1992

W. J. Fokkink

Regular processes with relative time and silent steps

Computer Science/Department of Software Technology ~ Report CS-R9231 July

CW1 is het Centrum voor Wiskunde en Informatica van de Stichting Mathematisch Centrum
CWl is the Centre for Mathematics and Computer Science of the Mathematical Centre Foundation

CWI is the research institute of the l, which

was founded on February 11, 1946, J at the
promotion of mathematics, compute s. ltis
sponsored by the Dutch Governmer nization

for scientific research (NWO).

Copyright © Stichting Mathematisch C

Regular Processes with Relative Time and Silent Steps

Willem Jan Fokkink
CWI
P.O. Box 4079, 1009 AB Amsterdam,
The Netherlands

Abstract

In this paper recursion is added to real-time process algebra. An elimination theorem and a
completeness result are proven for regular processes, where the time domain is restricted to the
rational numbers. Finally, the alphabet is extended with the silent step 7 and completeness is
deduced for regular processes w.r.t. rooted branching bisimulation.

1991 Mathematics Subject Classification: 68Q50, 68Q60.

1987 OR Categories: D.3.1, F.3.1.

Key Words & Phrases: ACP, relative time, regular process, abstraction, completeness.

Note: The author is supported by the European Communities under RACE project no. 1046
(SPECS).

1 Introduction

Many extensions of process algebras with a notion of time have been given, e.g. [RR8S],
[MT90], [NS90]. This paper is based on the approach of Baeten and Bergstra in [BB91].
They have extended ACP with real time. Process terms are constructed from timed actions,
consisting of a symbolic action together with a time stamp taken from [0,00]. This time
stamp can be interpreted either absolutely or relatively.

In absolute time a timed action a(r) executes action a at time r. There are identities in
ACP, (ACP with real time) that do not hold in untimed ACP. For example, the equality

a(2) - (b(1) +¢(3)) = a(2)-¢(3)

holds, since after executing a at time 2 the first alternative of the remaining subterm b(1)+c(3)
cannot be chosen anymore.

In relative time a timed action a[r] executes action a exactly r time units after the previous
action has been executed. So the process a[2] - b[1] executes a at time 2 and then b at time
3. In ACP,, (ACP with relative real time) there are some new identities too, e.g.

af2] || (1] || ¢f2] = 8[1] - (ale)(1]

At time 1 action b cannot wait any longer and has to be executed. The time stamps of a and
c are shifted back one time unit, for since we work in relative time the execution of b at 1
would otherwise delay the executions of a and ¢ by one time unit. At time 2 actions a and ¢
are executed. To avoid a deadlock they are forced into a communication.

Report CS-R9231

ISSN 0169-118X 1

Cwi
P.O. Box 4079, 1009 AB Amsterdam, The Netherlands

2 RELATIVE TIME

; is called regular if it has only a finite number of states. One could argue that
f a process implies finiteness if time is involved, because an infinite process can
ions at an infinite number of moments in time. For example, in this view the
‘ocess would not be regular.

a(1)-a(2)-a(3)-a(4)- ..
| relative time this process can be represented as follows.
a[l] - a[1] - a[1] - a[1] - ...

ting an action a, it takes exactly 1 time unit before the next action a is executed.
i is defined by the recursive specification X = a[1] - X. We will consider this
»e regular. In general, a process is said to be regular if it has only a finite number
’, where a horizon is the state that results after executing an action, with the time
Z€ero.

ut that the class of regular processes is not an algebra if the time domain consists
tive real numbers. Therefore we will restrict the time domain to the positive
mbers, in which case the regular processes do form an algebra. Furthermore, we
:omplete proof system for regular processes modulo strong bisimulation.

has studied abstraction in real-time process algebra in [Klu91a]. He has given a
tiomatisation for closed terms w.r.t. branching bisimulation. In this paper we will
on to this timed process algebra with silent moves and give a complete axiomati-
sgular processes (cf [Mil84], [BK88]).

dgements. Jan Bergstra suggested the research of regular processes with real
iaeten and Steven Klusener are thanked for giving useful comments.

itive Time

st argued that it is easier to reason about regular processes in relative than in
ne. Thus we will focus on relative time. The following paragraphs contain the
nd a proof system for ACP,,.

syntax

alphabet A of atomic actions. Let As denote AU{6}, where § is the special constant
7 deadlock. A timed action is of the form a[r] with a € A5 and r € [0,00]. In the
is abbreviated by §. We also assume a communication function | : A5 X As — As
nmutative and associative and has § as zero element.

erms are constructed using the following operators:

ternative composition + and the sequential composition -
wrallel operators ||, L, |

icapsulation operator 8y

e delay 3

gative) time shift o7

rator is needed to axiomatise the left merge [L. The process o™ (p) denotes the
it is shifted back r time units in time. For example, o1 (a[3]) is equal to a[2).

1ate delay

+ delay U(p) of a process p is the latest moment in time till which p can idle
uting an initial action. It is defined inductively as follows, where a € As.

Ulr)) = r

Ulp+q) = maz{U(p),U(q)}

Up-q99 = Ulp)

UleZ(p)) = U(p) —r ’

Uphg) = min{U(p),U(9)} De{|,L,}
U(u(p)) = Ulp)

t start time

irt time L(p) of a process p is the latest moment in time at which p can execute an
In order to define this notion formally, we first define inductively the collection
initial actions of a process p. Let a € A.

i) =0
_J0 if r € {0, 00}
) = { {a[r]} otherwise
’+q) = initact(p) U initact(q)
)-q) = initact(p)
7Z(p)) = {als—r]| a[s] € initact(p) A s > r}
g) = {als] € initact(p) | s < U(q)}
\q) = {c[r] | 3a,b alr] € initact(p) Ab[r] € initact(q) A alb = c # 6}
llg) = initact(pllg + qllp + plg)
Ju(P)) = {alr] € initact(p) | a & H}

lefine L(p) as follows.
L(p) = maz{r | 3a alr] € initact(p)}

tional semantics

uins an operational semantics for ACP;, taken from [Klu91b]. The definitions
2(p) in the previous paragraphs enable to distinguish processes that only differ
ock behaviour. A process can do a §-transition if it can idle beyond the latest
me that it can execute an initial action:

§{U
Ulp) > L(p) = p &) v

2 RELATIVE TIME

a,be A re(0,00)

a : alr] alr] Vv
D g v p L p
a[r] {]
pqg —q p-g — p-q
+ 101'[—'l v pﬂﬂp’
p+q———>\/ g+p — Cal p+g — “p q+p—[—]>p
" 1[ﬂ»\/ s<r pf-[ﬂrp’ s<r
os(p) T v ot (p) L= p
5 U(p) > L(p)
- 8[U
p &y
L pfﬂp’ r<U(q)
plla <2 plom@@) dlp L2 om(@F pla B llom(a)
p 2 v r<U(qg)
ple 22 om(0) dlp 22 o7() plg 2 o7 (q)

If alb = ¢ # 6, then

alr bir 7
L p[]p qﬂvq oy oMy

T T QT pnq oy oplg Ty

a.'r br ‘
plg L ¢ QIlp oy plg g g g
Our p M v agH p My agm
aH(p) a ou(p) 23 ou(p)

Table 1: Action rules for ACP,,

2.5 An axiom system 5

2.5 An axiom system

Table 2 contains an axiom system for ACP,,. The axioms defining the left merge are such
that the merge does not result in arbitrary interleavings. For this would result in equalities
like a[1] || 5[2] = a[1]-b[1]+b[2]-6. The deadlock at the right-hand side is avoided by requiring
that a[r]lLg can only execute action afr] if r < U(g).

3 Recursion

3.1 Recursive specifications

A recursive specification E is a set of equations {X = tx | X € Vg}, where Vg is a collection
of variables and tx a process term containing possible occurrences of variables in V.

A solution of a recursive specification F, in a certain model of ACP,,, is a collection of
processes {px | X € Vg} such that the equations X = ¢tx become true (in the model) if the
px are substituted for the X. The process px is called a solution for X (with respect to E).

For E a recursive specification and X € Vg, the syntactic construct (X|E) denotes a
solution of X. It can be regarded as some kind of variable, ranging over the collection of
solutions of X. By abuse of notation (X|E) is often abbreviated by X. This construct is
supplied with an operational semantics by adding the following rules to Table 1, where tx is
the right-hand side of the equation for X in Vg.

tx 25 tx 2
x4y x 4,

With this operational semantics, the term (X|E) is in a sense the ‘minimal’ solution of X,
Le. if X can do an afr]-transition, then each solution of X can do this a[r]-transition.

In this paper we will only consider finite recursive specifications, i.e. it is assumed that for
each recursive specification E the collection Vg is finite.

3.2 Regular processes

Assume a model for ACP,,. Following [BK84] we define for each process p a collection Sub(p)
in the model. The Sub(p) are the smallest collections of processes such that the following
statements are true. Let a € A and r € (0, 00).

- [Ip]] € Sub(p).
- If [a[r] - p' + q]] € Sub(p), then [p'] € Sub(p).

A process p is called regular if Sub(p) is finite in the model.

3.3 The real-time term model

The set P, of process expressions is constructed inductively as follows.

1. Each timed action is a process expression.

3 RECURSION

,8-€ :[0, OO]

r < U(q)
r>U(q)
r < U(q)
r > U(g)

o H
a€H

z+y=y+<z
(z+y)+z=2+(y+2)
ztzr=z
(z+y)-z=z-2+y-2
(z-9)-z2=2-(y-2)

af0] =6

afoo] = 6[o0)

olr] + 8l = o1
8[r] - p=d[r]
alr] + 6[r] = a[r]

o (als]) = als - 7]
oT(z+y)=0"(z)+0"(y)
o (z-y)=0"(z) y

a[r]|bls] = 8[min{r, s}]
alr)lblr] = (alb)[r]

zlly=zly+ylz+zly

a[r]llg = a[r] - o7 (g)

alr]lLg = 8[U(q)]

(alr] - p)lLg = alr] - (pllo”(q))
(alr] - p)lLqg = 6[U(q)]
(z+y)llz=zllz+ylz

(alr] - p) | bls] = (alr][bls]) - p

alr] | (bls] - q) = (a[r]lbls]) - ¢

(al[r] - p) | (bls] - @) = (alr]lbls]) - (pllg)
(z+y)le=2z|z+ylz

z|(y + 2z) = z|y + z|2

0 (alr]) = alr]

On(alr]) = 6[r]
Ou(p+q) = 9u(p) + 0u(q)

Bu(p-q) =0u(p) Onlq)

Table 2: An axiom system for ACP,,

3.4 Linear recursive specifications 7

2. If E is a finite recursive specification and X € Vg, then (X |E) € P,.
3. If p,q € Py, then pOg € P, for O € {+,,], 1,|}.
4. IfpeP,and H C A, then 8y (p) € P,,.
5. If p€P,and r € [0,00], then o7 (p) € P,,.
We consider process expressions in P, modulo (strong) bisimulation.

Definition 3.1 Two process expressions pg,qo are said to be strongly bisimilar, notation
Po = qo, if there exists a symmetric binary bisimulation relation R on P, such that

1. poRgo.

2. ifp alr] ?' and pRyq, then g L q' for some process q' with p'Rq’.

3. ifp alrl v/ and pRq, then ¢ alrl V-
Strong bisimulation is a congruence on Pp. It is easy to see that P,/«< is a model for ACP,,
(cf [G1a87]). We will refer to it as the real-time term model.
3.4 Linear recursive specifications

A recursive specification E is called linear if it is of the form

{X = Zaz[r,] <X+ ij[Sj] | X € Ve}
i j

It is easy to see for each model that all its regular processes are solutions of (finite) linear
specifications. However, the converse need not be true; there may be an equality p = ¢ in
the model, where p is a solution of a linear specification and q is not regular.

One can prove that the following proposition does hold in the model P, (cf [BW90]).

Proposition 3.2 A process is regular iff it is a solution of a linear recursive specification.

3.5 Two axioms dealing with recursion

We add the following two axioms to Table 2, concerning regular processes. Let F be a linear
recursive specification of the form {X; = T;(X1,.., X,) | i = 1,...,n}.

Rl pi=(Xi|E) i=1,.,n = p= Ti(p1y s Pn)

R2 p,-:fl}(pl,...,pn) i=1,...,n = p1=(X1|E)

The axiom R1 induces equalities like (X|X = afr] - X) = a[r] - (X|X = afr] - X). And R2
tells us that indeed (X|F) is equal to each solution of X.

8 4 AN ALGEBRA OF REGULAR PROCESSES

4 An Algebra of Regular Processes

Unfortunately the collection of regular processes is not' a subalgebra: of the real-time term
model. The following counterexample is due to-Jan Bergstra.

Example 4.1 Consider the processes X =a[l]- X and ¥ = b[v/2]- Y. Then X||¥ consists
of the following sequence of atomic actions:

a[1] -5[v2 ~ 1] - a[2 — V2] - [2V2 - 2] - a3~ 23 %) - a[1] - b[3V2 — 4] - al5 — 3V2] - ...
Thus for each pair m,n € N with m — nv/2 € (0;1) the timed action alm — nv/2] will be

ezecuted by X||Y. They. form an infinite collection of timed actions. However, clearly a
regular process can ezecute only finitely many different timed actions. So X||Y is not regular..

4.1 Rational time

If the time domain is restricted to the rational numbers; then it turns out that the regular
processes do form an algebra. Still, even for simple processes their merge can become quite
complicated. For example, consider the processes X =a[L]- X and Y = b[}]- V. Then

XIY= aff]- (Xlot(¥)) = afd]-b[}— 11 @25 (xX)(¥)

= afl] b1 - 1 a2 - (xua%"%'cvn‘ =

]-53 — 51-al} — 31~ alg] 613 — §1- alg - 31 (alB)[3] - XIY

In the sequel the time domain is restricted to-the rational numbers, resulting in ACP,, (ACP
with relative rational time). Let P, be the rational-time term model. The collection of regular
processes in Py, will be denoted by R,.

(o0 nd

Theorem 4.2' R, is a subalgebra of P,.

Proof. Let E and E' be linear recursive specifications.

k l

E' = {¥j=Y Yimlsiml" Yin + D _Vnlsfal | § =1,.., N}
. om nw

Then X; and Y; are regular processes. It is easy to.see that X7 + ¥, Xi - Y7 and o” (X7)
are regular processes (i.e. are solutions of linear recursive specifications). We now prove that
X11}Y1 is regular.

Let {r1,...,7o} be the collection of time stamps in (0,00) that occur in E and E’' (so it
consists of all the 7,7}, 8jm, 8}, that are unequal to 0 and' co). We can assume that this
collection is not empty, for else clearly X1 and Y; are equal to either & or §[co] and we are
done. Define a set Q of rational numbers in [0, co) as follows.

= {ki1-ri¥..+ko ro | K €Z} N [0;00)

I time 9

ire rational numbers, it follows that there is a rational number tg > 0 such that
Q = {0,to,2ty, 3to, 40, ...}

H{r1s...,7a}. Define P to be the following finite collection of processes. Define

P = (X Y, oL(X3), oL(%), XillY;, oL (XY, Xillo (¥;)}

38 over tg, 2tg, ..., R and i over 1,..., M and j over 1,...,N.

then for each i either % (X;) = 6[oo] (if some ry or 7 is equal to oo) or
otherwise). And similarly for processes o* (¥;). Thus each process of the form
)s oL (XY or X;||lot.(Y;) with ¢ € Q is equal to a process in P.

ow that for each p € P there are processes p; € P such that

= Z Crlte] - pr + Z dyw]
k i

1ns over k and [are finite). Then it follows that X;||Y; is regular, because by

processes ¢ in these equations by variables Z,, we get a finite linear recursive
E such that

R2F Xi[|Y1 = (Zxw|E)
ot (X;) we have the following equality.

ol(X) = Y anlra—t]-Xi, + Y ayfri—1

{klran>t} {tlr >t}

ilar equations for processes o* (Y;) and X; and Y;. Now consider the process

ot (X)LY; = Y. aalra -] (X o™ H(Y5))
{klO<re—t<U(Y;)}
+ S dylry -0)
{llo<r!,—t<U(¥Y;)}
Yilot(X;) = > bimlsiml- (62T (XY
{mlsjm+t<U(X;)}
Y Bl oo (x)
{n[s;-n+t<U(Xi)}
ol (Xa)Y; = 3 (aiklbjm)[85m] - (Xi || Y5m)

{(k;m)|rip—t=s;m}

+ > (el - X

{(kn)|rip—t=s}}

10 4 AN ALGEBRA OF REGULAR PROCESSES

Y (bl Y

{tm)lry—t=sjm}

+ X (@)l

{n)lry—t=s}.}

We can deduce similar equations for processes X;||o* (Y;) and X;||V;.
Thus it follows that X;||Y; is regular. It is now easy to prove that Xl Y; and X,|Y; are
regular. O

4.2 Soundness

Consider the model Ry. It is easy to see that the axioms of ACP,, and R1 are sound w.r.t.
rooted branching bisimulation. We will now show that R2 is sound.

In order to do so we extend the syntax with a projection operator ., where 7,(p) denotes
the process p that is stopped at time r. Its action rules are

pfﬂ\/s<r pfﬂp’s<r
m(p) 2 mo(p) 23 7 (p)

Its ultimate delay and initial-actions set are defined by

U(m(p)) = min{U(p),r}
initact(m,(p)) = {a[s] € initact(p) | s < r}

The projection operator is axiomatised by

RTPRla s<r m.(a[s]) = als]

RTPR1b s<r m.(a[s] p)=als] 7r—s(p)
| RTPR2a s 2>r m.(a[s]) = é[r]

RTPR2b s>r m.(a[s]-p) = é[r]

RTPR3 (x4 y) = 7 (z) + 7. (y)

It is straightforward to check the soundness of these axioms w.r.t. <.
Proposition 4.3 R2 is sound w.r.t. strong bisimulation.

Proof. Let £ = {X; = Ty(Xy,..., X,) | i =1, ...,n} be a linear specification and let py, ..., pn
be processes such that p; = Ti(ps, ..., pn) for i = 1,...,n. We need to prove that p; — X; for
each 1.

Since R1 is sound, it follows that X; « T;(X3, ..., X,). And using an induction argument
to the number of times that R2 is applied in the deductions p; = Ti(p1y ...y Pn), We can assume
that D &= T;;(pl, -"7p'n)-

If E does not contain time numbers from (0, co), then for each 3 either

Pi & Ti(p1yesPn) & 6 & Tp(X1, .0 Xn) & X

or
pi © Ti(p1, ..y Pn) & 8[00] = Ti(X1, .y Xn) & Xi

4.3 Completeness ' | 11

and we are done. So we can assume that some rg is the smallest time number in {0, o0)
occurring in E. We prove by induction to [:T,] (which denotes the smallest whole number
< ;%) that m.(p;) & m,(X;) for all r € {0, 00).

First assume that [X] =0, i.e. 0 <r < rg. Then

(i) 2 Tr(Ti(P1, ey Pm)) TTE2 g1

(X)) © Tp(Ty(X1y oy X)) TR 6]

Since RTPR1-3 are sound, we can conclude that =, (pi) < O[r] & 7. (X5).
Now suppose that we have proven the case for [%] < n and let [5] =n+1. Assume that

T X1, Xn) = ajlsi]- Xy + > byfta]
7 k

We can assume that there is an s; or a t, that is smaller than r, for otherwise mr(ps) = 8[r]
< m(X;) and we are done. Then

T (p5) 2 Te(Ti(Pry o pn) T2 23 a,-[sj]-vrr_s,.(pi,.n 5T baltal

{jlsj<r} Akfta<r}
To(Xs) 2 mr(Ti(X1, 0y Xa)) TS ylsi] ey (X)) 4 S bl
{7ls;<r} {k]t@<'r}

By induction we have Tp—s; (Di;) & Tr—s; (Xij) for all j. Thus 7 (p;i) <_—>_ r(X5).
It is left to the reader to check that m,(p;) &= m.(X;) for r € (0,00) induces p; & X;. O

4.3 Completeness

We now prove that ACP,,+R1,2 is a complete axiomatisation for R,. First each solution of a
linear specification is reduced to a normal form, and it is shown that this reduction is provable
in ACP,,+R1,2. Finally, it is proven that if two solutions of linear specifications are bisimilar,
then their normal forms are syntactically equal modulo a-conversion (i.e. modulo renaming
of variables). Since each regular process is equal to a solution of a linear specification, this
induces completeness.

Let E = {Ti(X1,..,X,) | i = 1,..,n} be a linear specification. The process (X|E) is
brought to normal form by reducing E. This reduction is described in several steps.

Step 1: Removal of redundant deadlocks

- First replace each expression in Tj(Xy, ..., X,) of the form a[0] by 6[0] and each expres-
sion of the form a[oo] by &[]

- Now replace each expression in T;(X, ...,Xn) of the form d[r] - X by 8[r].

- Finally, remove each expression 6 [7] from T}(X;, ..., Xn) for which there is an expression
als]- X or a[s] in Ty(X1,..., X,) with r < s. ' ’ ' ‘

12 4 AN ALGEBRA OF REGULAR PROCESSES

Step 2: Identification of bisimilar variables

If (X;|E) « (Xi|E) with j # k, then rename all occurrences of X in the Ti(X1, ..., Xp) into
X;.

Step 3: Removal of double edges

If an expression a[r] or a[r] - X occurs in Tj(Xjy, ..., X,) more than once, then remove all but
one of the occurrences of this expression in T3(Xy, ..., Xn).

Step 4: Removal of redundant variables

Let the collection dep(X;) of variables in E that occur in the ‘dependency graph’ of X; be
defined as follows:

X1 € dep(X1)
X; € dep(X1) and X, occurs in T3(X1, ..., Xn) == Xj € dep(X1)

If X; ¢ dep(X1), then remove the equation X; = Tj(X1, ..., Xn) from E.

Thus we have constructed the normal form of {X;|E). Clearly Step 1 is provable by R1,2
and RTA1-4, while Step 3 follows from R1,2 plus A3 and Step 4 from R2. We now show that
Step 2 can be deduced from R1,2+A3.

Let E be the specification that results after identifying all bisimilar variables in E. Let
X;(j) denote the (bisimilar) variable that has been substituted for X; in & (j=1,..,n).

Proposition 4.4 R1,2+ A3+ (X;|E) = (Xy;)| E) j=1,.,n
Proof. Abbreviate the process ff}-((Xi(l)|E'), - (Xi(n)lﬁ')) to T;. Then

(XG|E) = (X_,‘E') = Tj i=1.,n

This together with (X;|E) = (Xi;)|E) implies T; o Ty
Fix a j. If T; has a subterm afr|, then T; atr] v/ (because in Step 1 all redundant

deadlocks have been removed), and so Tj;) LU y. It follows that Tj;) has a subterm a[r].
Similarly, if T has a subterm afr] - (X¢|E), then ’f’,-(j) must have a subterm a[r] - (X|E)
with (Xx|E) « (Xi|E). Since bisimilar variables have been identified in £, we have k = [.
By the same argument it follows that each subterm afr] or a[r]- (Xx|E) of Tz-(j) is a subterm
of T;. Thus A3 + T = Ty;).
Then (X;;|E) o Tysy = T;. This holds for all j, so then (Xi(l)]E'), vy (X,-(n)lE) is a
solution for E. Now R2 implies (X;(;)|E) = (X;|E) for j =1,...,n. O

Proposition 4.5 If two normal forms (X1|E) and (Y1|E) are bisimilar, then they are syn-
tactically equivalent modulo a-conversion.

13

Proof. Let |
E {X; = Ti(X;, ...,X;m)"l i=1,..,m}
E' {Y;=85;(%4,...,.Yp) | j = 1,...,n}

]

We now inductively construct a. mapping.¢ from the variables of E to those of E' such that
(Xi|E), o (¢(X;)|E') for each 4, and if $(X;) = ¥;, then ¢ o Ty(Xy, ..., X)) = ,S’"J(Yl,,Y;,)
Put ¢(X1)=Y;. Now suppose that we have already defined ¢(X;) = ¥; for some i. Let

Ti(X1y oy Xm) = 3 ailrid] - X, + 3 Bifsr]
k U

Since (X;|E) < (Y;|E"), clearly Sj(Y,...,¥,) has a subterm b[s;] for each I and a subterm:
aklri] Y5, with (X;,|E) o (Y;|E'") for each k.

If ¢(X;,) has already Been defined, then by induction (¢(X;,)|E'Y < (X, |EY e (Y5 E'):
Since bisimilar variables have been identified in Step 2, it follows that #(X;,) =Y. Eé(X;,)
has not yet been defined, then put ¢(X;,) = ¥j,.

In Step 3 double edges have been removed, so subterms b; [8:]-and a[rg]- X;, resp. aklri]: Y5,
occur in T5(Xy, ..., Xim) resp. Sj(¥4,..., ¥,) only once. Thus ¢oTi(X;, e Xm) =.85(Va, ooy Y.

By Step 4each variable is in the dependency graph of X1, so ¢ is defined for all variables
inE.

It is easy to see that ¢ is bijective, since by a symmetric construction ene can: define its:
inverse. o

Thus we have proven that ACP,¢+R1,2 is a.complete axiomatisation for R,. Now: a:‘timed’
Approximation Induction Principle for regular processes can be deduced.

Corollary 4.6 If ACP,,+R1+RTPR1-3 I- m,(p) = m.(q) for all T € (0, c0), then ACPq.+
R1,2Fp=q.

Proof. ACP,,+R1+RTPR1-3 is sound, so if mr(p) = mr(g) is provablé in.this axiom system,.
then: 7.(p) & m,(q) for each r € (0,00). This implies p « q. Now completeness gives
ACP,,+RI,2Fp=gq. al

5 Abstraction

We now add the silent step 7{r] to the syntax. Abstraction together-with real time was studied
in [Klu91a]. The operational semantics and proof theory that we will define in' this chapter
have been taken from that paper; they are based on the (untimed). branching bisimulation
that was:introduced in [GW89).

In the previous section the model P, modulo strong bisimulation has been studied. In the:
following paragraphs we will consider the model Pgr/<>,s; the syntax is extended: with the
special constant 7, the positive time shift o’y and the abstraction operator T, while processes
are considered modulo rooted branching bisimulation. As before one can: deduce that the
regular processes of this model are exactly the solutions of linear specifications and that they
form an algebra. We will refer to this algebra as Rgr-

5 ABSTRACTION

nching bisimulation

» silent step 7 as a special constant to the alphabet A. The operational semantics
s of the action rules from Table 1, where a,b € A;. Only, the definition of strong
n is adapted to that of branching bisimulation.

. 8.1 Two processes pp,qp are called branching bisimilar, notation py < qo, if
i a symmetric binary branching bisimulation relation R between processes such

J-

R p' and pRq, then either

o =17 and U(g) > r and p'Ro™.(q)

or 3¢’ 3s < r such that g | q' and o° (p)Rq'

or 3¢' such that q alrl g and p'Rq

i} v/ and pRyq, then either

3¢’ Is < r such that q b\ q and o (p)Rq

alr]

orqg = +/

on behind this definition is that a timed T-transition can be omitted if it does not
sssible behaviours. For example: '

af2] + (1] - a[1] &, af2]

does not make any difference if the 7 is executed at 1 or not; in both cases the a
cuted at 2, after which the process terminates successfully. But

a[2] + 7[1] - b[1] <Ay a[2] + b[2)

time 1 it is decided whether the a or the b will be executed at 2.
lirement in point 1 of the definition that U(q) > r avoids equivalences like a[r] +
alr] for r < s.

.0 processes

is called Zeno if it can execute an infinite number of actions in a finite amount of

1g bisimulation is not an equivalence relation if Zeno processes are involved. For
onsider a recursive specification of the form

E={X;=7[271 X411 |i=1,2,3,..}
s (X1|E) executes infinitely many 7’s before 1. One can verify that (X;|E) < afl]
€ Asr. But clearly a[l] <4 b[1] if a # b.
, since Py, contains only finite recursive specifications, it is easy to see that this

s not contain Zeno processes. It can be proven that branching bisimulation does
an equivalence relation on Pg;.

5.3 Rooted branching bisimulation 15

5.3 Rooted branching bisimulation

Unfortunately branching bisimulation is not a congruence. For example:
c[2] +af2] + 7(1] - a[1] <A, c[2] + a[2]

We need a rootedness condition.

Definition 5.2 Two processes are called rooted branching bisimilar, notation p <, q, if the
following requirements hold.

afr] alr]

1. ifp —> p/, then there is a q' such that ¢ =5 ¢ and o/ =y q

afr]

2. ifq — ¢, then there is a p' such that p atr] P andp — q

3. ifp alr} v, then g ol Vv

a,

4 g 2 v, thenp 24 v

It can be proven that rooted branching bisimulation is a congruence on Py, (cf [Klu91a]).

5.4 The communication fanction for 7

In untimed process algebra the communication function is defined such that Tla = 6 for all
a-€ Asr. However, here this would result in equivalences like

al1] - 8[1] - e[1] oy (aft] - cf2]) || B2} 2y (al1] - 7[1] - e[1]) || B2] 2, af1] - 611]

This example shows that in process algebra with real time the communication function for
the silent step is to be defined by 7|a = a for all.a € As,.

5.5 The abstraction operator

As usual we add the abstraction operator 77 to the syntax, where I C A. Its action rules are

Py agl p Ty agr
) L v ri(p) 20 ()
Pi[-r-]*\/ a€el pf—[ﬂp’ ael
nw) By nm))
‘We define
U(rr(p) = Ulp))
initact(r(p)) = {alr] € initact(p) | a ¢ I} U {r[r] | 3a € I a[r] € initact(p)}

16 5 ABSTRACTION

The abstraction operator is axiomatised by

TIlL a¢ !l 7(alr]) = alr]

TI2 a€l ti(a]r]) = 7lr}

TI3 71(z +y) = T1(z) + 71(y)
TI4 T1(z - y) = Tr(z) - 71(y)

It can be proven that each process term is equal to a term that does not contain any occur-
rences of the abstraction operator. For example, we have

TI1-44R1,2 F 7 ((X]E)) = (X|r1(E))

where 77(E) denotes the collection of equations that results from replacing all occurrences of
atomsa € Iin E by 7.

5.6 The positive time shift

The positive time shift o, is defined in order to give a complete axiomatisation for rooted
~ branching bisimulation. The expression o7 (p) denotes the process p that is shifted forward
r time units in time. Its action rules are

p &y p 2 p
op) T v oi(p) T p

We define
U(dh(p)) = Ulp)+r
initact(c.(p)) = {alr+ s] | als] € initact(p)}
The positive time shift is axiomatised by

RTPST o%(als]) = alr+4]
RTPS2 ol(z+y) = of(z)+0oL(y)
RTPS3 of(z-y) = ol(z)-y

5.7 An axiom for closed terms

Using the intuition for branching bisimulation that we have given in Paragraph 5.1, we can
express rooted branching bisimulation equivalence in only one axiom.

7,8 € (0,00)

RITT U(p)<sAU(g)>0 alr]-(p+7[s]-q) =alr]- (p+03(q)

The requirement U(p) < s ensures that executing 7[s] does not lose possible behaviours,
while U(q) > 0 avoids the equality a[r} - (p+7[s] - 6) = a[r] - (p+ 6]s]) for U(p) < s. This last
equality has to be avoided, since it would give rise to equations like

al1] - b[1] - ¢[1] = (a[1] - (c[2] + 7[1] - 8)) || b[2] = a[1] - (6[1] - c[1] + b1] - 6)

It has been proven in [Klu91a] that the axiom system of ACP,, extended with RTPS1-3 and
RTT is a complete axiomatisation for closed terms modulo rooted branching bisimulation.

5.8 Two axioms for recursion 17

5.8 Two axioms for recursion

In order to get a complete axiomatisation for regular processes w.r.t. rooted branching bisim-
ulation, two axioms have to be added to R1,2. The axioms are very similar to axioms for
regular processes with silent steps in the untimed case, that have been introduced in [BK88].

Assume a linear specification E = {X; = Ti(X1,..., Xn) | i=1,...,n}. Let r > 0 and i # 1.
The specification E_; denotes E without the equatlon for Xi.

In axiom R3 it is assumed that the time stamps occurring in T{(X4q,...,X,) are all < r,
and that the time stamp 0 does not occur in Tj(Xy, ..., X,,). The polynomlal T7 (X1, Xn)
denotes T;(Xj,..., X,) with the time stamps mcreased by 7 (i.e. each timed action a[s] is
replaced by als + 'r])

R3 (Xi|E. Xi=T)(X1,.Xn)+7lr]- X;) =
(X1 ‘ E_;, X;= Ti’(Xh ...,Xn) 4+ T;'(Xl, ...,Xn»

R4 (Xl { E_.,;, X,' = T['I’] . Xi) = (Xl | E..,;, Xi = 5[00])

Note that in the model Ry, the axiom RTT is induced by R3.

5.9 Soundness

Consider the model Ry,. It is easy to see that the axioms of ACP,, and TI1-4 and R1,3,4
are sound w.r.t. rooted branching bisimulation. In order to prove the soundness of R2, we
can extend the syntax with the projection operator 7, and repeat the proof from Paragraph
- 4.2. The following property of rooted branching bisimulation is essential in this proof.

Vr € (0,00) T (p) 2 m(g) = Degpg

It is left to the reader to check the validity of this statement.

The definition of branching bisimulation that we use here differs slightly from the one given
in [Klu9la]; in that definition it is the case that if p «;, g and p can execute an action a
with a # 7, then after a certain number of 7-transitions g will be able to execute a too. This
bisimulation induces a rooted branching bisimulation «¥*, that does not have the property
just mentioned, which is shown by the following example.

Example 5.3 Consider the processes T[r] - 6[oo] and X = 7[r]- X. Unlike 7[r] - 6[cc], the
process X will never execute a 6-transition, so 7[r] - 8[oc] <4} X. However, we have

me(7[r] - 8[cc]) 6[s] o ms(X) forse(0,r]
ms(tlr] - 8loc]) oF, Tlr]-bls—r] o w(X) fors € (r,o0)

5.10 Completeness

As in Paragraph 4.3, we prove completeness by reducing each solution of a linear specifica-
tion to a normal form and showing that if two normal forms are bisimilar, then they are
syntactically equivalent.

18 5 ABSTRACTION

Let E = {X; = Ti(X1,.., Xn) | i = 1,...,n} be a linear specification. We reduce (X;|E) to
normal form in several steps.
Step 1: Removal of redundant deadlocks

Replace expressions of the form a[0] in T;(Xj, ..., X,,) by 6[0] and expressions of the form afoo]
by 8[co]. Then replace expressions of the form §[r] - X by 6[r]. Finally, remove expressions
§[r] from T;(X1, ..., X,) for which there is an expression a[s]- X or a[s] in Tj(X1, ..., X»,) with
r<s. .

Step 2: Root unwinding

Add an equation Xyo0t = T1(X71, ..., Xp) t0 E, where X0t does not yet occur in E.

Step 3: Adding 7-steps
Let the equation of a variable X; # X001 in E be given by

X; = Zaj[rj] - Xy + Zbk[sk]
7 %

Let ty be the smallest time number that occurs in this equation. If there is an T; Or 8 that
is greater than fg, then replace this equation in E by the following two equations:

Xi= > ajltol- Xi; + > bi[to] +7lte] - Y

{ilrj=to} - {klsr=to}
Y = Z aj[rj - tg] . X,;j + Z bk[sk - to]
{ilri>to} {kl|sk>to}

where Y is a variable that does not yet occur in E.
Repeat this procedure until the equations in E for variables unequal to X;oot have all

become of the form
Xi=Y a;lr]- Xi; + 3 bylr]
3 k

Step 4: Identification of bisimilar variables

If (X;|E) o4 (Xk|E) with X; # X}, and X, Xt # Xroot, then rename all occurrences of X,
at the right-hand side of equations from E into X.

Step 5: Removal of double edges

If an expression a[r] or a[r] - X occurs in a T;(X;, ...,X,;) more than once, then remove all
but one of the occurrences of this expression in T;(Xj, ..., Xy,).

Step 6: Removal of T-loops

Let X be a variable, with X # X0, for which the equation in E is of the form X = 7[r]- X.
Then replace this equation in E by X = §[c0].

5.10 Completeness 19

Step 7: Removal of redundant 7-steps

Suppose that there is an equation of the form X; = 7[r]- X; in E with Xi # Xioot- Let the
equation for X; in E be as follows:

Xj=Y axls]- X;, + Y bils]
k !

Then replace the equation for X; in E by

Xi=) axls+7]- Xj, + > bifs+1]
k l
The removal of 7-loops in the previous step ensures that this is a finite reduction.

Step 8: Removal of redundant variables
If X; ¢ dep(X:oot), then remove the equation X; = Ti(X1, ..., Xy) from E.

Thus we have constructed the normal form (X,o0|E) of (X;|E). Step 1 can be proven by
R1,2+RTA1-4, Steps 2 and 8 by R2, Step 3 by R2,3, Step 5 by R1,2+A3, Step 6 by R4 and
Step 7 by R3. We now show that Step 4 is provable.

Let @ be the collection of time stamps in (0,00) that occur in E. We can assume that
@ # 0. Since Q is finite, and since it contains only rational numbers, there is a greatest
common divisor #g.

Reduce the specifications E and E as follows. Consider an equation

Xi= a;lr]- Xy + > bilr]
3 k

with X; # Xroot. If 7 = 00, then replace this equation by
Xi=7lto] - X

And if {9 < r < 00, then repiace it by the following two equations:
Xi=1ltg] ¥

Y = Zaj[r - to] . Xij + Ebk[r - to]
R &

where the variable Y does not yet occur in E or E.
Repeat this procedure until all equations in F and E' for variables unequal to X .01 have

become of the form
X, = Zaj[to] . Xij + Zbk[to]
j k

The resulting specifications are denoted by E* and E*. By axioms R3,4 we have (X;o0t|E) =
(Xroot'E*> and (XrootlE) = (‘_XrootlE*)- .

Since (Xroot| E) <2 (Xroot] E), it is clear that (Xroot| E*) 2, (Xroot| E*). By the construction
of E* and E*, the branching bisimulation relation between (Xroot| E*) and (Xyoot| E*) must

REFERENCES

. bisimulation relation. Thus {Xpeet|E*} & (Xzoot]E*). Then the completeness
the previous section gives (Xroot|E*) = (Xroot| E*}), and so finally

(Xroot|E) = (Xroot‘E*) = (Xroot‘E*) = (XrootlE’)

as in Proposition 4.5, it can be proven that if (Xyoot|E) and (Yroot|E') are two
ms that are rooted branching bisimilar, then they are syntactically equivalent
:onversion.

P,q+TI1-4+R1-4is a complete axiomatisation for regular processes modulo rooted
sisimulation.

as in Corollary 4.6, one can now deduce an Approximation Induction Principle
processes with silent steps.

5.4 If ACP,, +RTT + R1+RTPR1-3 7,(p) = m,(q) for all r € (0,00), then
1-4+p=gq.

1Ces

.C.M. Baeten and J.A. Bergstra. Real time process algebra. Journal of Formal
\spects of Computing Science, 3(2):142-188, 1991.

.A. Bergstra and J.W. Klop. The algebra of recursively defined processes and
he algebra of regular processes. In J. Paredaens, editor, Proceedings 11t ICALP,
ntwerp, LNCS 172, pages 82-95. Springer-Verlag, 1984.

.A. Bergstra and J.W. Klop. A complete inference system for regular processes with
ilent moves. In F.R. Drake and J.K. Truss, editors, Proceedings Logic Colloquium
986, Hull, pages 21-81. North-Holland, 1988.

.C.M. Baeten and W.P. Weijland. Process algebra. Cambridge Tracts in Theoret-
:al Computer Science 18. Cambridge University Press, 1990.

t.J. van Glabbeek. Bounded nondeterminism and the approximation induction
rinciple in process algebra. In F.J. Brandenburg, G. Vidal-Naquet, and M. Wirs-
ng, editors, Proceedings STACS 87, LNCS 247, pages 336-347. Springer-Verlag,
987.

t.J. van Glabbeek and W.P. Weijland. Branching time and abstraction in bisimu-
ation semantics. In G.X. Ritter, editor, Information Processing 89, pages 613-618.
Yorth-Holland, 1989.

\.S. Klusener. Abstraction in real time process algebra. In J.W. de Bakker, C. Huiz-
ng, W.P. de Roever, and G. Rozenberg, editors, Proceedings of the REX workshop
‘Real-Time: Theory in Practice”, Mook, LNCS 600. Springer-Verlag, 1991.

\.S. Klusener. Completeness in real time process algebra. In J.C.M. Baeten and J.F.
3roote, editors, Proceedings CONCUR 91, Amsterdam, LNCS 527, pages 376-392.
jpringer-Verlag, 1991.

REFERENCES 21

[Mil84] R. Milner. A complete inference system for a class of regular behaviours. Journal
of Computer and System Sciences, 28:439-466, 1984.

[MT90] F. Moller and C. Tofts. A temporal calculus of communicating systems. In J.C.M.
Baeten and J.W. Klop, editors, Proceedings CONCUR 90, Amsterdam, LNCS 458,
pages 401-415. Springer-Verlag, 1990.

[NS90] X. Nicollin and J. Sifakis. ATP: An algebra for timed processes. Technical Report
RT-C26, IMAG, Laboratoire de Génie informatique, Grenoble, 1990.

[RR88] M. Reed and A.W. Roscoe. A timed model for communicating sequential processes.
Theoretical Computer Science, 58:249-261, 1988.

