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ABSTRACT 

A radical reappraisal of the 3-D Interactive raster graphics pipeline has resulted In an experimental 

architecture for a workstation which is currently being evaluated at the CWf. The principal features of this 

architecture are that It/ 

- concentrates exclusively on real-time Interactive 3-D graphics (lnlttally for CAD). 

- uses object space rather than Image space methods where possible. 

- avoids using a frame buffer. 

- only uses custom VLSI where commercial products are unlikely to suffice In the near term. 

Four years Into the project the system design Is complete and the major components have been acquired and 

the custom VLSI chips have been packaged and tested. The current experience with the system Is based on 

detailed simulattons whlcn gave a fairly clear Idea on Its strengths and llmltattons. A complete, but reduced 

resolutlon, experimental prototype system Is now being assembled. 

1997 Mathematics Subject Classlflcaflon: 68Q10, 68Q80, 68U05. 
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1. Introduction 

A number of different feedback levels· in the image synthesis pipeline can be identified if 

one takes a new look at the basics of high quality three-dimensional (3-D) raster graphics 

[Hagen87] for CAD. A user interacts with the visible parts of a 3-D model at each of the 

levels (Figure 1.1 ). We provide direct access to graphics objects to support pointing and 

identification. These are the fundamental actions that underlie every change a user makes. 

Changing pictures form the key to the architecture. Actual pixels are not needed for 

interaction. If we take this observation seriously and ruthlessly pare away other elements 

we get a radical prescrfption for a graphics architecture. One where the visible suriaces of 

objects are explicitly identified and without any mandate for a frame buffer. We believe 

that our research shows that such a machine, which harkens back to the calligraphic roots 

of graphics displays, can be built [Akman88]. 
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Figure 1.1: Gr9Phical data that are relevant for interaction. 
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and functions simulated in detail [Guravage92J. This paper is a description of the 
complete design and early experiences. The rest of this section presents an outline of the 
architecture. The major new components follow from .the bottom up: first, the display 
controller comprising the pixel generator (or x-processor - Section 2.1) and the shading 
processor (or Y-processor - Section 2.2), and then hidden surface removal (Section 3). In 
Section 4 the system is evaluated in the light of our experience so far and with reference to 
its antecedents and current alternatives. 

The functional elements of the display architecture are shown in figure 1.2. In our 
architecture the frame buffer is replaced by a structured list of objects which can be 
'pointed' at refresh rate. To this end a powerful VLSI-based hardware block containing a 
systolic array of processors produces a full colour pixel stream at video refresh rate. This 
block is fed directly from the structured object list. As a result a selected object can be 
highlighted or moved instantaneously. The processors are also capable of producing 
Phong shaded 3-D objects or 2-D textures at this rate. 

The size of the structured list dependent on the image complexity. For reasonable 
complex images the size is about the same as a conventional frame buffer, with the 
advantage that the object list is resoJution independent (it does not become larger for 
higher resolutions). The structured list is also a much more organized data structure and 
can support more sophisticated operations than a frame buffer. 

At higher levels of the architecture the objects become more complex (but also fewer -
less fragmented) with information about light sources, textures and viewing. Here 
representations for incremental changes typical of real-time interaction are favoured. These 
requirements appear to be satisfiable in the short term by powerful but off-the-shelf 
parallel hardware. At the lowest level custom components are needed: these have already 
been built. 
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Figure 1.2: Functional Elements of Display Architecture. The v and x processors are part of 

the display controller. 

2. Display Controller 

The graphics requirements are essentially real-time support of the Phigs+ standard, with 

Phong shading as the best quality shading method. This degree of realism must be 

achieved at 50-60 frames per second in an interactive setting where the user is free to 

alter models, position of the lights and viewpoint. The current state-of-the-art is real-time 

Gouraud shading. The next hurdle in real-time realism is therefore the familiar Phong 

illumination equation. 

The refresh process of a graphics display device is performed by a display controller. In 

calligraphic systems this module interpreted line drawing instructions collected in a 

display list and used this to steer the electron beam (both location and intensity). In current 

raster graphics systems the function of a display controller is reduced to reading of pixel 

intensity information stored in successive memory locations of a frame buffer and 

transforming that information into the video signals. 

In our system architecture the display controller interprets 'area drawing instructions' in 

the structured object list which describe non overlapping areas on the screen and their 

colouring information and transforms that into the video signals. The row by row nature of 

the video signal suggests splitting this scan-conversion process in the horizontal (X) and 

vertical (Y) direction. 

This led to a display controller architecture with different types of processing elements 

(X-processors and Y-processors), and different levels of complexity for the algorithms 

running on them [Jayasinghe91aJ. For each scanline, the intersection of objects with the 

scanline as well as the colour function along that scanline is calculated by an array of Y

processors (i.e., shading processors). These produce scanline commands which are send to 

a one-dimensional systolic array of x-processors (i.e., the pixel generator). These process 

and sort the commands and produce a stream of pixel values. 
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2.1. Pixel Generator 

The pixels are generated by one one-dimensional systolic array of x-processors per colour. 
There is no space to introduce the full instruction repertoire of the x-processors here (see 
appendix A). The repertoire supports smooth shading, i.e. a continuous intensity and 
continuous derivative of the intensity. Thus, the X-processors generate quadratic 
interpolated intensities by forward differencing. Higher order interpolation (in fact any 
higher order) for the purpose of anti-aliasing and advanced illumination models is 
supported as well. 

The processors use 12 bit pixel addressing and operate on 36 bit fixed point intensity 
values. This precision is sufficient for second order forward differencing along the 
designed maximum span of 4K pixels. For higher order forward differencing, the size of 
the spans should be limited to assure sufficient accuracy. 

Commands for a scanline issued by the Y-processors enter the x-processor array on one 
side and travel through the array, currently at a rate of 12 ns per processor. Commands 
operate on a span of pixels, and results of several commands on a pixel accumulate. At 
fixed time intervals, a refresh command is presented to the array. Each processor issues 
the resulting 12 bit pixel value upon arrival of this refresh command and is ready to 
operate on commands for the next scanline. 

2.2. Shading Processor 

The information to drive shading- or Y-processors is contained in the structured object list. 
v-processors produce the instructions for the pixel generator. The Y-processors operate at 
the frame refresh rate and go through a complete cycle once every video frame. Their 
input data are produced at the interaction or animation rate (between 12 and 24 cycles per 
second). The output goes to the pixel processors operating at the line refresh rate. 

The task of these processors can also be described as having to change 2-D display 
information into 1-D scanline information. The third dimension has been dealt with earlier 
by projection and hidden surface removal. The geometry can be specified solely in terms 
of (2-D) display coordinates but (3-D) world coordinates are still needed for the shading 
calculations. The edges of the sur(ace primitives (triangles or trapezoids) are simple 
enough to find. Shading (especially Phong shading) and anti-aliasing are more of a 
challenge and we give an outline of our methods to achieve the high speed necessary. 

The major cost in Phong shading is the renormalization (via a square root and a 
division) and exponentiation that has to occur after each interpolation step. look-up tables 
can be used for square roots and exponentiation [Bishop86]. but this costs storage and is 
not feasible in highly parallel systems such as ours. 

Another approach to this problem is to recast the Phong shading model, but without 
lapsing into expensive Gouraud shaders or being unable to deal with all practical 
situations. Phong shading itself is nothing more (or less) than a very good practical 
approximation: it is not an end in itself. In [Kuijk89] we introduced a method for quadratic 
Phong shading via angular interpofation. It has the lowest per pixel cost in time and 
storage of any method we are aware of. (See appendix B for figures on computational 
costs). 



Our approach to quadratic Phong shading depends on two major results: 

1 A parameterized piecewise quadratic expression for the cosine of an angle t, 

- 1/zrr; < t < 1/in, raised to a power n, i :-;:;; n :-;:;; 125. 

2 A linear expression in terms of the pixel position, x, on a scanline for the angle between 

the interpolated normal vector of the surface and the light or highlight vector. 

We interpolate vectors by rotation rather than by the standard linear interpolation and 

renormalization. The difference is unimportant provided we remain consistent - both 

approaches are equally 'wrong' since both ignore perspective projection effects. 

If either the I ight source or the viewer are not at infinite distance then we apply an 

approximation. In the case of diffuse illumination this can be understood intuitively as 

replacing a surface with a light source near it with a more convex surface with the light 

source at infinity. A similar approximation exists for specular reflection. 

Anti-aliasing irythe form of exact area integration is applied. Object space hidden 

surface removal preserves the necessary information on pixel coverage. Where pixel 

coverage gradually increases along a scanline this is treated as a linear modulation of the 

quadratic shading function. This results in a cubic expression which is passed on to the 

pixel generator. 

3. Hidden Surface Removal 

In our architecture, the hidden surface removal (HSR) takes place in object space. This 

21/2-D space is the result of a perspective transformation on the 3-D scene so that a simple 

projection along the z-axes produces the 2-D image. Hidden surface removal comes down 

to sorting. Therefore we make use of a pre-sorted representation of the objects and store 

them in a data structure on a location which reflects the x- and Y-position of the object 

[Kuijk88]. The pre-sorted representation of the objects does not only reduce the overlap 

calculations needed for the HSR, but also simplifies the scan conversion process. The data 

structure in which objects are stored is designed to reduce the search space and to be able 

to (evenly) distribute the data for a multi-processor implementation. This makes the HSR 

and other operations which involve identification based on location more efficient. 

The interactive applications envisioned require incremental picture changes. Known 

object space HSR algorithms [Franklin90] operate on a complete scene description and 

produce the complete set of visible objects. Therefore we defined a set of logical 

operations on the 21/2-D objects so that individual objects can be added and deleted. 

These operations amongst others involve subtraction, overlap calculation and union of 

objects. All objects have attributes that influence the shading calculations. The objects that 

the logical operations produce inherit a logical combination of the attributes of the 

original objects. This feature allows the system to efficiently make objects invisible or 

transparent. 
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4. Discussion 

The decision to start the implementation at the rasterization level was made because the 
technological critical elements are located there. At that level, special purpose VLSI can 
be relatively simple and is more likely to be competitive. This does not hold for higher 
levels. There the complexity is quite high which also makes the design effort high. Besides, 
general purpose elements are usually implemented on better (more expensive) 
technologies. 

A VLSI based systolic array for pixel generation which was only capable of constant 
shading was introduced in 1985 [Gharachorloo85], this was later replaced by a version 
capable of Gouraud shading [Gharachorloo88]. Real-time Phong shading is also possible 
if enough hardware is dedicated to the problem [Deerin88, Fuchs89]. 

In cooperation with colleagues at the University of Twente we have produced a highly 
pipelined systolic array graphics engine capable of high speed quadratic interpolation 
using forward differencing with 36 bit arithmetic [Jayasinghe91 bJ. The current 
implementation has 9 processing elements per chip using a 1.6 µ CMOS process. 
Extensive simulation has indicated that the chips will run at 12-15 ns cycle time 
(equipment has not been available to test the chips, which have already been packaged, at 
this speed). It is estimated that an improved design using the same technology will be able 
to flt 50-60 processing elements on the same die with a slight improvement in speed. 

The value of quadratic interpolation for shading was brought out in our paper on fast 
Phong shading [Kuijk89]. Uses of quadratic interpolation in shading are also documented 
in [Kirk90, fuchs89]. In fact our architecture is optimized for quadratic interpolation only 
in the sense that 36 bit words allow accurate quadratic interpolation for spans up to 4096 
pixels long. Higher order interpolation require shorter spans to maintain accuracy. Every 
extra order of interpolation requires one extra cycle of processing. 

The maximum number of commands the X-processor array can accept per scanline 
equals the number of pixels on a full scanline. This relation between commands and 
number of pixels should on average hold for each individual object as well. This can be 
justified: all commands contribute to pixels that are visible, but it does not make sense to 
supply more information than can ever come out. However, in principle a system can be 
build which has multiple x-processor arrays and which therefore can spend multiple 
scanline times on a scanline. 

5. Conclusion 

The overall aim of our research is to develop a new architecture for an interactive 
workstation. A novel feature of this architecture is that there is no frame buffer - this was 
done mainly to improve interactive performance, but one could also argue that if 24 
frames per second are needed then one might as well do 60 frames per second and get rid 
of the frame buffer which becomes a bottle-neck at high update rates. This feature has a 
number of implications, for example, that the smallest pick primitive becomes a visible 
surface and not a pixel, and that object space hidden surface removal is required. lt also 
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means that fully shaded pixels that depend on multiple light sources have to be produced 
every 12 ns or so, depending on resolution. 

The object space approach makes it possible to perform incremental updates. This 
reduces the amount of computations involved on the levels above the rasterization level 
and thus improves the interactive behaviour of the system. 

The two-level implementation of the display controller (X- and Y-processors) makes it 
possible to scale the system in two ways. The number of Y-processors can be selected to 
meet the requirements on the maximum image complexity (i.e. number of objects). The 
number of x-processors can be adjusted to accommodate all resolutions (up to 4K pixels 
per scanline). The current maximum throughput rate of the X-processors is sufficient to 
support high resolution systems. It can handle the refresh of 2.46 M Phong shaded 
polygons of 5 x5 pixels per second (60x41 K). Since this first version was a low cost 
design, it is expected that a redesign and a better technology will improve this even 
further. Besides, the throughput rate can be multiplied by using multiple arrays. 

/ 
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Appendix A: Instruction repertoire of the x-processor 

Seti (x,I) Set the Intensity at pixel location x to I 

Setdl (X,dl) Set the first forward difference of the Intensity at pixel location x at di 

Setddl (x,ddl) Set the second forward difference of the Intensity at pixel location x at di 

SetPI (x,dx,I) Set the intensity at pixel locations x, x+dx, x+2dx .... to I 

SetPdl (x,dx,dl) Set the first forward difference of the intensity at pixel locations x, x+dx, 
x+2dx .... at ddl 

SetPddl (x,dx,ddl) Set the second forward difference of the Intensity at pixel locations x, 
x+dx,x+2dx .... at ddl 

EvalO (x,dx,I) Set the Intensities be1ween the pixel locations x and x+dx at I and disable 
the accumulation of Intensities until the next Refresh command 

Eval l (x,dx,I) Accumulate the Intensities between the pixel locations x and x+dx. If I has 
been set use the set value. 

Eval2 (x,dx,l,dl) Interpolate and accumulate the intensities be1ween the pixel locations x 
and x+dx by first order forward differencing. If I or di has been set use the 
set values. 

Eval3 (x,dx,l,dl,ddl) Interpolate and accumulate the Intensities be1ween the pixel locations x 
and x+dx by second order forward differencing. If I, di or ddl has been set 
use the set values. 

Dis (X, dX) Disable the accumulation of the Intensities be1ween the pixel locations x 
and x+dx until the next Eval command. 

Acc_modeO Enable/disable accumulation of negative Intensities. 

Refresh O Output the accumulated Intensity and reset the processor. 

Nop() No operation 

Table 1 : Instruction set of the x-processors. 
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Appendix B: Time complexity of the shading algorithm 

It is difficult to compare the practical complexity of various algorithms. We have chosen to 
express complexity in terms of the operations typically available on modem RISC 
architectures that have divisions, seeds for reciprocal square roots, etc. implemented. The 
salient feature is that there is a single standard cycle time for the basic operations - all are 
equal to the time of a multiplication, say. Specifically we have chosen the Intel® i860™ 
microprocessor as an example. Various typical operations were given the costs indicated 
in Table2. 

Operation Elementary Operations Flops Total Operattons 

a cos arc cosine 9+ 6x lsqrt 13+ 20x 33 

ang angle 11+ 9x lsqrt 16+ 23x 38 

cos cosine 8+ 8x 8+Bx 16 

crp / cross product 3+6x 3+6x 9 

div division ldlv 2+5x 7 

dot dot product 2+3x 2+3x 5 

exp exponent lnt 7x 7x 7 

expf exponent float 10+ Bx lrsr 14+ 22x 36 

len le'hgth 2+ 3x lsqrt 4+ 14x lB 

ncp normalized crp 6+ 12x lrsr 9+25x 34 

rsr reciprocal sqrt lrsr 4+ 13x 17 

sin sine 7+ Bx 7+Bx 15 

sqrt square root lsqrt 4+ 14x 18 

Table2: Standard Operations and their Complexity. 

In Table 3 the angular method we found is analysed in terms of incremental costs incurred 
for preprocessing every facet (triangle or trapezium), and within a facet for preprocessing 
the scanlines and finally the incremental cost of generating pixels. The method of Bishop 
and Weimer [Bishop86] is given for comparison only. It should be emphasized that the 
large lookup tables required for that method in order to do exponentiation after quadratic 
interpolation make it unsuitable for a massively parallel implementation. 

The "facet" costs are incurred whenever models change. The "line" costs arise for 
every scanline at the scanline refresh rate in the shading processors. The pixel rate is 
actually the computational work performed by the systolic array graphics engine. 
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Method 
Directions constant I Directions varying 

Facet J Line j Pixel j Facet j Una j Pixel 

1 Bishop & Weimer 273 8 12 732 8 12 
2 Angular, Trapezia 434 282 5 1080 353 5 
3 Angular, Triangle 198 282 5 578 353 5 

Table3: Costs in Elementary Operations for the Shading Methods. 

/ 
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