 - P () s (5) - (),
o

w > w*,
em(U, w;09) = Ko+ E?E + KdF( ) +cd/0;%F(t) dt, w > 0,
em(D,01,w;01) = Kg+ (01 +cd)(—r—1, w > wk,
em(D,01,w;09) = Kg+ Ko+ (ca + cd)(—;%, w > w*.

Finally the one-step transition probabilities are given by

Pm{(U,[0,9]) | (U, w;01)} = G(v), 0<w<w,
Pm{(U,[0,v]) | (U, w;00)} = Go)[1 - F (252, w >,
Pm{(U, [0,9]) | (U, w;09)} = G(v), w >0,
Pr{(D; 01, [w — o1t, w]) | (U, w;01)} = F(t), w2 w,0<t < v,
pmi{(U,[0,9]) [ (D, 01, w;04)} = G(v), w>wi=1,2

Note that for this modified Semi Markov Decision Process the transition times Ty, (x; 0) between
two successive decision epochs have the property

*
Tm(z;0) > min{ L, g— }, for all z, 0.
2
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Since F(0) = 0, Condition A.1 is certainly satisfied for the modified model. To verify Condi-
tion A.2 for the modified model, we invoke Theorem 3.1 in Kurano [1985], which states that
Condition A.2 holds if the Conditions A.3 and A.4 below are fulfilled.

Condition A.3 The one-step transition functions 7,,(x;0) and the one-step cost functions
¢m(z; o) are bounded on X, x A,.

Condition A.4 There exists a finite measure v on X, and a 0 < 8 < 1 such that

(@) pm{ Bl (z;0)} > Tm(z;0)7(B) for any Borel set B of X,

(i) Y(Xm) >‘ (1= B)/Tm(z;0) for any (z;0) € X X A

Condition A.3 is trivially satisfied under the following assumption.
Assumption 5 G(w) has finite support [0, Wmez] and F(I) has infinite support.

Note that Assumption 5 implies that the state space X,, can be restricted to the states (U, w)
and (D, o1, w) with w < Wnag.

From the specification of the one-step transition functions 7,,(z; o) and the one-step tran-
sition probabilities p,{ . | (z;0) } it is straightforwardly verified that the following choices for
the measure v(.) and the number 3 satisfy Condition A.4.

G(v) [1 - F (mas)]

7(U, [0, 4]) = L v >0,
Tmaa:
7(Da01;[0)w]) = 0) 'ZUZO,
and
1 "':6 — Tmin’
Tma:c
where

Tmin := inf{ 7(z;0) } and 74, = sup{ 7(z;0) }.
0 z,0

The exposition above yields

Theorem A.1 Under Assumption 5§ Equation (2.3) has a bounded solution, and any policy
which, when in state x, selects an action minimizing the right hand side of (2.3) is average cost
optimal. : o
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Appendix B. Auxiliary lemma’s to Theorem 2.2 and 2.3
Let H(w) be defined by (2.17).

Lemma B.1 If F(l) is IFR then H(w) is unimodal.

Proof: Since H(w) = 0 if F(2) = 1, and H(w) is monotonically decreasing if F'(2 o) <1and
F(%) =1, we only consider w Such that F (% ) < 1. From (2.17) and (2.21) we note that:

H©) = 0; H'(0) > 0; H(co) =
So, there is at least one solution to the following equation:
H'(w) = 0. (B.1)

H(w) is unimodal iff (B.1) has a unique solution. For convenience we assume:
gp = 1; 09 > 1.

Now (B.1) is equivalent with

1-Flw) 1

W) = —— ot = —, B.2
AW = ey = 5 (B2)
Since
1
a solution to (B.2) is unique if
Qw) <0 <«
1 &) fw)
o2 [1 - F(2)] 1—F(w)’
which is satisfied if F'({) is IFR.
O
Lemma B.2
H(ow) > aH(w), w>0;0<a<l.
Proof:
aH(w) = / T ol — F(t)|dt
o2
st —2%)
< © L= F(e)lat
Y
< / 1 - F(b)dt ~ H(aw).
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ix C. Proof of Theorem 3.2: ¢p(s).

arbitrary regeneration cycle to begin at time 0. Let

initial repair rate,

repair rate after system-breakdown.
ition of the length of a system down-period is given by:
on>t) = P(m;,ﬁé > tlL < %)

— P(® s 0) [P(L< ).

) is obtained from (3.3). Let the indicator function I(a > b) with a,b €

1 ifa > b (true),

o
~—
I

0 otherwise (false).

o0

oL > 4 /OmUP("’%ﬁLIi>t)dG(w)+/

my

P (222L > t) dG(w)

= A(t) + B(t) + C(¢t),
B(t) and C(t) are defined by:

my -
e /0 /w P I(2-1>1) dF() dG(w),
o1

-mp

1= /mU /o-w"‘ 1(1%!-11 >t) dF(l) dG(w),

mp

[P(r<2-1) o).

my

ection of A(t), B(t) and C(t) leads to the following expressions:

T

- /:UF (5 -) 46w - [:;UF(’”—}’;@) dG(w) f0<t<mE,

0 ift> 70,
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g1

m,
F(25m2) do(w) #0<t< ™2,

(o o]

F(2-t) dG(w) f0<t< L,
o0 w . m
/Uth (2-t) do(w) ift>me.
v be obtained by integrating over the appropr

roo

e [A(t) + B(t) + C(t) dt /P (z <

).
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