1992

E.H. Blake, V.C.J. Disselkoen, A.A.M. Kuijk

Faster Phong shading

Computer Science/Department of Interactive Systems Report CS-R9228 July

CW1is het Centrum voor Wiskunde en Informatica van de Stichting Mathematisch Centrum

CWI is the Centre for Mathematics and Computer Science of the Mathematical Centre Foundation

CW! is the research Stichting Mathematisch Centrum

was founded on Feb as a non-profit institution aiming
promotion of mather r science, and their application
sponsored by the Di it through the Netherlands orgar

for scientific researct

Copyright © Stichting | :ntrum, Amsterdam

Faster Phong Shading

E.H. Blake, V.C.J. Disselkoen and A.A.M. Kuijk

CWI
Kruislaan 413, 1098 SJ Amsterdam, The Netherlands.
Email: edwin@cwi.nl

Abstract

Phong shading is a very well known shading algorithm for producing realistic
images. Real-time Phong shading has on the whole remained too expensive
for hardware implementations, either because of excessive computational
complexity or because of large storage requirements. The algorithm presented
here is designed to produce Phong shaded pixels with the smallest incremental
cost using the least storage possible. Its incremental pixel cost is 5 additions
with 3 registers to store and accumulate forward differences. This method is
well suited to fast hardware implementations but, because of its accuracy and
extensibility, it is also an attractive software solution. A quadratic expression
based on angular interpolation for Phong shading is derived which involves
neither further approximations beyond those implicit in the Phong model for
vector interpolation nor table lookup for exponent evaluation. These benefits
are paid for by increased polygon and scanline preprocessing compared to
earlier methods.

The method can deal with the case where the viewer and light source are inside
the scene, that is, when the light or viewer direction varies over the shaded
surface. Extensions deal with pixel integration anti-aliasing and these require
cubic rather than quadratic interpolation. The paper contains a detailed
analysis of the costs and benefits of the new method and previous methods of
optimizing or approximating the Phong shading algorithm.

1991 Mathematics Subject Classification : 65D20, 68Q25, 68U05.

Key Words and Phrases : angular interpolation, illumination model, quadratic
approximation, shading method.

1. Introduction.

Phong shading is a very well known method for rendering objects which have been
approximated with planar polygonal facets (see [S]; an excellent overview of the topic is
given in [9]). This shading method gives a smooth rounded appearance to the objects and
provides fairly good highlights corresponding to point light sources. This method is less
likely to miss highlights and it suffers less from Mach banding than the more common
shading method employed for high speed rendering: Gouraud shading.

Phong shading would be of real benefit in interactive applications, such as computer-aided
design, if it could be done in (near) real-time (i.e., 12-30 complete pictures per second).
More advanced algorithms such as ray tracing and radiosity would be better, but for
interactively changing environments these methods are not yet remotely feasible
computationally. The problem up to now has been that, even for Phong shading, the
computational complexity has been too high for the kind of hardware found in graphics
workstations.

Report CS-R9228

ISSN 0169-118X

Cwi

P.O. Box 4079, 1009 AB Amsterdam, The Netherlands

1

Blake, Disselkoen & Kuijk - Faster Phong Shading

The overall aim of our research, of which we report on one aspect here, is to develop a new
architecture for an interactive workstation [11]. The graphics requirements are essentially
real-time support of the Phigs+ standard, where Phong shading has been chosen as the best
quality shading method. A novel feature of the architecture is that there is no frame buffer
— this was done mainly to improve interactive performance, but one could also argue that
if 24 frames per second are needed then one might as well do 60 frames per second and get
rid of the frame buffer which becomes a bottle-neck at high update rates. This feature has
a number of implications, for example, that the smallest pick primitive becomes a visible
surface and not a pixel, and that object space hidden surface removal is required. It also
means that fully shaded pixels for multiple light sources have to be produced every 12ns,

depending on resolution. The algorithm presented here has been implemented partially in
custom VLSI to achieve this rate.

1.1 Fast Realistic Rendering in Dynamic Interactive Environments.

Standards of realism are constantly being improved. We shall restrict ourselves to that
degree of realism which can be achieved at more-or-less real-time rates, at least 12 fran}es
per second and preferably 24 or more. This frame rate must be realised in an interactive

setting where the user is free to alter the models being rendered, the position of the lights
and the viewpoint.

The current state-of-the-art for fast high quality rendering is real-time Gouraud shading.
The challenge is to do better than that. In spite of advances in radiosity algorithms the
current aim there is low quality images during interaction with progressive refinement of
static pictures (see for example [2], or other papers on progressive refinement radiosity in

the same publication). Ray tracing approaches to rendering show no promise of real-time
solutions.

The next hurdle to be taken in real-time realism is therefore the Phong illumination

equation. It may be written as follows, if we use the h vector introduced by Blinn [4]
instead of the original formulation:

I = aCoCL + dCoCpL(m-1) + s CgCyL(n-h)gloss 1)
ambient diffuse specular
Where colours are governed by the following terms:
a coefficient of ambient reflection » Co object (diffuse) colour
d coefficient of diffuse reflection CL light source colour
s coefficient of specular reflection Cs object specular colour

gloss exponent of the Phong shading model — measures glossiness of the object.
Geometry is specified by following unit vectors:

n normal to the object
I direction of the light source from the object
h direction halfway between eye and light — direction of maximum highlight.

For Gouraud shading the components are evaluated at the vertices of the polygon which is
to be shaded and the resultant colours are linearly interpolated over the facet. Clearly the
values in the interior of the facet cannot be higher than those on the vertices, so if a
maximum lies inside the facet it will be missed. For the Phong shading algorithm the
normals themselves are linezrly interpolated across the polygon and the shading Equation
(1) evaluated at each interior point. If the light source and viewer are modelled as being
within the scene then the 1 and h vectors are interpolated in the same way.

The major cost in Phong shading is the renormalization via a square root and a division
which has to occur after each vector interpolation step. The best optimization still incurs
this cost (see Section 2.1). Because pixel values need only limited accuracy look-up tables

Blake, Disselkoen & Kuijk , Faster Phong Shading

can be used for square roots and exponentiation. Real-time rates are possible if enough
hardware is dedicated to the problem [6, 8].

Another approach to this problem is to simplify the Phong shading model. Here one
should be beware of producing expensive Gouraud shaders due to over simplification, or
of producing methods which cannot deal with the extreme cases which occur in practice.
On the other hand Phong shading is itself nothing more (or less) than a very good practical
approximation to real shading effects — it is not a holy Grail which may not be sullied.

The rest of the paper develops as follows: there is next (Section 2) a survey of previous
optimizations and simplifications of the Phong method. In Section 3 we introduce our
method, quadratic Phong shading via angular interpolation, which has the lowest pixel
cost in terms of time and storage of any method we are aware of. Section 4 is a defailed
comparison of the various methods in terms of their complexity and compares the visual
appearance of the angular interpolation method with standard shading methods. Section 5
summarizes our conclusions. An appendix has been added with pseudo-code to guide
readers who may wish to implement the angular interpolation method.

2. Optimizing the Phong Shading Model.

The Phong shading algorithm has been around long enough for it to have gone though
several cycles of optimization, some of these were:

1. The original formulation [5], which can now be found in most graphics texts
(e.g., [9D).

2. Introduction of the h vector which essentially replaces the reflection vector

[4].

3. Duff’s optimization which allowed incremental computation of a number of
the terms [7].

4. Bishop and Weimer’s quadratic Taylor series approximation, followed by
explicit exponentiation of the specular term, for pixel evaluation [3].

The first two cycles of optimization have already been dealt with in the introduction. The
other two will follow in the next subsections.

2.1 Incremental Calculation of the Phong Shading Terms.

For triangle primitives the linearly interpolated vectors can be written as the unique
combination of three vectors, a, b & ¢:

n(x,y) = ax+by+c (2a)

A typical calculation is then to find I'n, and Duff [7], pointed out that such expressions
may be written in the form:

ax+by+c

I'n(x,y) = (2b)

Vdx2 +exy+ fy2 + gr + hy + i

where the terms a ... i are various combinations of scalar products of the vectors involved
(see [3] for more detail on this equation). The right hand side of Equation 2b can be
evaluated by finite differences. This calculation involves some overhead to find the terms
a ... 1, and the differences on each scanline. For each pixel the evaluation of (2b) requires 3
additions, a reciprocal square root and a multiplication. The specular term also requires an
exponentiation, but the denominator is shared between the terms.

If 1 (or h) is also to be interpolated then the terms become somewhat more complex. The
numerator is a quadratic and the denominator the square root of the product of two
quadratics. The specular term again requires a further exponentiation and only one of the

elkoen & Kuijk Faster Phong Shading

:rms under the square root can be shared between the diffuse and specular
s the shading equation has the following form:

onstant +

quadraticy + quadraticg n 20
v quadraticy quadratic3 (\l quadraticy quadratics) ‘

r Series Approximation.

i of the optimization presented in Section 2.1 lies mainly in the reciprocal
_ To avoid this the whole right hand side of Equation 2b can be expressed as a
ional Taylor series approximation [3]. It turns out that using only the terms up
rder provides sufficient accuracy. The diffuse term has the form:

sx2 + Tgxy + T3y2 + Tox + Ty + To 3)

1 term has the same form except that it has to be raised to a power; the ambient
-included in the diffuse calculation. This means that the cost per pixel comes
aluating two quadratics and raising the specular term to the required power, a
ditions and one exponentiation.

ight or viewer directions are not constant then the somewhat more complex

(Equation 2c) have to be approximated® . Again it turns out that a quadratic
lon works quite well.

ratic Phong Shading using Angular Interpolation.
*h to quadratic Phong shading depends on two major results:

cewise quadratic expression for the cosine of an angle 0, — g <0 < 75‘,
toapowern, 1<n<125.
ar expression in terms of the pixel position, x, on a scanline for the angle

en the interpolated normal vector, n, and the light or highlight vector, 1 or
n Equation 1.

ovide a brief statement of the results, enough to indicate the derivation and
mentation of the ideas. An introduction with more detailed derivations of some
s may be found in [13]T. The paper covers only the results along a single

re we derive the optimized preprocessing algorithm to set up the parameters for
cessing.

ratic Approximation for cos”.

: quadratic expression for the cosine of an angle 0, — g <B< g, raised to a power
[25, was found by least square fitting:

rom published errata, there are a couple of further minor corrections that have to be applied to
rersion of the approximation, these are also listed under [3] in the references section.

10te the corrections given with the reference at the end of this paper.

Blake, Disselkoen & Kuijk - Faster Phong Shading

r 0
M if-b>0 orb<0
b -a 4 bee
cos”® = q(8,n) = < 02 o <y<-a 4
I_EF if-a<0<a
(e__b)z ifa<9<b
\ b -a)
where;
a n+5.6
n(0.097 +5.2)
b _ n+65.0
T 50n+317

This quadratic expression, q(6, ») is parameterized on n, thus no tables are needed. It is
certainly accurate in the range it was designed for and usable beyond that range up to about
n=256. At n=1 it deviates from the cosine where its value approaches zero: the slope is

much more gradual. This is useful as it removes yet another source of Mach banding
found in diffuse illumination.

3.2 Angular Interpolation of Vectors Along a Scanline.

We shall be interpolating by a vector rotation rather than by linear interpolation and
renormalization as in the standard Phong method. Clearly any two vectors to be
interpolated define a plane. If we interpolate linearly in this plane and renormalize then
the angular velocity of the vector is constantly changing, while if we perform equiangular
interpolation then the angular velocity is constant. This is illustrated in Figure 1. This
difference is of no importance as long as we remain consistent — both approaches are
equally ‘wrong’ since both ignore the fact that equal steps along the display screen of a -
perspective transformed picture are not necessarily equal steps along the facet of the model

N\ &

Figure 1. The different rates for linear and angular interpolation.

The progression of linearly interpolated vectors is indicated by the thick lines.
Linear interpolation takes equal steps along the dashed line in the figure. The
thinner lines are drawn at equal angles. In the extreme case illustrated above it
is clear that the angular rate of change of a linearly interpolated vector is
smaller near the end points than in the middle.

We shall draw all vectors with a common origin — the centre of a common unit sphere.
This can be done because only the directions of the vectors are important, not their relative
spatial position. In the derivation we shall use a few familiar results from spherical
trigonometry. We adopt the convention that angles at the vertices of the spherical triangles
are written as upper case Roman letters and that the angles w.r.t. to the centre of the
sphere, the lengths of the sides, are written as lower case Greek letters.

Blake, Disselkoen & Kuijk Faster Phong Shading

We shall first consider the case of diffuse illumination with interpolated normal vectors
and a fixed light direction: nj and n; are the normal vectors at the left and right ends of a

scanline respectively, and I represents the light vector. The vectors nj and n, lie in a plane
P.

Let n be the interpolated vector which lies between nj and n;. We proceed in Ax
equiangular steps of size :—6, where AD is the angle between nj and n;, and Ax is the

number of pixels along the scanline. On the unit sphere we construct a right-angled
spherical triangle n p 1, p being the perpendicular dropped from 1 onto the arc joining m

and ny (see Figure 2). The length of arc p1is ¥, the constant angle between the plane P and

the vector 1. If we write o for the(negative) arc from p to ny, then by the cosine law for
right-angled spherical triangles:

AB
cosd = cosycos|—x—-q 5a
Y (Axx) (52)

where cos 8 is the required angle between the light vector 1 and the rotated normal vector
n.

Figure 2. Angﬁlar relations within a scanline.
n is the interpolated vector which ranges in equal angular steps between nj and

n, for a total angle of A®; p is the perpendicular dropped from the light vector
1 onto the plane of mj and ny. 1 is the angle between the light vector and the

A9
plane of interpolation of n. Intensity depends on cos 8 = cos 7y cos (Xx—x - oc)

¢ and y are the initial and final angles between the light and the normal vectors
on a scanline.

For the specular term h replaces the light vector in the above argument, and we get:

cos”d = cos®ycos” (%xgx_ﬂ) (5b)

Blake, Disselkoen & Kuijk Faster Phong Shading

Since 7y is constant and by substituting the expression q(0, n) from Equation 4 we get a
piecewise quadratic expression for Phong shading along a scanline.

3.3 Angular Interpolation Between Scanlines.

The vectors nj and n; used above as starting points for scanline angular interpolation are

rather expensive to compute if we have to use an explicit rotation between scanlines as
suggested in [13]. Although linear interpolation could be used between scanlines the
resulting highlights would no longer be symmetric due to the different rates of angular and
linear interpolation, even if the underlying geometry were symmetric.

Consider the vector a = nj x ny, the axis about which n rotates as it is interpolated on a
scanline. Since all vectors except a are unit vectors (we assume angles are less than right

angles):
. (T laxi]
snlz-1)- 5

\ @ D2-2 @y (- D (@1 + (- 12
sin A9

cosy

cosZ ¢ — 2 cos ¢ cos AB cos W + cos2
1 —cos2 A

- 2
A\/ (cos ¢ —cos) N 2coshcosy ©6)

1 —cos2 A8 1 + cos AO

Where ¢ is the initial (left-hand) angle and v the final (right-hand) angle between the
light and interpolated normal (Figure 2).

It is also clear from the cosine law for right-angled spherical triangles that:

cosd cosy
cosa cosf

cosy =

)

We take a trapezium that has its parallel edges aligned with the x-axis of the display as a
primitive polygon to be shaded. At the four vertices we have four normals: njg, nrg, nji,
nr;. We again consider the case of diffuse illumination with a constant light direction 1

(Figure 3).

Blake, Disselkoen & Kuijk Faster Phong Shading

nlO\ /nIO
ng \\ | l\fn n, .
nu‘l \

Figure 3. Vectors involved in diffuse shading of a trapezoidal facet.

The four normal vectors at the vertices are given as well as the constant light

vector, if the light is not within the scene. The other normal vectors are
obtained by interpolation.

scanline

Once again, since we are only interested in the directions of the vectors and not their
relative position we can bring all of them to a common origin (Figure 4). In calculating
both diffuse and specular terms there are two pairs of vectors between which we have to
be interpolate and one constant vector with respect to which we shall be measuring angles.

If we take the case of diffuse illumination we interpolate: njgp — nyj, ng — nr;. The
interpolation along the left edge (nj9 — ny1) proceeds in equal steps of angle o}, while on

the right edge the steps are of size or. S is the angle between the two arcs, the left hand

and right hand ones, along which the vectors are interpolated. The angles of interest are

now explicitly subscripted with the index i’ to indicate the particular scanline.

Figure 4, Angular relations over a trapeziodal facet.

All vectors drawn in Figure 3 are brought to a common origin, marked by a
circle. The interpolation between scanlines is indicated on the left and right by

the shaded arcs. The angular interpolation within a scanline is indicated by the
thicker arc from nyj to ng.

The cosine rule for spherical triangles immediately gives an expression for the range of
interpolation as well as the start and end angles for interpolation on each scanline i: -

elkoen & Kuijk Faster Phong Shading

i = cosAjcospj+ sinA;sin picos S (8a)
=cos AjcosM + sin;sinn cos S; (8b)
i =COSPjcosT + sinpjsinm cos Sy (8c)

:Ai=Ao+i0l, pi =po+ioy S = 81 + 82, and n is the arc between I and the
sction of the left and right interpolation ranges of the normals at S.

Equations 6 - 8 yields expressions for o, AG;, and y;. These can be used to
adratic expressions (Equations 4 and 5) for Phong shading along a scanline.

ical Considerations
ating the above expressions a few points are important:

egenerate cases when one or more of the vectors coincide, or lie in the
plane, or if the facet to be shaded is in fact a triangle, have to be detected
salt with separately with simpler processing.

TOSsover points in the piecewise quadratic approximation do not
iarily lie on an integer pixel boundary. If forward differences are used to
ate the pixel values then the intensity and the 1st and 2nd differences
o be computed at the ceiling of the crossover points.

ils on the implementation may be found in the Appendix.

or Viewer in the Scene

light source or the viewer are not at inifinite distance then we have to apply an
on. In the case of diffuse illumination the approximation can be intuitively
as replacing a curved surface with a light source near it with a more convex

| the light source at infinity. The same can be done for the h vector if the
e light is not in a fixed direction.

pply the approximation consider diffuse shading of a trapezium where the light

scene. At each vertex of the trapezium two vectors are defined, a normal and
ion, so we have the pairs: (n1g, lig), (M1, 111), (00, Irg), (Rr1, Ip).We pick one
13, lig, say, or even any arbitrary vector. The n vectors are now rotated by the
It as the rotation required to rotate their corresponding 1 vector to the single
r. For example, if our chosen vector is lio then nyy is rotated to give n'jy by
ount as that required to rotate 1j; onto lip. Clearly the angle between ny; and
ie as that between n'j; andthe chosen constant vector l1o.

rtain pathological cases involving large angles of interpolation and where the
it about 90° to the light (or highlight) vectors where the approximation breaks

is because the angles between n and 1 at the vertices are correct but the
d in between values may be different.

Jiasing,

sroximation to anti-aliasing in the form of area sampling may be applied. A
idered to be a square. On the edges of trapezia the square may only be partly
whole trapezium may even be smaller than a pixel. The facet contributes to
yroportion to the area covered by the trapezium. This can be accumulated for
ich overlap the pixel square if we are guaranteed that no obscured edges will

>.g., if an object space hidden surface algorithm is used. Transparent
of course allowed.

lkoen & Kuijk Faster Phong Shading

1 edges of a trapezium, which cut more than one pixel on a single scanline,
idered a linear modulation of the quadratic shading function. The resultant is
ing function. In other cases, except for pathological cases (single pixel wide
), a single constant factor suffices to multiply the edge pixels. Thus the
:nefit of quadratic shading can be edge anti-aliasing using third order forward

ision and Comparison of Shading Methods.

ifficult to compare the complexity of various algorithms, particularly if these
; are to be used for making practical decisions. We have have chosen to
complexity in terms of the operations typically available on modern RISC
s which have divisions, seeds for reciprocal square roots, etc. implemented.
eature of these architectures is that there is a single standard cycle time for the
ions — all are equal to the time of a multiplication, say. To be specific we
to express complexity in terms of the kinds of operations found on the Intel®
oprocessor [10], which is designed for 3-D graphics workstations. Further
rations were found by referring to standard algorithms, such as those in [1] and

cal operations were given the costs indicated in Table 1.

nic Operation Elementary Flops Total
Operations Operations

arc cosine 9+ 6* 1sqrt 13+ 20* 33
angle 11+ 9% 1sqrt | 15+ 23* 38
cosine 8+ 8* 8+ 8* 16
cross product 3+ 6* 3+ 6* 9
division 1div 2+ 5% 7
dot product 2+ 3% 2+ 3% 5
exponent int T* 7* 7
exponent float 10+ 8% 1rsr | 14+ 22%* 36
length 2+ 3% 1sqrt | 4+ 14* 18
normalized crp 5+ 12% Irsr | 9+ 25* 34
reciprocal sqrt 1rsr 4+ 13* 17
sine 7+ 8% 7+ 8% 15
square root Isqrt 4+ 14* 18

1. Standard Operations and their Complexity.

isons have been made between the following methods, for the cases where the
and h vector are constant (i.e., directional light source and viewer at infinity)
he vectors vary over the facets being shaded (i.e., point light source and viewer
cene):

Phong. By this is meant a method which performs incremental
olation between scanlines and then at each scanline recomputes the
ieters for interpolation along scanlines.

.on Independent Phong. In the case of triangles a unique expression may
and for the linearly interpolated vectors. This can be evaluated more
:ntly.

10

Blake, Disselkoen & Kuijk ~ Faster Phong Shading

3. Duff’s optimization applied to triangle primitives, without forward differences.

Duff’s optimization applied to triangles, forward differences being used both
between and along scanlines.

5. Bishop and Weimer’s quadratic approximation, using forward differences in
both x and y.

6. Angular Interpolation for trapezia, the primitive for which the version of the
method presented here is aimed at.

7. Angular Interpolation for triangles. A number of terms may be removed when
triangles are used. The per facet overhead is much reduced because, for
example, no cross products are needed.

The costs were calculated by the most efficient means known, reusing results when
possible. Operations were costed at the rates indicated in Table 1. It should be noted that
costs of maintaining edges were included in all methods, these were estimated at 12
operations (1 division, 2 additions and 2 multiplications) for preprocessing, and 2
operations (additions) per scanline. For the case where the lights and/or viewer are not at
infinity the calculation of the h vectors was included as an overhead (3 additions and 3
multiplications by a reciprocal square root of a scalar product) at 28 operations per h
vector.

Method Costs 1 & h constant | Costs I & h varying
Facet Line Pixel | Facet Line Pixel |
1. Basic Phong 24 21 46 | 144 45 64
2. Rotation Indep. Pliong 73 2 46 247 2 64
3. Duff Calculated 130 19 32 426 67 57
4. Duff using Differences 167 6 32 581 17 57
5. Bishop & Weimer 273 8 12 732 8 12
6. Angular, Trapezia 434 282 5 1080 353 5
7. Angular, Triangle 198 282 5 578 353 5

Table 2 Costs in Elementary Operations for Various Shading Methods.

The methods described in this paper are analysed in terms of their incremental
costs incurred for preprocessing every facet (triangle or trapezium), and within
a facet for preprocessing the scanlines and finally the incremental cost of
generating pixels.

Once the costs of the various methods has been presented as above, the next question is the
break even point. There is a break even point because cheaper methods have greater
scanline and facet overheads. This question is also difficult to answer since shading
quality and the basic primitives differ. However to give an indication break even points
were calculated by asking at what point the facet overhead was outweighed by the linear
accumulation of benefits per scanline and the quadratic accumulation of benefits per pixel.

11

Blake, Disselkoen & Kuijk Faster Phong Shading

Break even points forland h Break even points for 1 and h both
constant. varying.
Method| 1. 2. 3. 4, 5. 1. 2. 3. 4. 5.
2. 3 3
3. 8 8 66 133
4. 8 8 3 38 65 4
5. 7 6 6 10 10 5 4
6. | 59 | 64 | 117 | 124 | 1578 55 | 61 | 53 | 60 |2528
7. 49 53 100 | 107 | 1511 41 | 46 36 41 | 2385
Table 3. Break even points in terms of pixels for the various methods.

The methods numbers are the same ones used in the previous table. For
example, the entry in the row labelled 7 in the first column of the second table
is 41. This means that for facets of average size 41 pixels or more the cost of
angular interpolation is less than simple Phong shading.

It can be seen that for constant light and view vectors the Duff optimization using forward
differences (method 4) has a low break even point and because of its greater simplicity and

accuracy is probably the better method. The break even of Bishop and Weimer’s method
(method 5) is also low.

In the case of the point light source or viewer within the scene, the method of choice is
clearly the Taylor series approximation of Bishop and Weimer (method 5). It has a break

even of 10 pixels which is only surpased by the relatively inefficient rotation independent
Phong method (number 2).

Figur Comparison of Gouraud, Phong and Angular Shading.

The objects were all shaded with constant light and viewer directions. The top
picture is Gouraud shaded, the left hand is Phong and the right hand is angular
interpolation. There is no difference between the results for Phong and angular
shading and both are a improvement over Gouraud shading.

12

Blake, Disselkoen & Kuijk Faster Phong Shading

It is clear that the very low pixel cost of the angular interpolation method incurs too high
an overhead to make it a general solution, this is particularly the case with the simplest
situation: light and view direction constant. The prime virtue of this method is its ultimate
simplicity and extremely low complexity which make it an ideal solution for hardware
implementation. As a software method it is attractive if the facets and their overhead can
be farmed out to a number of independent processors.

As far as the appearance of the angular interpolation method is concerned no visible
differences could be detected in comparison to standard Phong shading (Figures 5 & 6).
The method dealt successfully with light and viewers within the scene. Naturally the
shading effects were much better than for Gouraud shading.

Figure 6. Phong vs. Angular Shading for point lights and viewer in scene.
The Phong shaded images are on the left and the angular interpolated images
on the right. In the top pair the light source is within the scene and in the
bottom pair the viewer approaches the object more closely. The changing
lighting effects are accurately modelled, again there is no difference between
the results for Phong and angular shading.

5. Conclusion.

The angular interpolation method is prefered when low incremental pixel costs are
essential. It may be attractive as a general shading if the overheads for the facet shading
can be distributed amongst parallel processors. The Taylor series approximation of Bishop
and Weimer is a good software solution to fast Phong shading. The overhead of the Taylor

series approximation compares very well with those of other optimizations of the Phong
shading model.

13

Blake, Disselkoen & Kuijk Faster Phong Shading

Appendix: Pseudo Code for Angular Interpolation.

The following pieces of (pseudo-)code present the details of implementing the general case
of shading a scanline aligned trapezium. The variables used correspond with those
employed in Section 3. The various tests to detect degenerate cases have been
symbolically brought into various cases of a case statement. In fact it is more efficient to
use results produced during normal processing for the tests.

procedure shader(Vector njg, njk, nro, Nrk, light
Float gloss,
Integer upperScanline, lowerScanline)

height := lowerScanline — upperScanline
case checkForDegeneracy(njp, nik, nro, nrk) of

allEqual: ... inOnePlane: ... [eftConstant: ... rightConstant: ...
generalCase:
axisp| := normalizedCrossProduct(njg,nik) I* axes about which vectors */

axisnr := normalizedCrossProduct(nrg,nrk) /* rotate between scanlines */
intersection = normalizedCrossProduct(axisn|, axisnr) -

cosd := dotProduct(intersection, light) /* Reverse intersection if cosd < 0 */
dPlane := crossProduct(intersection, light)

triple| := dotProduct(dPlane, axispj) /* scalar triple product=sin d * cosSI */
tripler := dotProduct(dPlane, axisnr) /* scalar triple product=sin d * cosSr *
cosS := dotProduct(axisn|, axisnr) /* S= angle between planes of interpolation. */
[*** Calculate angles on left interpolation ***/
cosStart| := dotProduct(intersection, njg)
cosEnd] := dotProduct(intersection, njk)
cosRangej := dotProduct(njg,nik)
lambdag := arccos(cosStart})
lambdagtep := arccos(cosRangej)/height ,
if cosEnd]|< minimum(cosStart|, cosRange|) then lambdagtep := -lambdastep
sinStart] := sin(lambdag)
cosStep) := cos(lambdastep)
sinStepj := sin(lambdastep) _
/*** Calculate angles for right interpolation: same as left above ***/
/™** cosStart;, cosEndrcosRanger rhog rhoste sinStart cosStepysinStepy Ll
/*** Preprocessing for trapezium done, now we can proceed with the scanlines ***/
scanline = upperScanline
while scanline <= lowerScanline do
cosPhi := cosdxcosStart|+ sinStartjxtriplg
cosPsi = cosd+cosStarty + sinStartr«tripler
cosDeltaTheta := cosStart|*cosStart; +sinStartj+sinStartyxcosS
gamma := (cosPsi — cosPhi)*(cosPsi — cosPhi) + 2.0%(1.0 —
cost)xcosPhixcosPsi
gamma := sqrt{ gamma/(1.0 — cosDeltaTheta xcosDeltaTheta))

deltaTheta := arccos(cosDeltaTheta)

cosAlpha := cosPhi/gamma

cosBeta := cosPsi/gamma

if (cosBeta < cost) && (cosBeta < cosAlpha) then alpha := —arccos(cosAlpha)
else alpha := arccos(cosAlpha)

cosNext| := cosStartjxcosStep|— sinStart+sinStepj

cosNextr := cosStartyxcosStepr— sinStarty+sinStepy

sinNext; := sinStart-cosStepj + cosStartpsinStep

14

lkoen & Kuijk Fast¢

lexty ;= sinStartrxcosStepr+ cosStarty+sinStepy
Start] := cosNext]

Startr := cosNextr

itart] .= sinNext

itarty := sinNexty

Ima = exponentiate(gamma, gloss)
yProc(alpha, deltaTheta, gamma)
e++

e scanline <= lowerScanline */
Jegeneracy */

re

>roc(Float alpha, deltaTheta, gamma)

.b, parameters of the quadratic approximation to cosM are s
minators used below are sd13 = 2/(bx(b-a)), sd2 = -2/(bxa)

r-xl

ItaTheta/width

)/dtdx

Ix*xdtdx+~gamma

= alpha~dxdt

alphaxdxdt + xi

middle - bxdxdt) /* Boundaries of the various ranges ¢
middie - axdxdt) /* quadratic approximation to cos*n ir
middle + axdxdt) /* pixels rather than angles

middle + bxdxdt)

then

bl then left := xbl

t=xl

xal then

eval(left, min(xr, xal), sd13, 0.0, xbl)

= Xal+1

al then

t < xar then

all eval(left,min(xr, xar), sd2, gamma, xal)
ft := xal+1

t < xbr && xr > xar then call eval(left, min(xr, xar), sd13, 0

e

ral{ FixedPoint xstart, xend, ddi, fnExtreme, offset)
lend - xstart

'me + ddixoffset~offset/2 /*Start Intensity */

+ ddixoffset * First difference */
itePixels(xstart, deltaX, i, di, ddi) /* Calculate via forward
dure eval */

15

ng

Blake, Disselkoen & Kuijk ' Faster Phong Shading

References

1

2

10

11

12

13

Abramowitz, M., and Stegun, L.A. (eds.) Handbook of Mathematical Functions.
Dover Publications, inc. , New York, 1970.

Baum, D.R. & Winget, J.M. Real time radiosity through parallel processing and
hardware acceleration. Computer Graphics 24, 2 (March 1990), 67-75 & 261.

Bishop, G., and Weimer, D.M. Fast Phong shading. Computer Graphics 20, 4 (Aug.
1986), 103-106. Corrections appeared in Computer Graphics 21, 1 (Jan. 1987) p. 53.
In the expression for T4 on p. 105 it appears the following terms should also be
replaced: -fjlgr with +fjlgr and -22nr with -2fnr.

Blinn, J.F. Models of light reflection for computer synthesized pictures. Computer
Graphics 11,2 (1977) 192-198.

Bui Tuong Phong. Ilumination for computer generated pictures. Comm. ACM 18,6
(June 1975) 311-317.

Deering, M., Winner, S., Schediwy, B., Duffy, C., and Hunt, N. The triangle
processor and normal vector shader: A VLSI system for high performance graphics.
Computer Graphics 22, 4 (Aug. 1988), 21-30.

Duff, T. Smoothly shaded renderings of polyhedral objects on raster displays.
Computer Graphics 13, 2 (Aug. 1979), 270-275.

Fuchs, H., Poulton, J., Eyles, J., Greer, T., Goldfeather, J., Ellsworth, D., Molnar, S.,
Turk, G., Tebbs, B., and Isreal, L. Pixel-Planes 5: a heterogeneous multiprocessor

graphics system using processor-enhanced memories. Computer Graphics 23,3
(July 1989), 79-88.

Hall, R. Illumination and Color in Computer Generated Imagery. Springer-Verlag,
Berlin, 1989.

Intel Corporation. i860™ Microprocessor Data Sheet. Order Number 240296. Intel
Corporation, Santa Clara, Ca., 1989.

Jayasinghe, J.A.K.S., Kuijk, A.A.M., and Spaanenburg, L. A display controller for a
structured frame store cystem. In Advances in Graphics Hardware III, A.A.M. Kuijk
(ed.) Springer-Verlag, Berlin, 1991.

Knuth, D.E. Seminumerical Algorithms, 2nd ed., vol 2 of The Art of Computer
Programming. Addison-Wesley, Reading, Mass., 1981.

Kuijk, A.A.M., and Blake, E.H. Faster Phong shading via angular interpolation.
Computer Graphics Forum 8, 4 (Dec. 1989), 315-324.

Please note that on p. 321 the definitions of a and b should be swapped.

16

