
/

1

A.A.M. Kuijk, E.H. Blake, P.J.W. ten Hagen

An architecture for interactive raster graphics

Computer Science/Department of Interactive Systems Report CS-R9229 July

CWI is het Centrum voor Wiskunde en lnformatica van de Stichting Mathematisch Centrum

CWI is the research institute of the Stichting Mathematisch Centrum, which
was founded on February 11 , 1946, as a non-profit institution aiming at the
promotion of mathematics, computer science, and their applications. It is
sponsored by the Dutch Government through the Netherlands organization
for scientific research (NWO).

/

Copyright © Stichting Mathematisch Centrurn, Amsterdam

An Architecture for Interactive Raster Graphics

A.A.M. Kuijk, E.H. Blake and P.J.W. ten Hagen

CW/

Kruislaan 4 73, 7098 SJ Amsterdam, The Netherlands

Email: fons@cwi.nf

ABSTRACT

A radical reappraisal of the 3-D Interactive raster graphics pipeline has resulted In an experimental

architecture for a workstation which is currently being evaluated at the CWf. The principal features of this

architecture are that It/

- concentrates exclusively on real-time Interactive 3-D graphics (lnlttally for CAD).

- uses object space rather than Image space methods where possible.

- avoids using a frame buffer.

- only uses custom VLSI where commercial products are unlikely to suffice In the near term.

Four years Into the project the system design Is complete and the major components have been acquired and

the custom VLSI chips have been packaged and tested. The current experience with the system Is based on

detailed simulattons whlcn gave a fairly clear Idea on Its strengths and llmltattons. A complete, but reduced

resolutlon, experimental prototype system Is now being assembled.

1997 Mathematics Subject Classlflcaflon: 68Q10, 68Q80, 68U05.

Key Words and Phrases: raster graphics, Interactive, architecture, display controller, systolic array, object space

hidden surface removal, angular Interpolation.

1. Introduction

A number of different feedback levels· in the image synthesis pipeline can be identified if

one takes a new look at the basics of high quality three-dimensional (3-D) raster graphics

[Hagen87] for CAD. A user interacts with the visible parts of a 3-D model at each of the

levels (Figure 1.1). We provide direct access to graphics objects to support pointing and

identification. These are the fundamental actions that underlie every change a user makes.

Changing pictures form the key to the architecture. Actual pixels are not needed for

interaction. If we take this observation seriously and ruthlessly pare away other elements

we get a radical prescrfption for a graphics architecture. One where the visible suriaces of

objects are explicitly identified and without any mandate for a frame buffer. We believe

that our research shows that such a machine, which harkens back to the calligraphic roots

of graphics displays, can be built [Akman88].

Report CS-R9229
ISSN 0169-11 BX
CWI
P.O. Box 4079, 1009 AB Amsterdam, The Netherlands

1

Graphics
Interface viewing

change
objects

viewing
grouping

visibility
calculation

delete/insert
transformation
illumination

refresh
process

picking
dynamic attributes
appearance

Figure 1.1: Gr9Phical data that are relevant for interaction.

User
Interactions

and functions simulated in detail [Guravage92J. This paper is a description of the
complete design and early experiences. The rest of this section presents an outline of the
architecture. The major new components follow from .the bottom up: first, the display
controller comprising the pixel generator (or x-processor - Section 2.1) and the shading
processor (or Y-processor - Section 2.2), and then hidden surface removal (Section 3). In
Section 4 the system is evaluated in the light of our experience so far and with reference to
its antecedents and current alternatives.

The functional elements of the display architecture are shown in figure 1.2. In our
architecture the frame buffer is replaced by a structured list of objects which can be
'pointed' at refresh rate. To this end a powerful VLSI-based hardware block containing a
systolic array of processors produces a full colour pixel stream at video refresh rate. This
block is fed directly from the structured object list. As a result a selected object can be
highlighted or moved instantaneously. The processors are also capable of producing
Phong shaded 3-D objects or 2-D textures at this rate.

The size of the structured list dependent on the image complexity. For reasonable
complex images the size is about the same as a conventional frame buffer, with the
advantage that the object list is resoJution independent (it does not become larger for
higher resolutions). The structured list is also a much more organized data structure and
can support more sophisticated operations than a frame buffer.

At higher levels of the architecture the objects become more complex (but also fewer -
less fragmented) with information about light sources, textures and viewing. Here
representations for incremental changes typical of real-time interaction are favoured. These
requirements appear to be satisfiable in the short term by powerful but off-the-shelf
parallel hardware. At the lowest level custom components are needed: these have already
been built.

2

Hidden
.·•·· struct.ured Hsfof visible objects

Display Controller

Figure 1.2: Functional Elements of Display Architecture. The v and x processors are part of

the display controller.

2. Display Controller

The graphics requirements are essentially real-time support of the Phigs+ standard, with

Phong shading as the best quality shading method. This degree of realism must be

achieved at 50-60 frames per second in an interactive setting where the user is free to

alter models, position of the lights and viewpoint. The current state-of-the-art is real-time

Gouraud shading. The next hurdle in real-time realism is therefore the familiar Phong

illumination equation.

The refresh process of a graphics display device is performed by a display controller. In

calligraphic systems this module interpreted line drawing instructions collected in a

display list and used this to steer the electron beam (both location and intensity). In current

raster graphics systems the function of a display controller is reduced to reading of pixel

intensity information stored in successive memory locations of a frame buffer and

transforming that information into the video signals.

In our system architecture the display controller interprets 'area drawing instructions' in

the structured object list which describe non overlapping areas on the screen and their

colouring information and transforms that into the video signals. The row by row nature of

the video signal suggests splitting this scan-conversion process in the horizontal (X) and

vertical (Y) direction.

This led to a display controller architecture with different types of processing elements

(X-processors and Y-processors), and different levels of complexity for the algorithms

running on them [Jayasinghe91aJ. For each scanline, the intersection of objects with the

scanline as well as the colour function along that scanline is calculated by an array of Y

processors (i.e., shading processors). These produce scanline commands which are send to

a one-dimensional systolic array of x-processors (i.e., the pixel generator). These process

and sort the commands and produce a stream of pixel values.

3

2.1. Pixel Generator

The pixels are generated by one one-dimensional systolic array of x-processors per colour.
There is no space to introduce the full instruction repertoire of the x-processors here (see
appendix A). The repertoire supports smooth shading, i.e. a continuous intensity and
continuous derivative of the intensity. Thus, the X-processors generate quadratic
interpolated intensities by forward differencing. Higher order interpolation (in fact any
higher order) for the purpose of anti-aliasing and advanced illumination models is
supported as well.

The processors use 12 bit pixel addressing and operate on 36 bit fixed point intensity
values. This precision is sufficient for second order forward differencing along the
designed maximum span of 4K pixels. For higher order forward differencing, the size of
the spans should be limited to assure sufficient accuracy.

Commands for a scanline issued by the Y-processors enter the x-processor array on one
side and travel through the array, currently at a rate of 12 ns per processor. Commands
operate on a span of pixels, and results of several commands on a pixel accumulate. At
fixed time intervals, a refresh command is presented to the array. Each processor issues
the resulting 12 bit pixel value upon arrival of this refresh command and is ready to
operate on commands for the next scanline.

2.2. Shading Processor

The information to drive shading- or Y-processors is contained in the structured object list.
v-processors produce the instructions for the pixel generator. The Y-processors operate at
the frame refresh rate and go through a complete cycle once every video frame. Their
input data are produced at the interaction or animation rate (between 12 and 24 cycles per
second). The output goes to the pixel processors operating at the line refresh rate.

The task of these processors can also be described as having to change 2-D display
information into 1-D scanline information. The third dimension has been dealt with earlier
by projection and hidden surface removal. The geometry can be specified solely in terms
of (2-D) display coordinates but (3-D) world coordinates are still needed for the shading
calculations. The edges of the sur(ace primitives (triangles or trapezoids) are simple
enough to find. Shading (especially Phong shading) and anti-aliasing are more of a
challenge and we give an outline of our methods to achieve the high speed necessary.

The major cost in Phong shading is the renormalization (via a square root and a
division) and exponentiation that has to occur after each interpolation step. look-up tables
can be used for square roots and exponentiation [Bishop86]. but this costs storage and is
not feasible in highly parallel systems such as ours.

Another approach to this problem is to recast the Phong shading model, but without
lapsing into expensive Gouraud shaders or being unable to deal with all practical
situations. Phong shading itself is nothing more (or less) than a very good practical
approximation: it is not an end in itself. In [Kuijk89] we introduced a method for quadratic
Phong shading via angular interpofation. It has the lowest per pixel cost in time and
storage of any method we are aware of. (See appendix B for figures on computational
costs).

Our approach to quadratic Phong shading depends on two major results:

1 A parameterized piecewise quadratic expression for the cosine of an angle t,

- 1/zrr; < t < 1/in, raised to a power n, i :-;:;; n :-;:;; 125.

2 A linear expression in terms of the pixel position, x, on a scanline for the angle between

the interpolated normal vector of the surface and the light or highlight vector.

We interpolate vectors by rotation rather than by the standard linear interpolation and

renormalization. The difference is unimportant provided we remain consistent - both

approaches are equally 'wrong' since both ignore perspective projection effects.

If either the I ight source or the viewer are not at infinite distance then we apply an

approximation. In the case of diffuse illumination this can be understood intuitively as

replacing a surface with a light source near it with a more convex surface with the light

source at infinity. A similar approximation exists for specular reflection.

Anti-aliasing irythe form of exact area integration is applied. Object space hidden

surface removal preserves the necessary information on pixel coverage. Where pixel

coverage gradually increases along a scanline this is treated as a linear modulation of the

quadratic shading function. This results in a cubic expression which is passed on to the

pixel generator.

3. Hidden Surface Removal

In our architecture, the hidden surface removal (HSR) takes place in object space. This

21/2-D space is the result of a perspective transformation on the 3-D scene so that a simple

projection along the z-axes produces the 2-D image. Hidden surface removal comes down

to sorting. Therefore we make use of a pre-sorted representation of the objects and store

them in a data structure on a location which reflects the x- and Y-position of the object

[Kuijk88]. The pre-sorted representation of the objects does not only reduce the overlap

calculations needed for the HSR, but also simplifies the scan conversion process. The data

structure in which objects are stored is designed to reduce the search space and to be able

to (evenly) distribute the data for a multi-processor implementation. This makes the HSR

and other operations which involve identification based on location more efficient.

The interactive applications envisioned require incremental picture changes. Known

object space HSR algorithms [Franklin90] operate on a complete scene description and

produce the complete set of visible objects. Therefore we defined a set of logical

operations on the 21/2-D objects so that individual objects can be added and deleted.

These operations amongst others involve subtraction, overlap calculation and union of

objects. All objects have attributes that influence the shading calculations. The objects that

the logical operations produce inherit a logical combination of the attributes of the

original objects. This feature allows the system to efficiently make objects invisible or

transparent.

5

4. Discussion

The decision to start the implementation at the rasterization level was made because the
technological critical elements are located there. At that level, special purpose VLSI can
be relatively simple and is more likely to be competitive. This does not hold for higher
levels. There the complexity is quite high which also makes the design effort high. Besides,
general purpose elements are usually implemented on better (more expensive)
technologies.

A VLSI based systolic array for pixel generation which was only capable of constant
shading was introduced in 1985 [Gharachorloo85], this was later replaced by a version
capable of Gouraud shading [Gharachorloo88]. Real-time Phong shading is also possible
if enough hardware is dedicated to the problem [Deerin88, Fuchs89].

In cooperation with colleagues at the University of Twente we have produced a highly
pipelined systolic array graphics engine capable of high speed quadratic interpolation
using forward differencing with 36 bit arithmetic [Jayasinghe91 bJ. The current
implementation has 9 processing elements per chip using a 1.6 µ CMOS process.
Extensive simulation has indicated that the chips will run at 12-15 ns cycle time
(equipment has not been available to test the chips, which have already been packaged, at
this speed). It is estimated that an improved design using the same technology will be able
to flt 50-60 processing elements on the same die with a slight improvement in speed.

The value of quadratic interpolation for shading was brought out in our paper on fast
Phong shading [Kuijk89]. Uses of quadratic interpolation in shading are also documented
in [Kirk90, fuchs89]. In fact our architecture is optimized for quadratic interpolation only
in the sense that 36 bit words allow accurate quadratic interpolation for spans up to 4096
pixels long. Higher order interpolation require shorter spans to maintain accuracy. Every
extra order of interpolation requires one extra cycle of processing.

The maximum number of commands the X-processor array can accept per scanline
equals the number of pixels on a full scanline. This relation between commands and
number of pixels should on average hold for each individual object as well. This can be
justified: all commands contribute to pixels that are visible, but it does not make sense to
supply more information than can ever come out. However, in principle a system can be
build which has multiple x-processor arrays and which therefore can spend multiple
scanline times on a scanline.

5. Conclusion

The overall aim of our research is to develop a new architecture for an interactive
workstation. A novel feature of this architecture is that there is no frame buffer - this was
done mainly to improve interactive performance, but one could also argue that if 24
frames per second are needed then one might as well do 60 frames per second and get rid
of the frame buffer which becomes a bottle-neck at high update rates. This feature has a
number of implications, for example, that the smallest pick primitive becomes a visible
surface and not a pixel, and that object space hidden surface removal is required. lt also

6

means that fully shaded pixels that depend on multiple light sources have to be produced
every 12 ns or so, depending on resolution.

The object space approach makes it possible to perform incremental updates. This
reduces the amount of computations involved on the levels above the rasterization level
and thus improves the interactive behaviour of the system.

The two-level implementation of the display controller (X- and Y-processors) makes it
possible to scale the system in two ways. The number of Y-processors can be selected to
meet the requirements on the maximum image complexity (i.e. number of objects). The
number of x-processors can be adjusted to accommodate all resolutions (up to 4K pixels
per scanline). The current maximum throughput rate of the X-processors is sufficient to
support high resolution systems. It can handle the refresh of 2.46 M Phong shaded
polygons of 5 x5 pixels per second (60x41 K). Since this first version was a low cost
design, it is expected that a redesign and a better technology will improve this even
further. Besides, the throughput rate can be multiplied by using multiple arrays.

/

7

Appendix A: Instruction repertoire of the x-processor

Seti (x,I) Set the Intensity at pixel location x to I

Setdl (X,dl) Set the first forward difference of the Intensity at pixel location x at di

Setddl (x,ddl) Set the second forward difference of the Intensity at pixel location x at di

SetPI (x,dx,I) Set the intensity at pixel locations x, x+dx, x+2dx to I

SetPdl (x,dx,dl) Set the first forward difference of the intensity at pixel locations x, x+dx,
x+2dx at ddl

SetPddl (x,dx,ddl) Set the second forward difference of the Intensity at pixel locations x,
x+dx,x+2dx at ddl

EvalO (x,dx,I) Set the Intensities be1ween the pixel locations x and x+dx at I and disable
the accumulation of Intensities until the next Refresh command

Eval l (x,dx,I) Accumulate the Intensities between the pixel locations x and x+dx. If I has
been set use the set value.

Eval2 (x,dx,l,dl) Interpolate and accumulate the intensities be1ween the pixel locations x
and x+dx by first order forward differencing. If I or di has been set use the
set values.

Eval3 (x,dx,l,dl,ddl) Interpolate and accumulate the Intensities be1ween the pixel locations x
and x+dx by second order forward differencing. If I, di or ddl has been set
use the set values.

Dis (X, dX) Disable the accumulation of the Intensities be1ween the pixel locations x
and x+dx until the next Eval command.

Acc_modeO Enable/disable accumulation of negative Intensities.

Refresh O Output the accumulated Intensity and reset the processor.

Nop() No operation

Table 1 : Instruction set of the x-processors.

8

Appendix B: Time complexity of the shading algorithm

It is difficult to compare the practical complexity of various algorithms. We have chosen to
express complexity in terms of the operations typically available on modem RISC
architectures that have divisions, seeds for reciprocal square roots, etc. implemented. The
salient feature is that there is a single standard cycle time for the basic operations - all are
equal to the time of a multiplication, say. Specifically we have chosen the Intel® i860™
microprocessor as an example. Various typical operations were given the costs indicated
in Table2.

Operation Elementary Operations Flops Total Operattons

a cos arc cosine 9+ 6x lsqrt 13+ 20x 33

ang angle 11+ 9x lsqrt 16+ 23x 38

cos cosine 8+ 8x 8+Bx 16

crp / cross product 3+6x 3+6x 9

div division ldlv 2+5x 7

dot dot product 2+3x 2+3x 5

exp exponent lnt 7x 7x 7

expf exponent float 10+ Bx lrsr 14+ 22x 36

len le'hgth 2+ 3x lsqrt 4+ 14x lB

ncp normalized crp 6+ 12x lrsr 9+25x 34

rsr reciprocal sqrt lrsr 4+ 13x 17

sin sine 7+ Bx 7+Bx 15

sqrt square root lsqrt 4+ 14x 18

Table2: Standard Operations and their Complexity.

In Table 3 the angular method we found is analysed in terms of incremental costs incurred
for preprocessing every facet (triangle or trapezium), and within a facet for preprocessing
the scanlines and finally the incremental cost of generating pixels. The method of Bishop
and Weimer [Bishop86] is given for comparison only. It should be emphasized that the
large lookup tables required for that method in order to do exponentiation after quadratic
interpolation make it unsuitable for a massively parallel implementation.

The "facet" costs are incurred whenever models change. The "line" costs arise for
every scanline at the scanline refresh rate in the shading processors. The pixel rate is
actually the computational work performed by the systolic array graphics engine.

9

Method
Directions constant I Directions varying

Facet J Line j Pixel j Facet j Una j Pixel

1 Bishop & Weimer 273 8 12 732 8 12
2 Angular, Trapezia 434 282 5 1080 353 5
3 Angular, Triangle 198 282 5 578 353 5

Table3: Costs in Elementary Operations for the Shading Methods.

/

10

References

[Akman88] v. AKMAN, P.J.W. TEN HAGEN, AND A.A.M. l<UIJK, "A Vector-like Architecture for Raster Graphics," in
Advances in Graphics Hardware II, ed. A.A.M. Kuijk, W. Strafler, EurographicSeminars, pp. 137-154,
Springer-Verlag, 1988.

[Bishop86] G. B1sHoP AND D.M. WEIMER, "Fast Phong Shading," ACM Computer Graphics (SIGGRAPH '86
Proceedings), vol. 20, no. 4, pp. 103-106, August 1986. Corrections appeared in Computer Graphics
vol.21, no. 4, pp. 53. Also in the expression for T4 on pp. 105 -fjlqr should be replaced with +fjlqr and
-2ffnr with -2fllnr.

!Deerin88] M. DEERIN, s. WINNER, B. SCHEDIWY, c. DUFFY, AND N. HUNT, "The Triangle Processor and Normal Vector
Shader: A VLSI System for High Performance Graphics," ACM Computer Graphics (SIGGRAPH '88
Proceedings), vol. 22, no. 4, pp. 21-30, 1988.

[Franklin90) W.R. FRANKLIN AND M.S. l<ANKANHALI, "Parallel Object-Space Hidden Surface Removal," ACM Computer
Graphics (SIGGRAPH '90 Proceedings), vol. 24, no. 4, pp. 87-94, 1990.

[Fuchs89] H. FUCHS, J. POULTON, J. EYLES, T. GREER, J. GoLDFEATHER, D. ELLSWORTH, s. MOLNAR, G. TURI<, B. TEBBS, AND
L. lsREAL, "Pixel-Planes 5: A Heterogeneous Multiprocessor Graphics System using Processor-enhanced
Memories," ACM Computer Graphics (SIGGRAPH '89 Proceedings), vol. 23, no. 3, pp. 79-88, 1989.

/
[Gharachorloo85J N. GHARACHORLOO AND c. POTTLE, "Super Buffer: A Systolic VLSI Graphics Engine for Real Time Raster

Image Generation," in 1985 Chapel Hill Conference on VLSI, ed. H. Fuchs, pp. 285-305, Computer
Science Press, Rockville, Maryland, 1985.

[Gharachorloo88] N. GHARACHORLOO, s. GUPTA, E. HOKENEK, P. BALASUBRAMANIAN, B. BOGHOtTZ, c. MATHIEU, AND c. ZouLAs,
"Subnanosecond Pixel Rendering with Million Transistor Chips," ACM Computer Graphics (SIGGRAPH
'88 Proceedings), vol. 22, no. 4, pp. 41-49, 1988.

[Guravage92]

!Hagen87]

Uayasinghe91 a]

Uayasinghe91 bl

[Kirk90l

!Kuijk88]

[Kuijk89]

M.A. GURAVAGE, E.H. BLAKE, AND A.A.M. l<UIJK, "XlnPosse: Structural Simulation for Graphics Hardware,"
in Advances in Graphics Hardware VI, EurographicSeminars, Springer-Verlag, 1992. to appear.

P.J.W. TEN HAGEN, A.A.M. l<UIJK, AND C.G. TRIENEKENS, "Display architecture for VLSI-based graphics
workstations," in Advances in Graphics Hardware I, ed. W. Strafler, EurographicSeminars, pp. 3-16,
Springer-Verlag, 1987.

J.A.K.S.)AYASINGHE, A.A.M. l<UIJK, AND L. SPAANENBURG, "A Display Controller for an Object-level Frame
Store System," in Advances in Graphics Hardware Ill, ed. A.A.M. Kuijk, EurographicSeminars, pp. 141-
170, Springer-Verlag, 1991.

J.A.K.S.)AYASINGHE, G. KARAGIANNIS, F. MoELAERT EL-HADIDY, O.E. HERRMANN, AND J. SMrr, "Two-level
Pipelined Systolic Array Graphics Engine," IEEE Journal of Solid-State Circuits, vol. 25, no. 3, pp. 229-
236, March 1991. revised version of the paper in Proceedings IEEE 1990 Custom Integrated Circuits
Conference, Boston, Massachusetts pp. 17 .2.1-17 .2 .4.

D. KIRK AND D. VOORHIES, "The rendering Architecture of the DN1 OOOOVS," ACM Computer Graphics
(SIGGRAPH '90 Proceedings), vol. 24, no. 4, pp. 299-307, 1990.

A.A.M. KUIJK, P.J.W. TEN HAGEN, AND v. AKMAN, "An Exact Incremental Hidden Surface Algorithm," in
Advances in Graphics Hardware II, ed. A.A.M. Kuijk, W. Strafler, EurographicSeminars, pp. 21-38,
Springer-Verlag, 1988.

A.A.M. Ku111< AND E.H. BLAKE, "Faster Phong Shading via Angular Interpolation," Computer Graphics
Forum, vol. 8, no. 4, pp. 315-324, 1989. Errata: on pp. 321 the definitions of a and b should be
swapped.

11

/

