1992

W.J. Fokkink, A.S. Kiusener

Real time process algebra with prefixed integration

Computer Science/Department of Software Technology Report CS-R9219 June

CWI is het Centrum voor Wiskunde en Informatica van de Stichting Mathematisch Centrum

CWI is the Centre for Mathematics and Computer Science of the Mathematical Centre Foundation

CWI is the research institute of the Stichting Mathemat
was founded on February 11, 1946, as a non-profit ins
promotion of mathematics, computer science, and the
sponsored by the Dutch Government through the Nett
for scientific research (NWOQ).

Copyright © Stichting Mathematisch Centrum, Amsterdam

al Time Process Algebra with Prefixed Integration

Willem Jan Fokkink
Steven Klusener
CwWI
Department of Software Technology
P.O. Box 4079, 1009 AB Amsterdam,
The Netherlands

Abstract

7 J.C.M. Baeten and J.A. Bergstra extended ACP with real time, resulting in a Real
'ocess Algebra called ACPp [BB91]. They introduced an equational theory together with
tional semantics which contains the notion of an idle transition, reflecting that a process
othing more than passing the time before performing a concrete action at a certain point

This idle transition corresponds nicely to our intuition, but it results in uncountably

1g transition systems. Their paper does not contain a completeness result nor definitions
iled proofs.

tis paper we give a more abstract operational semantics without the idle transition. Due
implification and by restricting to prefized integration we can prove soundness and com-
5. Furthermore, we will show that equality between process terms is decidable.

ithematics Subject Classification: 68Q10, 68Q40, 68Q55, 68Q60.
! Categories: D.1.3, D.3.1, D.4.1, F.3.1, F.3.2.

rds & Phrases: real time, process algebra, ACP, integration, SOS, normal form.
he authors were partly sponsored by ESPRIT Basic Research Action 3006, CONCUR.

tion

e communicating protocols often depend on time constraints, many existing
ras have been extended with an explicit notion of time. See for instance
90] for an extension of CCS, [RR88§] for an extension of CSP, [Gro90],[BB91]
ion of ACP and [NS90] for an extension of a combination of CCS and ACP.

is based on the approach of Baeten and Bergstra in [BB91]. Real Time Process
erns (closed) process terms, constructed from timed actions that consist of a
ion taken from an alphabet A and a time stamp taken from [0,00]. A timed
enotes the process which executes an action a at time £, after which it termi-

fully. This results in identities that do not hold in standard Process Algebra
90]), such as

a(2) - (b(1) + ¢(3)) = a(2) - (3).

1(2) we have passed time 2, so in the remaining subterm b(1) + ¢(3) the first

nnot be chosen anymore and therefore it may be removed.
9

’
N

1
1009 AB Amsterdam, The Netherlands

In their paper Baeten and Bergstra have also introduced the advanced notion of integration,
by which it can be expressed that an action occurs somewhere within a (dense) interval. For
example, the process which executes an action a somewhere within the interval (0,1) is
denoted by fue(o,1) a(v). In general their theory is undecidable, due to the fact that they
allow integration over arbitrary subsets of [0,00). In this paper we restrict ourselves to
prefixed integration, which requires that every action having a time variable v as time stamp
is directly preceded by the binding integral of v. Furthermore, integration is only allowed
over intervals of which the bounds are linear expressions of variables.

We will focus on absolute time, i.e. every time stamp is interpreted from the start time of
the entire process (time zero). It is also possible to consider process terms in relative time,
where every time stamp refers to the point in time the previous action was executed. In
[BB91] a translation from relative to absolute time has been given. Hence the results of this
paper hold for relative time as well.

Operational semantics, bisimulation equivalence and equational theory

In this paper an operational semantics consists of a set of states and a transition relation.
This relation contains transitions, which are pairs of states, representing the change of one
state into the other. A transition may be labelled, in which case the label represents the
executed action. An unlabelled transition stands for passing of time without the execution
of actions (idling). The transition relation is defined by giving action rules in Structural
Operational Semantics according to Plotkin ([P1o81]). These action rules are inference rules
and the transition relation is the least relations satisfying the action rules.

For each operational semantics a bisimulation equivalence between states can be defined
([Par81],[Mil89]). Intuitively, two states are bisimilar if each transition from one state can be
simulated by a corresponding transition from the other and vice versa.

We define a start function which provides each process term with an initial state; this is the
state in which the execution of the process starts. Each operational semantics characterizes a
bisimulation equivalence between process terms: two terms are bisimilar if their initial states
are bisimilar.

Process Algebra aims to fit equivalences between process terms into an equational theory,
i.e. an axiom system. An equational theory is said to be sound w.r.t. an equivalence if every
two process terms which can be equated in the theory are equivalent. Moreover, the theory
is said to be complete w.r.t. an equivalence if every two process terms which are equivalent
can be equated within the theory. Since bisimulation equivalence is the only equivalence we
consider in this paper, the terms sound and complete are used without further reference.

A survey of the paper

The first three sections discuss Basic Real Time Process Algebra (BPApé), consisting of
timed actions, sequential composition and alternative composition.

In Section 1 BPApé and its operational semantics are presented. This operational semantics
results in a bisimulation equivalence where the initial state of a, BPAp§ term has uncountably
many transitions.

In Section 2 we define the theory of BPA pétogether with a new operational semantics that
abstracts from idle transitions. The action rules of this operational semantics are similar to

1les of (untimed) ACP as given in [Gla87]. In this new operational semantics the
of a BPApé term has only finitely many transitions. It is designed such that it
s the same bisimulation equivalence as the operational semantics of the first sec-
er, this characterization is better suited for proving soundness and completeness
1 system in detail than the one of the first section.

1 3 completeness of BPApé is proven. We introduce the notion of a basic term.
roperty of such a term is the strong correspondence between its syntax and the
f its initial state. Due to this correspondence we can prove completeness for basic
yrove as well that each term can be equated to a basic term, which induces the
s for all terms of BPApé. ,

4 communication operators are added, resulting in the theory ACPp. We extend
nal semantics and prove completeness of the theory.

5 we add the important feature of integration to BPA pé, resulting in the theory
tegration is the alternative composition over a continuum of alternatives. Also
lencies can be expressed: the process f,¢(p 10y @(v) - b(v + 1) executes an action a
) and 10 and then, one time unit after the execution of a, it executes an action b.
>nal semantics of BPApé is extended to one for BPApél.

term in BPApéI may contain free time variables, i.e. time variables which are
)y an integral. In order to reason with terms containing free time variables we
otion of a process term by allowing that it contains conditions on time variables.
» of basic terms is extended similarly. Then we can prove in Section 6 that the
?ApéI is complete.

7 communication operators are added to BPApé1, resulting in the theory ACPpl.
:ht the equational theory BPApé1 is undecidable, because it contains axioms that
validated by an uncountable number of substitutions. However, in Section 8 we
icit construction for reducing process terms to a normal form and in Section 9
it BPApé! + p = q if and only if p and g have the same normal form. Thus it is
r two process terms whether they are equal over this theory or not.

; consider recursion in this paper.

gements. Special thanks go to Jos Baeten for his support and criticism. Jan
thanked for giving useful comments and Jan Friso Groote, Henri Korver and
: for discussing ideas and helping with IATgX. Frits Vaandrager had a first idea
the notion of a basic term. The set-up of the last two sections was altered after
1ssion with Aart Middeldorp and Fer-Jan de Vries. Martin Wirsing is thanked
1g the research of completeness in ACPp with integration.

Jperational Semantics

»n we introduce the calculus of Basic Real Time Process Algebra (BPApé) and
th an intuition by introducing the operational semantics as given in [BB91]. Let
t of actions, containing the constant §. The alphabet of the theory BPApé is the
(t) | a € As,t € [0,00]} of timed actions. In the sequel A*™¢ will denote the set
ions without timed §’s.

4 1 AN OPERATIONAL SEMANTICS

The set T of process terms over BPApé is generated by the timed actions together with
the alternative composition +, the sequential composition - and the time shift >. This last
operator takes a nonnegative real number and a process term; t 3> p denotes the part of p
that starts after £. We define T, with typical element p, inductively as follows, where a € A5
and t € [0, 00):

pu=alt)|lp+p|p-plt>p

In this section, a state is a pair consisting of a term and a point in time. The initial state of
a term p is < p,0 >, denoting that each process starts at time 0. We distinguish three kinds
of transition relations:

Step C (T x[0,00]) x At™e x (T x [0, o0])
Idle € (T x[0,00]) x (T x [0, 00])
Terminate C (T x [0, 00]) x A*™ x [0, 00]

They are the least relations satisfying the action rules given in this section. We write

<m,t>g(—r—)><x’,t’> for (<z,t>,a(r),<z',t'>) € Step

<zt >——<zt'> for (<z,t> <z, t'>) € Idle
<z t>) ¢ Vot' > for (< z,t>,a(r),t) € Terminate

We always have t' = r in Step and Terminate and = 2’ in Idle. In a text we may refer to
the various kinds of transitions as:
a(r) ' . i

<z, t>-—><z',r> isa a(r)-transition

<zt >——<z,r> is an idle transition

<z,t> o) < v,r > is a terminating a(r)-transition
We may mention the transition system of a process term p, meaning the restriction of the
transition relations to the states which can be reached from the initial state of p.

The action rules concerning alternative composition and timed actions are given in Table
1. The transitions of p + q are the “union” of the transitions of p and those of q.

As an example we give the transitions of the timed action a(1), denoting the process
that performs action a at time 1, after which it terminates successfully. Its initial state is
< a(1),0 >, from where idle transitions are possible to states of the form < a(1),¢ > with
0 <t < 1. An idle transition is a transition which increases the time component without
executing any action. In general, from a state < a(l),¢ > an idle transition is possible to
< a(1),t' > whenever t < t' < 1. Furthermore, from each state < a(1), > with £ < 1 an
a(1)-transition is possible to < 1/,1 >.

The transition system of the term a(1) can be represented by the left-hand process diagram
given in Figure 1. A process diagram is simply a pictorial representation of a transition
system. It is not possible to make a picture of the transition system itself, since it has
uncountably many transitions. The intuition behind such a process diagram is that the
process starts at the top point. It can idle by going to a lower point without crossing any
line, whereas the execution of an action a at time r is reflected by going to a dashed line at
level r labelled with a. Only dashed lines may be crossed.

t<r <x,t>ﬂ<x',r>

a(r) a(r) ’ a(r) ’
> =< ,r> <z+yt>—<z,r> <y+x,t>—><z,r>
<s<r <x,t>1(1-)><\/,'r>
>—<afr),s > <z+y,t>B < /ir> <y+z,t>D <>
<s<r <z, t>—< 2,7 >
>—<8(r),s> <rt+yt>—<zr+yr> <y+rt>—<z+yr>

Table 1: Action rules for timed actions and alternative composition

Figure 1: Process diagrams of the terms a(1) and §(1)

rticular set of atomic actions is the set of §(r)-terms. 6(1) can do nothing more
til 1. The initial state is < §(1),0 > and from each state < §(1),t > an idle
» < 8(1),t' > is possible whenever ¢ < ' < 1; time 1 can not be reached.
ition system of a(1) + b(2) can be represented by the process diagram given in
state p (in Figure 2) is of the form < a(1) + b(2),t > with 0 < t < 1. From
inating a(1)-transition to < 1/, 1 > and a terminating b(2)-transition to < 1/,2 >
However, from a state like v of the form < a(1)+5(2),t >with1 <t < 2onlya
b(2)-transition to < /,2 > is possible. Hence, by idling from < a(1) + 5(2),tp >
b(2),t1 > with 0 < tg < 1 < #; < 2 we lose the possibility of executing the
nd. Thus a choice is made at time 1; if the choice is made for b(2), then the
‘1) becomes redundant.
tion system of a(1) 4+ 6(1) consists of exactly the same relations as the transition
(1). The summand (1) contributes only idle transitions that are contributed
nand a(1) as well. However, in a(1) + 6(2), the §(2)-summand contributes idle
rhich are not contributed by a(1), since §(2) has idle transitions to points in time
nd 2. The transition system of a(1) + §(2) can be represented by the process
the right-hand side of Figure 2.
1 rules for sequential composition and for the time shift are given in Table 2.
process ¢ > p can only idle or do a transition to a state after t.
2 give the definition of bisimulation.

6 1 AN OPERATIONAL SEMANTICS

—==p---- ~ 2

Figure 2: Process diagrams of the terms a(1) + b(2) and a(l) + 6(2)

t<r<s
<zt> o> <8 rt>—<s>z,r>
<x-y,t>3@><m'-y,r> a(r) /
. rT>8 <L<zi>-——<<zair>
a(r) <s»>zt>D e r>
<zZt>—> < r> ’ !

afr)
Kz -Yt>—— <y, r> r>Ss <x,t>i(—t)+<\/a’”>

<Lt >——< 2, r > <s>>m,t>i(—r-)><\/,7‘>
<z Yt>—<zc-y,1r>

r>s <L<zni>—<z,r>
<s>Dr,it>—<2,r>

Table 2: Action rules for sequential composition and time shift

Definition 1.1 Two states (< po,t >, < qo,t >) are called bisimilar, denoted by < Po, T >
« <qo,t>, if there is a symmetric relation R C (T x [0, 00]) x (T x [0, o0]) such that:

1. < po,t > and < qo,t > are related by R.

2. If<p,s> et) <p,r>and R(<p,s>,<q,s >), then there is a transition < q,s >

o) <q',r > such that R(< p',r >, < ¢',7 >).

3. If <p,s>—<p,r> and R(<p,s >,< q,8>), then < q,8 >—< q,r >

4- If<p,s> = V and R(< p,s >,< q,8 >), then there is a transition < q,s > o) VA

¢ Real Time Process Algebra

theory of BPAp

ie theory of Basic Real Time Process Algebra ([BB91]). It consists of the standard
5 of Basic Process Algebra, extended with some axioms describing real-time prop-
lefining the time shift. The axioms of BPApé are given in Table 3. Let a € A;.
ate §(0) to 8. The laws ATA3,4 are generalizations of the BPAS laws A6 and A7.

Al X+Y=Y+X

A2 X+Y)+Z2=X+(Y+2)
A3 X+X=X

A4 (X+Y)-Z=X-Z+Y-Z
A5 (X-Y)-Z=X.(Y-2)
ATAla a(0) =46

ATAlb a(o0) = 6(00)

ATA2 t<s 6(t)+8(s) =6(s)

ATA3 () X =6(t)

ATA4 a(t) + 6(t) = a(t)

SH1 a(t)- X =al(t) (t> X)
SH2a t<s t>>a(s)=a(s)

SH2b t>s t>a(s)=6(1)

SH3 t>(X+Y)=0U>X)+(t>Y)
SH4 t>»(X-Y)=0t>»X)-Y

Table 3: An axiom system for BPApé

Apb we can prove:
5> (a(4) + b(6) + ¢(7) - d(8))
5> (a(4) +b(3))
(1) + a(2) - b(3) + 6(3) - c(4)

b(6) + c(7) - d(8)
5(5)
a(2) - b(3) + 6(3)

» definitions

s term p we now introduce its ultimate delay U(p), which is the first moment in
can not reach by idling only. The ultimate delay has been introduced in [BB91],
s defined for terms not containing time shifts and extended to 7 by putting
J(p) = U(q). Here the ultimate delay is defined on the syntax only, so it can
he operational semantics. In [MT90] Moller & Tofts have introduced a similar
hich they called the maximum delay.

8 2 BASIC REAL TIME PROCESS ALGEBRA

The ultimate delay is defined inductively as follows, where a € A;.

U(a(t)) =t
UX+Y) = mazx{U(X),U(Y)}
UX-Y) = UX)

Uit> X) = maz{U(X)t}

The size of a term is the number of operators in the term. And the depth of a term is the
longest chain of sequential compositions in the term. It is defined inductively as follows,
where a € Aj.

depth(a(t)) =1
depth(X +Y) = maz{depth(X),depth(Y)}
depth(X -Y) = depth(X)+ depth(Y)

depth(t > X) = depth(X)

Note that depth can not be defined on the theory; for example, §(1) - a(2) = §(1), but the
two terms have different depths.

Two terms p,q are said to be syntactically equivalent, denoted by p = gq, if they are
constructed in exactly the same way from the atomic actions and the constructors. Normally
we are not much interested whether two terms are syntactically equivalent, but more whether
they are equal modulo the axioms Al and A2. This is denoted by p 2 q and we say that p
and q have the same form. If there is a derivation in the theory BPApé§ connecting two terms
p and g, then this is denoted by p = q. Moreover, we have two notions of summand inclusion.
A term p is said to be a syntactic summand of ¢, denoted by p L g, if p = ¢ or there is a ¢’
such that p 2 g+¢'. And p is called a derivable summand of g, denoted by p C ¢, if p+¢q = ¢.

2.3 An operational semantics for BPAp with finite transition systems

In the first section the operational semantics has been presented according to [BB91]. There
each state was a pair of an expression and a time stamp; an idle transition increased the time
while the expression remained the same. We now define an operational semantics without
idle transitions, which characterizes the same bisimulation equivalence as the operationals
semantics of the previous section. The transition system of a(1) will contain only one labelled
arrow. This new operational semantics is analogous to the operational semantics for ACP
presented in [Gla87], where the following transitions occur:

a =/ and a-p > p

In a real-time setting we have to take the time stamps into account. Consider the term a(t)-p.
After executing the a(t)-action only that part of p can be executed which starts after t. Now
we have the following transitions:
t t
at) 28 / and a(®)-p 2B t>p

In Figure 3 the transition systems for the terms a(1) and a(1) + 5(2) are given, together with
the corresponding process diagrams.

In Table 4 the action rules of this operational semantics are given. Now every state is a
term from 7 and every transition is labelled by a timed atomic action. There are no idle

2.3 An operational semantics for BPAp with finite transition systems 9

a(l) a(1) + b(2)
a(1) a(1)
b(2)
v v

Figure 3: Process diagrams and transition systems for the terms a(1) and a(1) + b(2)

transitions and every term is its own initial state. The new operational semantics concerns
three transition relations:

Step C TxAtme x T

Terminate C T x Atime
Deadlock C T x [0,00]

We write:

P28y for (p,a(t),p’) € Step

P =) v for (p,a(t)) € Terminate
P LON v for (p,t) € Deadlock

The transition relations Step and Terminate are defined as the least relations satisfying the
action rules of the top part of Table 4. The transition relation Deadlock is introduced in
order to distinguish by bisimulation process terms that only differ in their deadlock behaviour.
Note that the transition relation Idle did that job in the previous section. Deadlock contains
all pairs (p,t) for which p has an initial deadlock at time ¢. A process term p has a possible
initial deadlock if and only if it can idle beyond its latest initial action time. Therefore, in
order to define the relation Deadlock properly, we now introduce L{p). This is the maximum
of points in time at which p can execute an initial action. The process term p can do a
b-transition at U(p) if and only if U(p) > L(p).

L) =0
Lia(t)) =t
LX+Y) = maz{L(X),L(Y)}
L(X-Y) = L(X)

LX) fL{(X)>r
Lr>» X) = {o(: othérw)ise

We adapt the definition of bisimulation.

Definition 2.1 A pair py,qp € T is called bisimilar, denoted by py « qo, if there is a
symmetric relation R C T x T, called a bisimulation relation, such that:

10 2 BASIC REAL TIME PROCESS ALGEBRA

a€ A, te(0,00)
atom : af(t) i‘!)>\/
pgg))\/ pg(—t)'P'
p-qi'-(—tlt>>q p-qﬂt-)rp"q
a{t t
+ p G v p < p
pt+q 8 va+p Y v p+qg 8 pha+tp 28 P
o s<t p 28 s<t p 28y
s>p 24 s>>pit)>p’
5 U(p) > L(p)
pS(_Uy;))\/

Table 4: Action rules for BPApé

1. po and qp are related by R.

2. Ifp “r) p' and R(p,q), then there is a transition q o) q' such that R(p',q').

3 Ifp o) v and R(p,q), then there is a transition q o) V.

In [Klu91] it is proven that bisimulation equivalence « is a congruence. This means that
fpeop andqeo g, thenptgeop +¢d andp-qeop' - ¢ and t > peot>p. Groote
has introduced a special format for action rules in [Gro89), the so-called nty ft/ niyzrt-format,
and proved that a bisimulation equivalence is always a congruence if it is characterized by an
operational semantics with action rules in this format. In [K1u91] the bisimulation equivalence
of this paper is defined by a transition relation with action rules in Groote’s format.

The following theorem says that the theory of BPApé is sound. This means that if BPApé +
P = q then p & ¢. Since the congruence of « is already guaranteed, it can be proven by
showing for each axiom separately that the process terms on the left- and on the right-hand
side are bisimilar (for an arbitrary instantiation).

Theorem 2.2 The theory of BPApé is sound.

In this section we have characterized bisimulation equivalence by a different operational
semantics than in the previous section. In [Klu91] it is proven that these two different
operational semantics characterize the same bisimulation equivalence.

11

npleteness

tion we prove that BPApé is complete. This means that if p & ¢, then BPApé +
it we show that each process term can be reduced to a basic form.

ic terms

m will be a term that does not contain “redundant” parts. For example, the terms
+6(1) and a(5) - (b(6) + c(4)) contain parts that can be removed by application
ims of BPApé; they are derivably equal to the term a(5) - b(6), which does not
y redundant parts. We will be able to prove completeness for basic terms, since
ions of a basic term corresponds directly with its syntax. By showing that each
m is equal to a basic term, completeness follows for general terms.

ns have ascending time stamps

m a(t) - p to be a basic term, it is required that p is a basic term that either starts
i equal to . So if B denotes the set of basic terms, then

a(1)-6(2) €eB a(l)- (B(2)+c(1)) ¢B
a(l)-6 €B a(1)-6(1) B

e constructing B we have to keep track of the start time of each basic term.
re will construct for ¢ € [0, 00) a set B(t), containing the basic terms starting after
with §). Then a(t) - p is a basic term iff p € B(t). Furthermore, B will be equal
ote that if t < ¢/, then B(t) D B(t')).

ns do not contain redundant deadlocks

. basic term will not contain timed deadlocks that do not contribute to its deadlock
In other words, if p + 6(t) is a basic term then it can do a §(t)-transition to /.
e:

a(1)+6(2) €B a(l)+6(2)+6(1) ¢B
§(3)+6(3) €B a(3)+5(3) éB

: constructing B we have to keep track of the possible initial deadlocks of each
Therefore we will construct for s € [0,00] and ¢ € [0,) a set B*(t) containing
rms starting after ¢ with an initial deadlock at s. If a basic term p (starting after
itial deadlock, then we define p € B°(t). The sum of two basic terms p, g is again
 if either their initial deadlocks coincide or if p has an initial deadlock at s and q
ve an initial deadlock and s > U(g). The set B(t) is defined to be the union over
sets B°(t). (Note that if s < ¢, then B(t) = 0).

12 3 COMPLETENESS

Definition 3.1 Let p,q€ T, a € 4, r € {(0,00), s € [0,00] and t € [0, 0).

B,B(t) and B*(t) are the smallest sets satisfying:

5 € B>(t)
t<r a(r) € B™(t)
t<s 6(s) € B(t)
t<r A peB(r) a(r)-p € B*(t)
pEB(t) A gEB?(t) pt+gq € Bt)
PEB(t) A geB™(t) A s>Ulg) p+ag,q+p € B(2)
B(t) = U,B*(t)
B = B(0)

In a basic term only prefixed multiplication is used and the time shift 3> does not occur. If
p is a basic term, then we have allowed p 4§ to be a basic term. For convenience of notation
we extend the definition of 2 (equality modulo A1,2) by putting p & p + §. Then, using the
convention)_;cq p; = 6, every basic term is of the form

Zai(ti) pi + ij(sj)
i i

where p; € B(t;) and a; € A and b; € A;s.
Theorem 3.2 For each term p € T there is a basic term py, such that BPApé - p = p,,.
Proof. By induction on the size of p.

1. p=a(t)
If t € {0,00), then a(t) € B. And if t = 0 or £ = 0o, then a(t) is equal to the basic term
6 resp. 6(00).

2. p=q-q
By induction there are gy, q;, € B such that BPApé F ¢ = ¢, and BPApé F ¢’ = gj. Note
that the sizes of ¢, and g may be greater than the sizes of ¢ and ¢’. We now prove by
induction to size that for all g5, g} € B there is a z € B with z = g, - ¢}. Assume

Yierai(ri) - ¢+ EjEJ bi(s;)
Ykek Ck(te) - @ + Xier di(w)

Construct g from ¢, by removing the §-summands:

J = {jeJ]|b#é}
B 2 Yierai(ri)-ai+ X,e7bi(s;)

%
@

R IR

By induction there is for each ¢ € I a 2; € B such that z; = ¢; - ;. Since g, € B, it
follows that ¢; € B(r;) for all i. Then clearly z; € B(r;) for all i. Now define for each r

K" = {keK|t,>r}
L™ = {leLjy>r}

3.2 Completeness of BPA pé 13

By constructing 7 as follows we have Z = g5 - g}.

22y ai(r) -z + D bi(s)-{ Y. erlte) gk + . diw)}

€l jeT keKk*i leL?i
Finally we can construct z € B satisfying z = ¢, - ¢}, by taking

, = [Z+6U@) it U@) > U@
- z otherwise

3. p=q+q
By induction there are g;,q; € B such that BPApS - g = ¢, and BPApé + ¢’ = a-
Construct @ and g from g, and g}, by removing the §-summands. Then

- | B+® +U@+d)eB ifUlg+d)> UG+
P = B+ €B otherwise

4 p=t>q
By induction there is a g, € B such that BPApé + q = g3, say

% 2 Yierai(r) - ¢+ X e bi(s))
Define I" = {i € Ilr; > r} and J" = {j € J|s; > r}. Then

_ 6(t)e B ifrruJt=20
h Yiert ai(ri) - g + Yjer bj(s;) € B otherwise

For p € B and a € As and ¢ € [0, 0] we have

P kA Vv = a(t)Cp
a(t) / /
p—t>p < a(t) pCp
The following lemma, states that basic terms have ascending time stamps.

Lemma 3.3 Vpe B pit)»t>>p' = t>p =p

Proof. By definition of basic terms and a(t) - p' C p we know p' € B(t). Hence, every

re . . 4 b
transition of p’ has a time stamp greater than £. And thus if p’ Be) p", then t > p') "

as well. Similarly for terminating transitions of p'. 0o

3.2 Completeness of BPApé
We can now prove that the theory BPApé is complete.

Theorem 3.4 Vp,qe T peq=>BPApdtp=gqg

14 4 PARALLELISM AND SYNCHRONIZATION

Proof. Lemma 3.2 together with soundness implies that it is sufficient to consider basic
terms only. We will prove by induction on the depth of p that p C ¢. By symmetry ¢ C p
follows and we are done. Assume

p = Zai(ti)'pi+zbj(3j)
3 J

Since p is a basic term, there is for each j a transition p 3(53) /- We assume p < ¢, so there

b;(s;
is for each j a transition ¢ 365) v and thus b;(s;) E q.

a,-_(t,-) =L>q.

Similarly there is for each ¢ a term ¢ such that ¢ t: > ¢ and t; > p;
Since p and q are basic terms, Lemma 3.3 implies ’

Pi o t>p o tid>d & d

and thus by induction it follows that p; = ¢'. Together with a;(t;) - ¢ T ¢ we may conclude
that a;(t;) - p; C q. O

4 Parallelism and Synchronization

4.1 Introduction

Now we are ready to introduce parallelism and synchronization, resulting in the theory
ACPp from [BB91]. We will use as much as possible from ACP (without time) and we
shall discuss only those cases in which we have to take the time information into account.
One of the operators is the left merge, which is an auxiliary operator that allows us to define
the parallel merge operator || in finitely many axioms. In standard ACP (without time) the
term (a- X)LLY denotes the process in which the left component a- X executes his first action
a, resulting in X||Y. In the real-time setting it is a bit more subtle. Consider for example the
process (a(t)- X)ILY. By executing the a action at time ¢ the whole process must proceed in
time. Whenever Y can wait till after ¢ (so if ¢ < U(Y')), then (a(t)- X)ILY can execute action
a at time ¢, resulting in (¢ 3> X)||(t > Y). Otherwise (if ¢ > U(Y)) a deadlock at time U(Y)
occurs. S0

a(2)1Lb(3) a(2) - b(3)
b(3)la(2) = 6(2)
In the first example the right component b(3) can wait until the left component a(2) executes
its first action. In the second example however, we see that the right component a(2) cannot
wait long enough and a deadlock is the result.
We now extend the notion of a process term. The set 7, with typical element p, is defined
inductively as follows, where a € A5, t € [0,00] and H C A :

pu=a(t)|pt+plp-plt>p|plp|plp|slp| du(p)
The definition of the ultimate delay is extended as follows.

v(xay) = min{U(X),U(Y)} BDe{|lL1}
U(Gu(X)) = U(X)

:heory of ACPp 15

me a communication function | : A5 x As — Az which is commutative and
and has § as zero element. Communication between atomic actions happening at
mes is not possible. Thus if a]b = ¢ then

a(2)]p(2) = <(2)
a()p(3) = 6(1)

the operator 8y is defined on A; as follows:

(I

agH Jdyla)=a
a€H (9}1(0.)“—“(5

» theory of ACPp

system for ACPp consists of BPApS together with the axioms of Table 5. The

he axioms have been taken from untimed ACP. If an axiom is derived from an
timed ACP but not totally similar, then this is reflected by adding AT (Absolute
S name.

M1 XY = XLY +YLX + X|Y
LMla t<U(Y) a(t)lY =a(t) Y

LMib ¢>U(Y) a(t)LY =§(U(Y))

LM2a t<U(Y) (a(t)- X)LY =a(t) - (X||Y)
LM2b t>U(Y) (a(t)- X)LY =6(U(Y))

LM3 (X1 + X)LY = X; LY + X, Y
CM1a a(t)|b(t) = (a|b)(¢)

CM1b t#s a(t)|b(s) = 8(min{t, s})

CM2 (a(t) - X)|b(s) = (a(t)lb(s)) - X
CM3 a(t)|(b(s) - Y) = (a(t)Ib(s)) - ¥
CM4 (a(t) - X)|(b(s) - Y) = (a(t)[b(s)) - (X|[Y)
CM6 X|(M1 +Yz) = X1 + X[Y?
ATD1 9 (a(t)) = Ou(a)(t)

D3 Ou(X +Y) = 0n(X)+ Ou(Y)
D4 Ou(X -Y) = 0u(X) - 9u(Y)

Table 5: An axiom system for ACPp

n CM1 is exactly the same as in ACP. However, together with the axioms for the
t does not result in arbitrary interleaving, since the time stamps of the atomic

16 4 PARALLELISM AND SYNCHRONIZATION

actions determine the possible orderings. For example

a(2)|6(3) = a(2)ILb(3) + b(3)ILa(2) + a(2)[5(3)
=a(2) - b(3) + 6(2) + 6(2)
= a(2) - b(3)

4.3 An operational semantics for ACPp

Table 6 contains the action rules for the new operators ||,], IL and 85. The action rules for the
operators of BPApé can be found in Table 4. Remember that if the process a(t) - p executes
the a(t)-action, it evolves to t 3> p. If a(t) - p executes this a(t) in a parallel composition
with g, the “increase in time” must hold for ¢ as well. In other words, (a(t) - p)||q evolves to
(t > p)|I(t > q) by executing a at time ¢ whenever ¢ can wait until ¢. The check whether ¢
can increase its time, is denoted by ¢ < U(q).

In order to let the deadlock transition defined in Table 4 be valid for ACPp, we need to
extend the definition of L(p) to terms that contain communication and deadlock operators.

initact(6(t)) = 0

- 0 ift € {0,000}
initact(aft)) { {a(t)} otherwise
initact(X +Y) = initact(X)U initact(Y)
initact(X -Y) = initact(X)

initact(s > X)
inttact(X||Y)

{a(t) € initact(X) | t > s}
initact(XLY + YL X + X|Y)

o

initact(XILY) {a(t) € initact(X) | t < U(Y)}

initact(X|Y) = {c(t)]|3a,b a(t) € initact(X) A b(t) € initact(Y) A alb=c # 6}
initact(Op(X)) = {a(t)|a(t) € initact(X) A a ¢ H}

L(X) = maz{t|3a a(t) € initact(X)}

In [K1u91] it is proven that bisimulation equivalence is a congruence for the added operators
as well. Again, action rules in Groote's format can be given for these operators. The following
theorem can be proven by checking it for each axiom separately.

Theorem 4.1 The theory of ACPp is sound.

In [Kiu91] it is proven that for ACPp the operational semantics of this section characterizes
the same bisimulation equivalence as the operational semantics of [BB91].

4.4 Basic terms

We now prove that every process term has a basic form. First we need a lemma.

Lemma 4.2 For each p,q € B there is a z € B such that ACPp - z = plq

Proof. We use induction on size. Assume

P =2 Yierai(r) pi+ Xjes bi(s;)
g = Yrekck(te) ax+ Xier di(w)

4.4 Basic terms

17

a,be A
a(t)

i p — p t<U(g)
’ G

le 22 Plie>a), dip 22 > oll, sl X2 P> 9

p 2 ¢ t < U(q)

s 28 4, qllp 2 tsq, plg 2t

If alb = ¢ # 6, then
at) b(t) (t) b(t)

Ll My o2 q’ p By Xy
' {t <(t)

ple 2 pie, ol 2 plie plle X2 v, ple By

4 b(t
p %0 y a(t) q,
c(t

p!lq—(—lq’, qllp——->q, plq—->q, qlp—+q
8 P ﬂt—)* ag H P —(——2» p agH
H a

an(p) 2% au(p) 2% ap()
Table 6: Additional action rules for ACPp
‘We define

._fz{z'eIlr,-<U(q)}
J={jeJ|s;<U(9)}
K={ke K|ty <U(p)}
L={leL|y<U(p)}

Then pllq is equal to the following process term. The term §(U(pllq)) is added for the case
that [TUJUK UL =0.

+
+
+
+

2ier ai(ri) - (pillg) + Xjerbi(s;5) - ¢

2ker Ck(tr) - (pllae) + Xiep di(w) - p

Z(i,k)gx}{(ai(ri)lck(tk)) - (pillar) + Z(i,l)eIxL(ai(ri)'dl(ul)) - pi
Zimerxk (B (s)ler(t)) - ar + X e bi(si)di(w)
§(U(rlle))

An expression a(t)[b(t') is equal to ¢(s) for some ¢ € As. And according to the induction
hypothesis the terms p;|lg and p||qx and p;l|gs all have basic forms. Thus pl|q is equal to a
process term that does not contain ||, I, | and 8. We know already that such a term has a

basic form.

O

18 4 PARALLELISM AND SYNCHRONIZATION

Theorem 4.3 For each term p € T there is a basic term py, such that ACPplFp=np,

Proof. The proof uses induction on the size of p. We discuss four cases; the other cases
can be proven as in Lemma 3.2.

1. p = q|¢'. By induction there are g, q; € B with ACPp - q =g, and ACPp ¢ = ap.-
Let
% = Yiai(r)-a+X;bi(s;)
% = Xecr(t) g + i di(w)
After applying CM1-6 sufficiently many times we get

P = Yarlai(rdlests)) - (Glla) + Teplar)ldi(w))-¢ +
2 6.p(05(85)lex(tr)) - ap, + X bilsildi(wr)

Each a(t)[b(t) reduces to some ¢(s). Furthermore, according to Lemma, 4.2 the terms
gillg;, all have a basic form. Thus p is equal to a process term not containing ||, IL, |
and dp. And we know already that such a term has a basic form.

2. p = qll¢'. By induction there are gy, g}, € B with ACPp I ¢ = ¢, and ACPp ¢ =g.

Let

%= ailr:) g+ bi(s;)
i€l jE€J
Define I ={ie€l|r;<U(¢)and J = {j € J | s; < U(¢')}. After applying LM1-3
sufficiently many times we get
p=2)_ai(r:)- (aillah) + 3 bi(s;) - g4 + 6(U ("))
i€l jeJ
The term 6(U(q')) is added for the case that JUJ = §. By Lemma, 4.2 g;f|g} has a basic

form. Then p is equal to a term that does not contain I, L, | and 8. And such a
term has a basic form.

3. p=ql|r. This follows from Lemma 4.2 and the induction hypothesis.
4. p = dg(q). By induction there is a g, € B such that ACPp F q = qy, say
B = Yierai(ri)- g+ Xiesbi(s;)
Then
Ou(gp) = Yier0u(ai)(r:) - Oula:) + > jes On(b;)(s5)
Clearly Oy {a;)(r;) and 85(q:) and 85 (b;)(s;) are all equal to process terms that do not
contain ||, IL, | and 8y. So dx(gs) has a basic form. o

4.5 Completeness of ACPp
Theorem 4.4 Vp,ge T pe=q => ACPplp=g¢q

Proof. Suppose that p & g. According to Theorem 4.3 there are Ps,9p € B such that
P=p and q = g5. Then p, = p = ¢ & ¢, and since we have already proven completeness
for basic terms we get p, = q5. Then p=g. o

19

5 Integrals

5.1 Introduction

Integration is the alternative composition over a continuum of alternatives ([BB91]). So if an
action a can happen somewhere in the interval [1,2] we write:

alv
/ueu,z] @)

In this section we take a more restrictive view on integration than in [BB91], called prefized
integration. We require that every action has as time stamp a time variable directly preceded
by the binding integral. Furthermore, integration is only allowed over intervals of which the
bounds are linear expressions of variables. E.g. we allow the following terms:

: b d (f + [b)) /
/116[1,2] a('l’) ‘[DE[u+1,v+2] (w) an (vE(O,l) a('U) we(0,2) (w)) 2€{v,w] C(Z)

but not
/ / a(w) or / a(2)-b(v) or f a(v)
veV JweWw veV ve{1,2}

5.2 Bounds and intervals

TVar denotes an infinite, countable set of time variables. Let t € [0,00], r € (0, oo) and
v € TVar. The set Bound of bounds, with typical element b, is defined by

b=t | v | b+b|b—b]|rb

where — denotes the monus function, i.e. if 5 < ¢; then ty — ¢; = 0. In the sequel 4 and }
are elements of {(, [} and {),]} respectively. An interval V is of the form { by, by } with b;, b,
bounds.

For b € Bound the set of time variables occurring in b is denoted by tvar(b). Of course
tvar(4 b, ¢) = tvar(b) U tvar(c).

For time-closed intervals, i.e. intervals for which tvar(V) = @, two operators sup, in f are
defined. Let V =4 tg,¢; b

V£ : inf(V)=to
sup(V) =t
V=0 : inf(V)=sup(V)=0

5.3 Process terms

Let a € As, t € [0,00], v € TVar, V an interval and b a bound. The set 7 of process terms,
with typical element p, is defined by

p == a(t) | [,ev“‘”) | /,,ev‘“‘”)'p) | p+p | pop| b>p

In the sequel fve[b,b] a(v) is abbreviated by a(b). Furthermore, we will use a scope convention,
saying that if we do not write scope brackets, then the scope is as large as possible. Thus we

write [,y a(v) - p for f .\ (a(v)-p).

20 5 INTEGRALS

5.4 Free time variables

We now define inductively the collection FV(p) of time variables appearing in a process term
p that are not bound by an integral sign, the so-called free variables:

FV(Jeva(®)) = tvar(V)
FV([,eya(®)-p) = (FV(p)\{v})Utvar(V)
FV(p+q) = FV(p)UFV(q)
FV(p-q) = FV(p)U FV(q)
FV(b> p) = FV(p)Utvar(b)

A term p with FV(p) = 0 is called a time-closed term.
T = {pe T|FV(p) = 0}

5.5 Substitutions

A substitution is a mapping from TVar to Bound. For ¢ a substitution and b a bound, o(b)
denotes the bound that results from substituting o(v) for each occurrence of v in b for all
v € TVar. Of course o(§ by,b2 p) = < o(b1),a(bs) P
Substitutions are extended to process terms by defining five inductive rules. The first four

rules are easy:

o(p+4q)=a(p)+al(q)

a(p-q) =o(p)-o(q)
o(b>> p) = a(b) > o(p)
o(frev a(v)) = fueo(V) a(v)

The fifth rule, defining o(f,\, a(v)-p), is more complicated. First of all, the free occurrences
of v in p are bound by the integral sign Joey- So these occurrences of v are not to be
substituted by o(v). Hence, if o, denotes the substitution that is equal to & on TVar\{v}
while o, (v) = v, then

o(f o= [a0

But there is a second problem; if w € FV(p)\{v}, then after substituting o(w) for w in p, all
occurrences of v in o(w) are suddenly bound by Juev- So this definition of o([\, a(v) - p) is
only valid if we have

Yw € FV(p)\{v} v ¢& tvar(c(w))

If this requirement does not hold, then the expression o(f,¢y a(v) - p) is undefined.
If there is only one v € TVar such that o(v) # v, then o(p) can be denoted by plo(v)/v].

5.6 oa-conversion
Process terms are considered modulo a-conversion; we extend the definition of & as follows.

fvEV a’(v) = waV a(w)
if w does not occur in p, then f,., a(v)-p & [, o a(w)- plw/v]
We take the transitive closure of this relation.
Note that by applying a-conversion we can always ensure that for p € T and o a substitu-
tion, the expression o(p) is well-defined.

:heory of BPApSIT 21

: theory of BPApSI

iion we give an axiom system BPApéT for time-closed process terms. We have five
lled INTO-4, that express the specific properties of terms with integration. The
ns are the BPApéI versions of BPApé axioms.

m system for BPApé1 consists of the contents of Table 7 together with the axioms
A. In Table 7 it is assumed that p,q € 7 with FV(p+q) C {v} and X,Y € T¢
f the form a(v) or a(v) - p.

t the axioms A3 and A5 are not really necessary, because A3 can be deduced from
A5 from A4 together with INT3.

a(t) = fue[t,z] a(v)
V=WuW [P+ Juevi P = Joev P

ved

s Juev (@(©)) Y = [oep a(v) - Y
’ Joev(a(v) -p)- Y = f,ey a(v) - (p-Y)
VeV X +a(t) plt/v]=X = X+ [pa(®)-p=X

a(0)=§

a(o0) = é(o0)

Joev 6(v) = 8(sup(V))

Joev 6(v) - p = 8(sup(V'))
t<sup(V) Joew P+6(t) = foev P

Joev a(v) - p= [y a(v) - (v > p)
t> fvEV P= fvEVﬂ(t,oo] P+ 6(t)
t>>(X+Y)=(t>>X)+(t>>Y)

~ Table 7: An axiom system for BPAp§T

= g[t/v] for all ¢t € V, then INT4 implies

/ueva(”)‘]?=_/veva(v)‘P+/Ueva(v)-q:/veva(tr).q

er to this equality as INT4~. Furthermore, BPApSI~ will denote the axiom
\p61 with INT4 replaced by INT4~. We will show in Section 9 that BPApéI and
re equivalent proof systems for the algebra of time-closed process terms.

toving the scope brackets

o the scope convention we can write

[@@ [o)) as a@- [bw)
vE<L,2> WELS 4> ve<1,2> wEL3,4>

22 5 INTEGRALS

and no scope brackets are needed. For other terms however we have to do some work before
all scope brackets can be removed. Consider the following term, where the time variable v of
the last integral is in the scope of the first one.

[@[6w (cw))- [(=)
ve<0,1> ?E(1,2> we<3 4> z€<Lv+5,0+6>

Apply an a-conversion

/ue<o,1>(a(u) . -/ve<1,2> (b(v)- /we<3,4> (e(w)) - /m€<u+5,u+6> (d())

and a scope widening according to INT3a, b

/ue<o,1>(a(u) . /ue<1,2> (b(e)- /we<3,4> (efw)- ./me<u+5,u+6>(d(x)))))

before removing the brackets according to the scope convention

/ alu) - / b(v) - f e(w) - d(x)
ue<0,1> vEL],2> we<L3, 4> zeE<u+5,u+6>

We make this more formal by a definition and a proposition.

Definition 5.1 The set of widest scope terms W is defined by
W= {p€ T | p does not contain a subterm of the form pg- p1}

The following proposition can be proven by induction on the size of p, using a-conversion
and scope widening.

Proposition 5.2 For each term p € T there is a p, € W such that p= p,,.

3.9 An operational semantics for BPAp§/

We expect the following transitions:

(5)
fue<0,10> a(v) ~% v
a(5)

Joe<0,105 a(v)- Juecvprrs Bw) = Jue<so> b(w)
since 5 €< 0,10 >.

The atomic rules for BPApSI are given in Table 8. We extend the definitions of U (p) and
L(p) from BPApé to T as follows. Let V be a time-closed interval and let P be of the form
a(v) or a(v) - p with FV(p) € {v}.

0 ifa=4¢
U(/,,Ev P) = sup(V) L(/vey P) = { sup(V) otherwise

Bisimulation equivalence is denoted by « and is defined as in Definition 2.1. In [Klu91]
it is proven that bisimulation equivalence is a congruence.

Theorem 5.3 The theory of BPApSI is sound.

The operational semantics presented here characterizes the same bisimulation equivalence as
the operational semantics for integration of [BB91].

23

a€c A

atom : t€ V\{0,00} [,y a() X2

te V\{0,00} freya(®)-p 22 3> plt/o]

Table 8: Additional action rules for integration

6 Completeness for Integration

6.1 Basic terins

In Definition 3.1 the notion of a basic term for BPApé (without integration) has been intro-
duced. In this section we introduce a notion of basic terms for BPA pb6l. Remember that the
idea of a basic term is that it does not contain “redundant” information. For example:

fve<o,1o> a(v) - (fwe<o,10> b(w) + fze<o,10] 6(z)) = fue<0,1o> a(v) - Jwe<n 10> b(w)

a(10) - (fve<0,20> b(v) + 8(5) + wa<0,30> §(w)) = a(10)- (fue<10,20> b(v) + 6(30))

The terms on the left-hand side are not basic terms, since they contain “redundant” informa-
tion; intervals can be decreased and summands can be removed. The terms on the right-hand
side are basic terms.

Definition 6.1 Let p,g € W, a € A, V a time-closed interval in (0,00), s € [0,00] and
t € [0, 00).

B, B(t) and B*(t) are the smallest sets satisfying

6 € B>(t)
t<V [eva() € B>(t)
t<s &(s) € B*(1)
t<V AVreVplr/vl € B(r)) [eyalv)-p € B>(t)
PEB(L) A qe B5(t) p4gq € B*(t)
PEB(t) A geB™(t) A s>U(g) p+g,q+p € Bt
B(t) = UB(t)
B = B(0)

Note that B C 7 and that basic terms have ascending time stamps.

6.2 Dealing with free time variables

Until now we have mostly considered time-closed terms. But if we want to prove that every
time-closed term has a basic form, we have to consider terms with free time variables as well.

24 6 COMPLETENESS FOR INTEGRATION

Therefore we will introduce the notion of a conditional term. A conditional term determines
for each substitution of real values for the free time variables a time-closed term. For example,
if we consider the term a(5) - b(v), which has a free time variable v, we will associate to it the
following conditional term:

if the context assigns a value ¢t £ 5 to v, then deliver a(5) - §
if the context assigns a value t > 5 to v, then deliver a(5) - b(t)

This conditional term will be denoted as follows (the notation :— is taken from [BB90]):
p = {v<5:—a(5) -6} +{v>5:—a(5) bv)}

For every substitution o which assigns a real number to v we have o(p) € B. In the following
we introduce a generalization of a basic term, the so-called basic conditional term. The idea
is that a conditional term is basic if any substitution of reals for the free time variables of the
conditional term yields a basic term. These new notions will now be defined more formally.

6.3 Conditions

The set Cond® of atomic conditions is defined by
Cond® := {bg < b1, by < b1, by > by, by > by, by = by | bo,b1 € Bound} u {tt,ﬂ}

where tt denotes ‘true’ and ff ‘false’.

A condition consists of conjunctions, disjunctions and negations of atomic conditions. Let
a® € Cond®. Then the set of conditions Cond, with typical element a, is defined inductively
by

a = a* | aha | ava | -a

We denote the set of time variables of a € Cond by tvar(a).
Let 3 denote the collection of substitutions ¢ : TVar — [0,00]. For a € Cond we define a
subset [a] of X.

[a] := {0 € X |0o(a) is true}
Clearly [tt] = ¥ and [ff] = 0.
A finite collection of conditions {aj,...,a,} is called a partition if for each ¢ € ¥ there

is exactly one 7 such that ¢ € [a;]. A collection of conditions {8;} is called a refinement
of a collection of conditions {a;} if U;[3;] = Uj[es] and for each j there is an i such that

18i] € [ai]-
In the sequel we will often abbreviate conditions by expressions like b € V, VNW #
0, sup(V) > b, inf(V) <b, U(p) > b etc. For example:
e be (bo, b1] abbreviates bg < bA b <b
® (bo, bl] N [C0,61] = {) abbreviates > Veg>aVbhi<ep Vb >a

o sup({bo, b1]) < b abbreviates by <b V (bp > by Ab > 0)

6.4 Conditional terms 25

6.4 Conditional terms

Let o € Cond, p € T, a € As and b € Bound. The set C of conditional terms, with typical
element p, is defined by

Pc = p | a:—p, '/Eva(v)'pc | e+ pc | 6> p.
v

On C the equivalence 2¢ means syntactic equivalence modulo a-conversion and modulo asso-
ciativity and commutativity of the +.

Equalities on C may be hard to read, e.g. by = b; :— p=cq = 1 :— q. Therefore we will
write conditional terms between brackets: {bp = b; :— p} = {cp = ¢; :— q}. These brackets
are not part of the syntax but are meta-brackets.

Often conditional terms will be abbreviated. For instance, let V be the interval [bo, b1) and
b a bound. Then

{b > sup(V):— 8} + {b < sup(V) :— P}
vEVN(b,00]

abbreviates

{bgzblvb2b1:—+6}+{b05b<b1:—>f(P}+{b<b0<b1:—+/[P}
vE ve

b:b1> b())bl)

6.5 The theory of CTA

The equational theory CTA (Conditional Terms Algebra), given in Table 9 consists of ‘con-
ditional variants’ of axioms of BPApSI together with six new axioms CON1-6. Using these
conditional axioms it is possible to reason about terms containing free time variables. We
will use the axioms of CTA to reduce each process term to a basic conditional term.

In order to use CONG for general conditional terms we need the following lemma. Note
that it would not be true if we would allow expressions like v2 to be bounds.

Lemma 6.2 Letv € TVar. A condition o always has o refinement of the form {B;Av € V;},
where tvar(B;) U tvar(V;) C tvar(a)\{v}.

Proof. It is easy to see that & can be rewritten to a condition V;7v; with each 4; of the form

v A /\v>bj A /\v<c;c A /\v:dl
JjEJ kEK el

‘where v does not occur in the 7, bj, k., di.
We show that each v; is equivalent to a condition V;(8; Av € V;) with v ¢ tvar(B;) U
tvar(V;). Then clearly we are done. Fix an i.

e f JUKUL=, then v A v € [0, 0] is equal to ;.
o Let L#0. Fixanlye L andputd= di,- Then the condition

(YAANd>bA Ad<anANd=d) A veldd]
jeJ keK leL

is equal to ;. So we can assume L = §.

26 6 COMPLETENESS FOR INTEGRATION
Ol foey P={V C {0} :— 6} +{V = {00} 1= §(c0)} + {V £ {0,00} := [,c1r (0,00} P}
Cl2a [.y 6(v) = 6(sup(VY))

CI2b [,ev 8(v) - p=8(sup(V))

CI3 Joev P +6(b) = {b < sup(V) :— [,y P}+ {b> sup(V) :— [, P+ 8(b)}
ATH [,y a(v)-p= ey a(v)- (v p)

CBIl 62 ey P={b<sup(V) := [oevnip,oq P} +{b 2 sup(V):— é(b)}
ATB2 5> (pe+gc)=b>p.+b> g

CON1 {tt:—p}=p

CON2 {ff:—p}=46

CON3 {a:— Z{B;:— pi}} = Zi{a A B; :— pi}

CON4 {a:— p}+{8:— q} = {aABi— p+a}+ {aAB— p} +{-aAB i q)
CON5 63> {a:— p} = {a:—b> p} + {~a:— 6(b)}

CON6 If {a; Av € W;} is a partition and v & tvar(a;) U tvar(W;), then

Joev a(v) - Bi{ai Av € Wi pi} = B0 i [cyom, alv) - pi}

Table 9: An axiom system for CTA

6.6 Relating CTA and BPApSI~ 27

o If J# 0 and K = 0, then we can take

jeJ j'ed

Similarly, if J =@ and K # @, then we can take

V@A N ek <ew AvE[0ck))
kEK KeK

And if J # @ and K # 0, then we can take

V (A /\ bj > bjr A /\ ek L e AV E (bj,cr))
(J.k)EIXK j'eJ KeK

Thus o is equivalent to a condition V;(8; A v € V;) with v & tvar(B;) U tvar(V;). o

6.6 Relating CTA and BPAp§I~
Proposition 6.3 Vp,q € 7¢ CTAFp=q = BPApéI " Fp=gq

Proof. Applying axioms CON1-6, one can easily define an algorithm that reduces each
conditional term p. to the form {a; :— p;}, where {a;} is a partition. For each o € X, let
Pe <0 > denote the time-closed process term o (py()), where (o) is such that o € [a;)]. We
now prove

CTAFp.=q. = Voe€X BPApSI Fp.<o>=g¢q.<o>

Then we are done, since for all p € 7% and o € ¥ we have p<a> =p.

A deduction in CTA consists of equalities of the form C[p.] = Clg.], where C[is a context
(i.e. a conditional term containing exactly one occurrence of the empty symbol []) and p, = g,
is an instantiation of an axiom of CTA (i.e. the result of substituting conditional terms for
the variables in an axiom). For such an equation C[p.] = Clg.] we prove that

Vo €T BPApSI~ F Clp)<o> = Clg] <o>

using induction to the size of C[]. Then we are done.

First assume that C[] has size 1, i.e. C[] = [Then we need to show that for each
instantiation p. = . of an axiom of CTA and for each ¢ € £ we have BPAp§I~F p.<o> =
gc <o >. It is left to the reader to check that this is indeed the case.

Now suppose that the case has been proven if the size of the context is < n and let Cll
have size n + 1. We distinguish three cases.

1. C[l is of the form {a:— C'[J}.
Fix a o € ¥. For each conditional term 5, we have

i (s if o ¢ [a]
C[pc]<a>={ C'lp)<o> ifo €]a]

So if o € [o] then Clp]<o> =6 = C'[g.]< o>, and if o € [a] then by induction

Clp<o> = C'pl<o> =C'lg]<o> = Clg]< o>

28 6 COMPLETENESS FOR INTEGRATION

2. C[] is of the form C'[] + p,.

Then Clp] <o > = C'[p]<o> + fc<0o> and Clg) <o > = C'lg] <o > + e <o >. Now
the case follows by induction.

3. C[] is of the form [, a(v) - C'[.

Let 3-:{ai :— p;} and 3 ;{B; :— ¢;} be the results of applying the algorithm mentioned at the
beginning of this proof to C'[p.] and C'[g.] respectively. Using the construction from Lemma,
6.2, {a;} and {G;} can be reduced to partitions {a} A v € Vi}rex resp. {8 Av € Wiher,
where v does not occur in the af,, 8, Vi, Wi. Let [0, Av € Vi] € [a;,] and [B{Av € W] C [8;]-
Fix a o € X. As before 0, denotes o restricted to TVar\{v}. Furthermore, o, denotes the
substitution that is equal to 0 on TVar\{v} while o,(v) = t. Let K, resp. L, denote the
collection of k € K resp. ! € L for which o(a}) resp. o(8}) is true. Then

Clpl<o> = / a(v) - oy(p;,)
[p] . kg};,, v€a(V)Na (V1) () *

Clg<o> = / a(v) - 04(g;,)
[] lezL:,,- vEe (V)Na(W)) .

Since {aj Av € Vi}rek and {B]Av € W}, are partitions, it follows that for each ¢ € [0, oo
there are unique k(t) € K, and I(t) € L, such that ¢t € (Vi) N o(Wyy). Then clearly
C'lp)<a> = o1(piy,)) and C'lgc] <oy > = 01(@jy,,)- Now the induction hypothesis implies

av(pik(f.))[t/v] = Ut(pik(tj) = at(qjm)) = av(qjt(a))[t/v]
This holds for all ¢, so INT4~ induces Clp;] <o > = Clg] <o >. o

Without the restraint in axiom CONG6 that {a: Av € W;} is a partition, the previous propo-
sition would not hold. For then we would get equalities like

CTA + fvEV a(v)-6=6
CTAF fvEV a('v) * (p + q) = fvEV a(v) p+ fvEV a(’u) g
6.7 Basic conditional terms

The collection B, of basic conditional terms is defined as follows. A conditional term Yi{a; :—
p;} is in B, if

1. {a;} is a partition
2. YVoeln] o(p)eB
For example, [,c ;105 a(v) can be rewritten to the basic conditional term
(b<10:— / a(v)} + {b > 10:— 6}
v€<b,10>

The next lemma states that every term in W (with possibly free time variables) can be
rewritten to a basic conditional term.

6.7

Basic conditional terms

Lemma 6.4 For each p € W there is a p. € B, such that

FV(p.) CFV(p) A CTAFp=p.

Proof. By induction on the size of p. Let a € A. It is sufficient to consider the follow

four cases.
1. .
{VZ{0,0} = frepioee a(0)}
+
[a) = (v} = 8
veV +
{V={} = &co)}
2.

pt+4q
= Yi{ai—p}+ Z;{B:— ¢} byinduction
= Yupla A By :— pi+4q; } since {a;} and {B;} are partitions
o A B ANUi+¢;) >U@i+T) = Pi+G+6Um +4q;))

iy t
ai AN B ANUPi+¢;) SUB+T) — Pi+G

where P is the term p without §-summands.
b>p = 6> ¥ {ai— 5 f,ey, Fj} by induction
= o= 6> 5 [ey, Fi}
a;Ab< sup(‘/.]) S f'uGVJ-n(b,oo) R?

= 2apy +
ai ANb 2 sup(V;) :— 6(b)

Since we have to end up with a basic conditional term we have to construct a partitic
This can be done by applying sufficiently many times axioms CON4 and CBIL.

fvEV (l(’v) *p
= quV a’(”)) (’U > p)
Joev a(v) - ¥i{ai A v € W; :— p;} by the previous case and Lemma, 6.2

= Bi{ai = fievow, ov) - pi}

30 6 COMPLETENESS FOR INTEGRATION

E{as AVAW; € {0,00} :— fuevnm-\{o,oo} a(v) - pi}
+
= Y{auAVnW,; C{0}:— 6}
+
Li{as AVNW; = {00} :— 6(c0)}

Some of these p;’s may be of the form §(v) and must be rewritten to §. The conditions
are reduced to a partition by applying axioms CON4 and CBI1. O

Theorem 6.5 For each p € T there is a p, € B such that BPApSI—+ p = p,.

Proof. There is a p’ € W such that BPApSI~F+ p = p'. By the previous lemma. there is
a p. € B. with FV(p;) € FV(p') = 0 and CTAF p' = p.. Since p. does not contain free
time variables, all conditions occurring in p. are either true or false. Then clearly there is a
time-closed process term p, € B such that CTAF p. = p,. So according to Proposition 6.3
BPApb6I~F p = py. 0

6.8 Completeness of BPApé/
Theorem 6.6 Vp,q € T¢ pe=q => BPAp§IFp=gq

Proof. Theorem 6.5 implies that it is sufficient to consider basic terms only. We will prove
by induction on the depth of p that p C q. Assume

p = Zi:[;ewai(v)'pﬁ-;/vembj(v)

b;(t
Since p is a basic term there is for each j and each t € W; a transition p il V- We assume

b
P < ¢, so there is for each j and each t € W; a transition ¢ -i(—t-z v and thus b;(t) C ¢. Tt

follows that
[biwcq
veEW;

7

a;{t)

Similarly there is for each ¢ and each ¢ € V; a term ¢’ such that ¢ t > ¢ and

t > pi[t/v] = t > ¢'. Since p and q are basic terms we have
pilt/v] = t>piftf] = t>q¢ o ¢
and thus by induction it follows that p;[t/v] = ¢'. Together ;Nith ai(t)-q¢' C q we may conclude
ai(t) - pift/v] C ¢

Now we can apply axiom INT4 to get [,y ai(v) - p; C q. a

X[[Y = XLY +YULX + X|Y

inf(VY<UY) [eva@lY = fcynpuerya®) Y

inf(V)2U(Y) [eyalo)lY =8U(Y))

inf(VY<UY) [ev(a(®) -p)LY = [eynpouey ov) - (0IY)

inf(V)2U®Y) [evla(v) - p)LY =8(U(Y))
(X+Y)Z=XLZ+YULZ

VoV #0 Joevy 0V Loy, B(v) = Soevoav; (alb)(v)
VonVi =0 Joeve Pl foey, P! = 8(min{sup(Vp), sup()})
VOVi#ED o@D ey, b) = focvprms @lD)(0) -7
VonVi#0 Joeve 6 fev, (0(v) - @) = [ieyyrvs, (alb)(v) - ¢ :
BOViED Loy @) D)l e 00) -) = hevyrs (@l)) - el |
(X+Y)Z=X|Z+Y|Z
XY +2)=X|Y + X|Z

aH (-fvEV a’(”)) = fvEV aH (a’)(v)
O (Juev a(v) - p) = [,ev On(a)(v) - Ou(p)
On(X +Y) =08u(X)+8u(Y)

Table 10: An axiom system for ACPpl

g Communication

we incorporate the operators ||, |, Il and 8y into the theory BPApSI. First
the definition of our set of terms 7 by adding the rules

pg€T = pOgeT ODe{|,|L}
peET = Oylp)eT

ACPplI consists of adapted axioms of ACPp as given in Table 5.

1er the atom rules from Table 8, the rules for -, +,>> and § from Table 4 ¢
l,}, L and 8y from Table 6 to define a an operational semantics for ACP
of L(p) from ACPp is extended to ACPpI as follows:

o 0 ifa=6
mztact(/ﬂev P)= { {a(t) | t € V\{0,00}} otfxerwise

ition 2.1 we define bisimulation equivalence for ACPpI. This equivalence i
Clugl]).

. The theory of ACPplI is sound.

32 8 REDUCING PROCESS TERMS

The operational semantics for ACPpI that we defined here is equivalent to the original one
from [BB91].

The following theorem can be proven by extending the notion of a conditional term to
ACPp and defining extra conditional axioms. It says that the merge, left merge and commu-
nication merge can be eliminated.

Theorem 7.2 For each p € T there is a p, € B such that BPApéI +p=p,

Using this theorem we can prove that ACPpI is complete w.r.t. bisimulation equivalence.

8 Reducing Process Terms

In Section 5 we have proven that each time-closed process term is equal to a basic term.
However, this basic form is by no means unique. For instance, if p is a basic term, then p+p
is one too.

In this section the machinery is introduced to reduce each process term p to a normal form
pl. Process terms are considered modulo commutativity and associativity of the +. For each
time-closed process term its normal form will again be a time-closed process term. And in
the next section we will prove that if p,q € T with p=q, then p| & q]. Thus it is possible
to check in a finite number of steps if two terms p,q € 7 are equal or not; first p and q are
reduced to normal form, and then a finite computation is carried out to see if Al2Fpl=ql
or not.

In the following paragraphs a number of rewrite rules are defined, which will be expressions
of the form p. — ¢ with p,, ¢. € C. Paragraph 8.5 will contain an explicit description how
to reduce a basic conditional term to a normal form using the rewrite rules. This normal
form will again be a basic conditional term.

8.1 Reducing conditions

We define four rewrite rules that reduce conditions. The first three are

L o= Z{Bi = p}} — Sfanfi—p}
2. {a:-—>p}+{ﬂ:-—+q} — {a/\ﬂ:—>p+q}+{a/\—-ﬂ:—>p}+{-|a/\ﬁ:—yq}

3. {a:>pl+q — {a:>p+g}+{-a:—q}

The fourth rule is based on axiom CONG6. Let {a;} be a partition and v € TVar. Using the
construction from the proof of Lemma 6.2, {a;} can be reduced to a partition {Bjnv e W},
where [8; A v € Wj] C [ay(;)] for some i(§). Furthermore, tvar(B;) U tvar(W;) C tvar(oy;)).
We define

4. vaV a(v) . E,;{Ozi 1— p,;} —_— Ej{ﬂj t— vevaw; a('u) . pi(j)}

8.2 Reducing bounds 33

8.2 Reducing bounds

In order to reduce time-closed process terms to a unique normal form, it is necessary to
reduce bounds. For example, the equation 2v — 1 = (v — 1) 4 v holds for v > 1, but is untrue
for 0 < v < 1. So the equality

a(v) - b(w) = / a(v) - / b(w
/ve(t,oo) () ./106(21);1,21:) () vE(t,00) () we{(v—1)+v,2v) ()

holds for ¢t > 1, but not for 0 < ¢ < 1.

We want to reduce each bound to a normal form. Therefore it is necessary that each
element of our time domain has a unique finite representation. This is clearly not the case
for the collection of real numbers. As a time domain we assume from now on a countable
subset D of [0, oo] such that

* @oU{c}CD
e +,—:DxD—-D
¢ -:QuxD—-D
The definition of a bound becomes
bu=t | v | b+b | b-b]|r b

where t € D, r € Q.¢ and v € TVar.

In Appendix A the notion of a bound is generalized to that of a conditional bound, which
allows expressions of the form {a :— b} with & a condition and b a bound. Furthermore, it is
described how a bound can be reduced to a normal form, which is a conditional bound with
all its monus signs replaced by minus signs. This is done by applying the rewrite rule

b~c — {b>c:—b—c} + {b<c:—0}

Now we can give rewrite rule 1, which enables us to reduce the bounds occurring in a
process term. Let b be a bound that, using the construction described in Appendix A, is
reduced to ¥;{a; :— b;}. Then

5. fueqb,c;>P — Zi{oy:— vEb; P P}

We have a similar rewrite rule for if b has normal form b | and symmetric rules for if ¢ has
normal form ¥;{a; :— ¢;} or c|.

8.3 Substituting redundant variables

A variable occurring in a process term can be redundant in the sense that only one value can
be substituted for it. For example:

: b(w) = / : / b
/ve[l,l]a(v) /we(u,v+1)) vE[l,l]a(U) we(1,2) (w)

34 8 REDUCING PROCESS TERMS

So in order to reduce time-closed process terms to a unique normal form, it is necessary to
substitute the only possible value for such a redundant variable.

The following rewrite rule reduces process terms of the form Joepp5a(v) - p. Ensure by
applying a-conversion that v ¢ tvar(b) and also that none of the variables in tvar() are
bound by integral signs occurring in p. Then

6. foepya(®) P — [y a®) - plb/]

8.4 Reducing double terms

The main problem of reducing time-closed process terms to a unique normal form is getting
rid of the ‘double terms’. We first give two rewrite rules, based on axiom INT1, to deal with
this problem.

Let ‘Vp ~ V;’ denoting that ‘Vy UV} is an interval’. Note that this is a condition, i.e. it can
be described by a finite number of (in)equalities between bounds.

7a. fuevo a(v) + quVl a(v) — {p~WV:— vEVHUV; a(v)}
+ {Vo # Vi = [iey, a(v) + [y, a(®)}
7. fueve @) P+ foey, @) p — {Vo~ Vi [eyon, a(v) - p}

+{V# V1= fiey, 0(v) P+ fuey, alv) - p}

However, this rule is not sufficient in all cases. Consider the following two examples.

Example 8.1

a{v) - blw) + / a(v / b(w
«/‘UE(O,I) () LE(v,v+l) () v€E[1,2) () wE(v,2) ()

= a(v) - b(w) + / a(v) - b(w
/vE(O,l] () v[ue(v,v+l) () v€(1,2) () we(v,2) ()

Although these terms are equal, they can not be rewritten by rule 7b.

Example 8.2

) b / . / b(w) = f . / b
/ue(o,z) a(v) /we(u,uﬂ) (w) + ve[L,1] a(v) we(1,2) (w) v€(0,2) a(v) we{v,u+1) (w)

Again both terms can not be rewritten by rule 7b.

A logical solution for avoiding such situations seems to be allowing only integration over
open intervals and over intervals consisting of one point. However, the following example
shows that this restraint does not work.

g double terms 35

3

. b(w / a(v / b(w +/ a’u-/ b(w
.[ue(v,v+1) () vE[1,1] () we(1,2) () ve(1,2) () we(v,v+1) ()

= a(v) - b(w
/ue(0,2) ®) /we(v,u+l) (w)

e equal and satisfy the restraint on intervals, but they can not be rewritten by
1erefore introduce two rewrite rules to deal with Examples 8.1 and 8.2.
L shows that we need a reduction

/E(b,c} a(v) -p+ /uev a(v)-q — _/ve[b,c;> a(v)-p+ /vev a(v) - q

v

g two statements are true:

1d g[b/v] are equal.

ment is clearly a condition. The second statement is translated into a condition

rocess term. Applying rewrite rules 1-5 it can be reduced to a conditional term
in which all the monus signs have been replaced by minus signs. Now let ¢ €

plo) = > alm)

{i|o(e) is true}

iles 5,6 sufficiently many times we can reduce p{c) to a process term in which
in normal form and redundant variables do not occur. This process term will
o(p)*. Now for p,q process terms a condition p = q is defined by

=g ={oeX|o(p)x2o(g)*}

e that this collection is indeed a condition.

. b € Bound and v € TVar. Ensure by applying a-conversion that v € tvar(b)
of the variables occurring in b are bound by integrals occurring in p and q.

an be reduced by the following rewrite rule.

> a(v) P+ [ey a(v) - g — {p[b/v] = glb/v] AbEV :— Loep.ep a(v) -p +

-a(v)-q} + {p[b/v] & qlb/v]VbgV :— Joep,ep (V) P+ [,ev a(v) - ¢}

3 symmetric version of this rewrite rule in order to reduce the process term
+fvEV a‘(”) *q.

36 8 REDUCING PROCESS TERMS

Similarly, Example 8.2 can be reduced by

9. Joeva(®)-p + [epya(v)-a — {plb/v]=qAbeV = [y a(v)-p}

+{plb/v] £V EV > fiey a(v) - p+ fogpyalv) - q}

8.5 Constructing normal forms

In Paragraph 6.7 it has been proven that every process term can be reduced to a basic
conditional term. We now show how to reduce a basic conditional term to a normal form,
which will again be a basic conditional term.

First, let £;{a; :— p;} be a basic conditional term of depth 1. Then each p; is of the form
2 fuev,;,- a;;(v). Fix an i. We reduce p; as follows.

o Apply rewrite rule 5 in order to reduce the bounds of the V;i; to normal form. Using
rules 1-3 the conditions are reduced. Thus a basic conditional term is constructed of

the form
RCEDY / RTO)

where the bounds occurring in the Wy and in the B are in normal form.

e Now apply rewrite rule 7a to each pair Joew,, b (v) + fvEWk,: by (v) for which by = byyr.
Use rules 1-3 to reduce the conditions.

Thus we have constructed the normal form of p;. Replace the p; in Yi{ai :— pi} by their
normal forms. Use rule 1 to reduce conditions. The result is the normal form of Ei{ai :— pi}.

Now suppose that we have already constructed the normal forms for depth < n. Let
Yi{a; :— p;} be a basic conditional term of depth.n + 1. Fix an ¢ and assume that

= Z/ aj(v) - g; +p'
j YveYs

where the g; have depth n and p’ has depth < n. According to the induction hypothesis we
have already constructed normal forms for the g; and for p’. We reduce I; i Joev, ai(v) - ¢; as
follows.

o Apply rewrite rule 5 in order to reduce the bounds of the V; to normal form.

e Replace the q; by their normal forms. Using rule 4, the conditions that occur in the
normal form of g; are lifted over the integral sign I8 ev;- Apply rules 1-3 to reduce the
conditions. Thus we have constructed a basic conditional term of the form

;{ﬂk — ; /v i, ar(v) - g}

37

¢ Substitute redundant variables; if Wy, is of the form [b, 4] and v € FV(qy), then apply
rule 6 to [y, ar1(v) - g Use rules 5,6 to reduce the bounds and to remove redundant
variables in qg[b/v].

¢ First apply rule 8 and then rules 76 and 9 to each pair Joew,, ar1(v)-qu + vaWk;l arr(v)-
gy for which ag = agy. Reduce the conditions using rules 1-3.

Now we have constructed the normal form of %; fuev,- a;(v) - ¢;. Add the normal form of p'
to this term and reduce the conditions to a partition by applying rule 2. The result is the
normal form of p;.

Replace the p; in ¥;{a; :— pi} by their normal forms. Use rule 1 to reduce the conditions.
Thus we have constructed the normal form of ;{c; :— p;}.

It is essential that in the reduction to normal form rewrite rule 8 is applied before rules 7b
and 9 are. Consider for instance the term

a(v) - bw+/ av-f bw+/ av-/ b(w
-/vE(O,l) ®) we(v,v+1) () v€l1,1] @) well,2) () v€E(1,2) ®) wE(v,u+1) ()

from Example 8.3. First rule 8 is applied, resulting in

a(v) - blw) + av-/ b(w) + av-/ b(w
LE(O,I] () ‘/we(u,u+l) () vef1,1] () we(1,2) () v€[1,2) () we{v,v+1) ()

Then rules 7b and 9 are applied, giving the normal form Joet0,2) 4(?) - Jueqo +1) b(w).

9 Unique normal forms

Let p € T¢ have normal form Y:{a; :— p;}. The construction of the normal form has been
such that tvar(a;) € FV(p), so each a; is equal to either ¢t or ff By applying the following
two rewrite rules

10. {tt —>p} — p
11. {f:—p} — §

the normal form of p becomes a time-closed process term p|. We will prove that if p,q € T
with p = ¢ (in BPApSI), then p| 2 ¢|.

Lemma 9.1 Let p,q € T. Ifp can be rewritten to q by rules 1-11, then BPApSI~ Fp=q.

The proof of this lemma is identical to that of Proposition 6.3.
In the sequel ‘normal form’ will stand for normal form of a time-closed process term.

9.1 Two lemmas
Let b be a bound occurring in a normal form. Then b is of the form 0, oo or
(*) (vt e Ve ok o vi(HE) — (S10W1 ot S Wi+ Wing + o+ Wo (1))

where vy, ..., u, w1, ..., w, € TVar are all different, r;,s; € Q.9\{1} and either ¢, ¢ or both
do not occur (see Appendix A).

38 9 UNIQUE NORMAL FORMS

Let b,c be bounds occurring in a normal form with b $ ¢. Since b, ¢ are of the form (), it
follows that then there is at the most one ¢ € V such that b[t/v]* = c[t/v]x. We now prove
two lemmas.

A process term that is a subterm of a normal form is called a subnormal form.

Lemma 9.2 Let p and q be subnormal forms. If plt/v]* = q[t/v]* for some v € TVar and
infinitely many t € [0, 00), then p = q.

Proof. We use induction to the depth of p and q. Let

Z,-:/wev,- ai(w) -p; + Z/wew,- b;j(w)

IR

p

o ! . b
q ;/106% ag(w) - g + ;—/WEVV{ 1(w)

(In the first induction step the sums over i and k are empty). Assume that p % q. We
distinguish two cases.

1. There is a j such that for all | we have fwer b;j(w) 2 fweW{ bj(w).
Fix an . If b; $ b}, then clearly Joew; [t/ bi(w) ¥ fweW{[t /o O1(w) for all ¢.

So assume that b; = b]. Then W; 2 W/, so there is no more than one ¢ € [0, o) such
that W;[t/v]x = W/[t/v]x.

It follows that the set {t € [0, 00) | p[t/v]* & g[t/v]*} is smaller or equal to the number
of I’s (and thus finite).
2. There is an ¢ such that for all k we have [, . ai(w) - p; ¥ fwev,; a(w) - .-

Fix a k. If a; # a}, or V; 2 V/, then it follows as in 1 that there is no more than one ¢
such that -

([, atw)-pole/ole 2 ([abtw)-an)it/ols

So assume that p; 2 gx. Then by the induction hypothesis there is only a finite number
of ¢ such that p;[t/v]* = gi[t/v]*. Furthermore, if V; resp. V{ is not of the form [b, 8],
then there is no more than one ¢ such that V;[t/v]* resp. V|/[t/v]* does have this form.

It follows that {¢t € V| p[t/v]* = g[t/v]*} is finite. o
Lemma 9.3 Let [, a(v)-p be a normal form. Then plt/v]* is a normal form for allt € V.

This lemma can be proven by showing that the construction described in Paragraph 8.5
reduces p[t/v]* to itself. It is left to the reader to check that this is indeed the case.

9.2 Unique normal forms 39

9.2 Unique normal forms

Theorem 9.4 Let p,q € T¢. Ifp= g, thenp| =gq].

Proof. Assume that p = q. Lemma 9.1 implies p=p| and ¢ = q |, and so p|=q|. Then
soundness gives p| < g |. We prove that pl 2 g, using induction to the depth of p| and

q]. First let
pl= vaEV; a;(v) ql = Z/vewj bj(v)

i€l jEJ

Fixan i € I. For t € V; we have p| () V- Since p| & g, it follows that for each t € Vi
there is a j(t) € J with a; = jty and ¢ € Wy(,y. Rewrite rule 7a has been applied, so then
there must be a unique j € J with a; = b;j and V; C W;. Similarly for this j there is a unique
i(j) € I with bj = a,;y and W; C Vi(j- Then rewrite rule 7a tells us that i(j) = i. Thus
V; = Wj.

Now suppose that we have proven the theorem for depth < n. Let

pl = }:/EV. ai(v) - pi +p' gl = Zfew_ bj(v)-¢; +4¢'

ier Y jervv

where the p; and g; have depth n and p' and ¢’ have depth < n. Since p| & q |, it follows
that p’ & ¢ and thus by the induction hypothesis p 4.

Fix an i € I. Since p| « ¢ |, it follows that for each t € V; there is a j(t) € J with
a; = () and t € VVj(t) and pi[t/’t)] = Qj(t)[t/")]-

1. First assume that V; contains more than one point. Let J' C J be the collection of j
for which b; = a; and q; = pi, and define Wy := Ujg W;. Then V;\Wy is just a finite
number of points.

For suppose not. Clearly for each ¢ € Vi\\Wj we have j(t) € J'. So then there is
an infinite subset S of V,\W and a j; € J\J' such that j(t) = jo for all t € S.
Since p;[t/v] < g;,[t/2], the induction hypothesis together with Lemma 9.3 tell us that
pilt/v]* =2 g;,[t/v]* for t € S. Since § is infinite, Lemma 9.2 implies that p; & Gjo- It
follows that jo € J’, so we have a contradiction.

Suppose that t € V;\W,.. Since this set is finite (and since V; contains more than
one point), there is a j € J' such that W; is of the form (t,t' b or ¢,t). The fact
that g; & p; together with p;[t/v] — i [t/v] implies g;[t/v] & g;4)[t/v]. Then the
induction hypothesis together with Lemma 9.3 give gilt/v]* = q;iy[t/v]*. Since rewrite
rule 8 has been applied to the pair

a.rv.q. +f aiv.q.
Loy, 5@ 50 + [)0

we have t € W;. This is a contradiction, so it follows that Vi\W,» = 0. This induces
Vi € Wyr. Then rewrite rule 7b implies that there is a unique Jje J with V; C W;.
Similarly for this j there is an i(j) € I with b; = a;(jy and g; = py;y and W; C ViGy-
Rewrite rule 7b implies that i(j) = i. Thus V; = W;.

40 9 UNIQUE NORMAL FORMS

2. Now assume that V; = [t,t]. If W}, contains more than one point, then we have just
proven that there is an i(t) € I with a;(sy = bj(y) and V) = Wj(y) and pyyy gjy)- Since
Vity = Wjyy) it follows that t € V(). And p;) = gj(1) together with p;[t/v] = gt/
implies that p;)[t/v] < p;ft/v]. Then the induction hypothesis together with Lemma
9.3 give p;yy[t/v]* = p;[t/v]*. Since rewrite rule 9 has been applied to the pair

a:{v) - . + / a:{v) - .
\/vEV}(,,, l() Di(t) v t() Di

the term f .y a;(v) - p; should not be there at all. This is a contradiction, so it follows
that Wj(t) = [t, t].

Since rewrite rule 6 has been applied, we have p; = p;[t/v]* and gj() = ;) [t/v]*. The
induction hypothesis together with Lemma 9.3 give p[t/v]x & g;([t/v]*, s0 p; = g;y)-
O

9.3 An example

The normal form of a process term can be much greater than the term itself. Consider for

instance
a(v) - b(w) + / b(w
./ve(o,s) (v) (/we(7—4u,5-u) (w) we (3,4 +1v) (w))

Its normal form can be deduced from Figure 4. The lines that are drawn there intersect for
ve{},%,2,1,1,18 2 5 3 11} Thus we get the following normal form:

329605 8 3 g
fue(O,%] a(v)-6(v) + [, 1,2 a(”)'fwe(s,-lg+§v) b(w)
+ fué(%,%-g] a(v) - (fwe(a,%+§u) b(w) + foe(r-10,5-v) 2(w))
+ ez 0() - fue@s-u 8(®@) + JSien,1)0(v) - fog(r-a0,5-v) ()
+ fue[g,%ﬁ]a(v)'fwe(u,s—u) b(w) + fus{-lgp) a’(v)'fwe(u,%’+%v) b(w)
+ Loeg2,8) 40) - Jueqws—u 8(@) + Jugs 12414 b(w))

+ fue[g,s]a(”)'fwe(a,%+§v) b(w) + fve[3,¥)a(”)'fwe(u,%+§u) b(w)

+ fuepiz 5 alv) - 6(v)

9.4 Relating BPApSI and BPApéI~

Extend the theory of CTA to CTA* by adding the axioms A1,2,4 of BPA and INT3a,b of
BPApéI and rewrite rules 5-7.

41

W-AXIS
W=17/6+V/
-+ W=3
W=5-V
1 W=7-4V
1] [] 1
i 1] 1
0 1 V-AXIS

Figure 4: The graphical description of a process term

Proposition 9.5 Vp,q e T¢
BPApSI™ Fp=¢q <= BPApéItp=q <= CTA Fp=gq

Proof. Clearly BPApSI~ + p = q implies BPApSI - p=gq

Now let BPApSI p = q. Then soundness implies p < ¢q. We can apply the reduction
described in Paragraph 8.5 to reduce p and ¢ to normal form. This reduction involves only
axioms of CTA*. Theorem 9.4 implies that pl=ql,soCTAY Fp=gq.

Finally, suppose that CTA* + p = q. Then it can be proven as in Proposition 6.3 that
BPApSI~ Fp=q. O

A Reducing Bounds

The set of conditional bounds, with typical element b, is defined inductively as follows, where
b € Bound and « € Cond.

be u= b]| a—be | be+b: | be — b

Conditional bounds are considered modulo commutativity and associativity of the +.
We now show how to reduce a bound to a normal form, which will be a conditional bound
of the form ¥;{a; :— b;}. This construction is described in several steps, where each step

42 A REDUCING BOUNDS

consists of giving a collection of rewrite rules. Here, a rewrite rule is an expression of the
form b, — b, where b,, b, are conditional bounds.

Step 1

r-(b+¢c) — r-b+r-c

r-(b—¢c) — r-b—r-c

r-tg — t; wheret; =r-ip
ro-(r1-v) — re-vwhererg=19-1
l1-v — v

Using these rules, each bound can be reduced to a bound that can be defined as follows,
wheret € D, r € D\{1} and v € TVar.

bu=t|ov|rv]btec]b=-c

Step 2
Let {o;} and {B;} be partitions and O € {+, — ,~}. Then

b—c — {b>c:—=b—-c} + {b<c:—0}

Ti{oi = b} O Bi{B :— ¢j} — Bi){ai AB; :— bilej}
Yi{ai = b} 0c — Zi{a;:— b0Oc}

b O %{B) :— ¢j} — E;{B; :— bOc;}

zi{ai — Ej{ﬁj — ”}} —— 2(,,]){62, A ﬁ] — U}

The first rewrite rule is applied to each monus sign once. The minus sign can be considered
to be the monus sign together with some index, telling that the first rewrite rule has been
applied to this monus sign.

The bounds occurring in the conditions have to be reduced too. For instance, if b — b’
thenb<ec— b <ec.

With these rewrite rules each bound can be reduced to the form ¥;{a; :— b;}, where the
bounds b; and the bounds occurring in the a; do not contain monus signs.

Step 3

bo+ (by —b2) — (bo+b1) — b2
(bo—b1)+ bz — (bo+b2)—b1
bo — (by — b2) — (bo+b2) — b1
(bop—b1) — by — bo— (b1 + ba)

REFERENCES 43

Using these rewrite rules, each bound can be reduced to the form Yi{ai :— b;}, where the
bounds b; and the bounds that occur in the a; are of the form

(revibe 1 v oy +o b v) — (s1rwit...t+st-wwip + o+ W+ 4.+ E])
with j+k>1and m+n > 0.

Step 4
Let O € {+,-}.

o+t — ty wherets =1+ 13
To'v+7 v — 7ro-v wherery =rg+ 7
rTo-v+v — 1 -vwherer; =rg+1
v4+v — 2.9

bOO — b

ocodb — o0

With these rewrite rules we can reduce each bound to the form ¥;{a; :— b;}, where the
bounds b; and the bounds that occur in the a; are of the form 0, o or

(*) (ri-vi+..4r-v+ Vipr +o +0(+8) — (sp-wr+ ...+ s wp + Wil + oo + W (+£'))

where vy, ...,v; € TVar are all different, Wiy ...y Wry, € T'Var are all different and ¢, ¢ € D are
not necessarily there (that is why they have been put between brackets).

Step 5

Finally, by applying rewrite rules like

(b+ro-v)—(c+r-v) — (b+7r2-v)—cifrog>r; and rp = rg — 1
(b+7’0-1))-—(C+T1"U) — b—(c+ry-v)ifrog<nm and re =7y —1g
(b+r-v)—(c+r-v) — b—c

we can reduce bounds of the form (*) such that vy, ..., Ui, W, .., W, € TVar are all different
and either ¢, #' or both do not occur.

References

[BB90] J.C.M. Baeten and J.A. Bergstra. Process algebra with signals and conditions.
Report P9008, University of Amsterdam, Amsterdam, 1990.

[BB91] J.C.M. Baeten and J.A. Bergstra. Real time process algebra. Journal of Formal
Aspects of Computing Science, 3(2):142-188, 1991.

[BK84] J.A. Bergstra and J.W. Klop. Process algebra for synchronous communication.
Information and Computation, 60(1/3):109-137, 1984.

[BW90] J.C.M. Baeten and W.P. Weijland. Process algebra. Cambridge Tracts in Theoretical
Computer Science 18. Cambridge University Press, 1990.

44

[Fok91]

[G1a87]

[Grosg]

[Gro90]

[Klu91]

[Mil89]
[MT90]

[NS90]

[Par81]

[Plo81]

[RR88]

[Wan90]

REFERENCES

W.J. Fokkink. Normal forms in real time process algebra. Report CS-R9149, CWI,
Amsterdam, 1991.

R.J. van Glabbeek. Bounded nondeterminism and the approximation induction
principle in process algebra. In F.J. Brandenburg, G. Vidal-Naquet, and M. Wirsing,
editors, Proceedings STACS 87, volume 247 of Lecture Notes in Computer Science,
pages 336-347. Springer-Verlag, 1987.

J.F. Groote. Transition system specifications with negative premises. In J.C.M.
Baeten and J.W. Klop, editors, Proceedings CONCUR 90, Amsterdam, LNCS 458,
pages 332-341. Springer-Verlag, 1990.

J.F. Groote. Specification and verification of real time systems in ACP. In L.
Logrippo, R.L. Probert and H. Ural, editors, Proceedings 10** International Sym-
posium on Protocol Specification, Testing and Verification, Ottawa, pages 261-274,
1990.

A.S. Klusener. Completeness in real time process algebra. Report CS-R9106, CWI,
Amsterdam, 1991. An extended abstract appeared in J.C.M. Baeten and J.F.
Groote, editors, Proceedings CONCUR 91, Amsterdam, LNCS 527 , pages 376-392.
Springer-Verlag, 1991.

R. Milner. Communication and concurrency. Prentice Hall Internatiohal, 1989.

F. Moller and C. Tofts. A temporal calculus of communicating systems. In J.C.M.
Baeten and J.W. Klop, editors, Proceedings CONCUR 90, Amsterdam, volume 458
of Lecture Notes in Computer Science, pages 401-415. Springer-Verlag, 1990.

X. Nicollin and J. Sifakis. ATP: An algebra for timed processes. Technical Report
RT-C26, IMAG, Laboratoire de Génie informatique, Grenoble, 1990.

D.M.R. Park. Concurrency and automata on infinite sequences. In P. Deussen,
editor, 5** GI Conference, volume 104 of Lecture Notes in Computer Science, pages
167-183. Springer-Verlag, 1981.

G.D. Plotkin. A structural approach to operational semantics. Report DAIMI
FN-19, Computer Science Department, Aarhus University, 1981.

M. Reed and A.-W. Roscoe. A timed model for communicating sequential processes.
Theoretical Computer Science, 58:249-261, 1988.

Y. Wang. Real time behaviour of asynchronous agents. In J.C.M. Baeten and J.W.
Klop, editors, Proceedings CONCUR 90, Amsterdam, volume 458 of Lecture Notes
in Computer Science, pages 502-520. Springer-Verlag, 1990.

