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1 INTERACTIVE PROOF SYSTEMS FOR LANGUAGES

In the 17th Annual ACM Symposium on Theory of Computing (1985), two related papers were
presented. One was ‘The Knowledge Complexity of Interactive Proof Systems’ by S. Goldwasser, S.
Micali, and C. Rackoff [GMR1] and the other was ‘Trading Group Theory for Randomness’ by L.
Babai [B]. '

In [GMR1], the authors formulated ‘interactive proof systems’ as a tool for developing cryptographic
protocols. An interactive proof system involves two parties known as the prover and the verifier, and
a language L. The prover is allowed unlimited computing power, whereas the verifier is restricted to
feasible computations (such as probabilistic polynomial time). The purpose of the interactive proof
system is for the prover to convince the verifier about the membership of strings in the language L.
To reach this goal, the two parties are allowed to exchange messages and toss private coins. At the
end of the interaction, the verifier will either accept or reject the prover’s claim. Two properties are
required of the interactive proof system: it must be complete, meaning that if ¢ € L and if both
parties follow their prescribed protocols then the verifier will accept with overwhelming probability,
and it must be sound, meaning that if z ¢ L, and if the verifier follows his protocol, then he will
reject with overwhelming probability even if the prover deviates arbitrarily from her protocol. We
will denote the class of languages having the interactive proof systems by IP.

Note that in [GMS], Goldreich, Mansour, and Sipser considered the ‘perfect completeness’. They
showed that any language that has an f(n)-round interactive proof system has a (f(n) + 1)-round
interactive proof system such that if z € L then the verifier always accepts. They also considered the
‘perfect soundness’. It was shown that only NP languages have interactive proof system such that
the verifier always rejects if z ¢ L.

In [GMR1], they introduced the interesting notions of zero-knowledge! and knowledge complexity?.

1The original formulation of zero-knowledge turned out not to be closed under sequential composition. More stronger
formulations of zero-knowledge (e.g. black-box simulation) were introduced. See [GK] or [O].
2The formalization of the ‘amount of knowledge' (in case it is not zero) that appeared in [GMR1] was omitted
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They also gave examples of zero-knowledge proof systems for the languages, Quadratic Residuosity®
and Quadratic Non-Residuosity. These are the first examples of zero-knowledge proofs for languages
not known to be efficiently recognizable.

In [B], trying to get a complexity class just above NP, Babai introduced the ‘Arthur - Merlin
games™. These games constitute a class of languages that we will denote by AM.

These two models are probabilistic extensions of the complexity class NP. The key difference
between them is in the way of coin tossing of the verifier. Babai required that coins flipped by the
verifier be public. In other words, they are known to the prover. So the verifier is only to supply
random bits to the prover. At the end of the interaction, the verifier decides whether he is convinced
that a particular string is in the language. On the other hand, in the model of Goldwasser, Micali,
and Rackoff, the verifier’s coins are private®.

These pioneering works stimulated many exciting eryptographic and complexity theoretic results.

Important subsequent work was done by O. Goldreich, S. Micali, and A. Wigderson in [GMW]. They
demonstrated zero-knowledge interactive proofs for the languages of Graph Isomorphism®, Graph Non-
Isomorphism’, and Graph 3-Colourability. By that time, zero-knowledge proofs were known only for
some number theoretic languages in NP Nco — N P. The existence of an interactive proof for Graph
Non-Isomorphism is interesting, since Graph Non-Isomorphism is not known to be in NP. Using the
N P-completeness of Graph 3-Colourability, they proved that every N P language has a zero-knowledge
interactive proof system® under the assumption of existerice of secure encryptions. In that paper, they
claimed that if there exists a secure encryption, then every language which has an interactive proof
system, has a zero-knowledge one. In'[BGGHKRM)], this was formally proved.

In 1987, R. Boppana, J. Hastad, and S. Zachos [BHZ] showed that if co — NP is contained in AM,
then the polynomial-time hierarchy is contained in AM C IIf'%. Also in 1987, L. Fortnow [F] observed
that if a language L has a perfect or statistically zero-knowledge interactive proof system, then its
complement L has a single round interactive proof system®. As easy consequences of above two
results, we can prove that if the Graph Isomorphism problem is N P-complete, then the polynomial-
time hierarchy collapses, and the same conclusion holds if Graph 3-Colourability had a perfect or
statistically zero-knowledge proof system.

From a structural complexity point of view, one of the most natural questions about I P was: Char-
acterize exactly the class of problems that can be recognized by an interactive proof system. It is
clear that NP C IP. As mentioned before, Goldreich, Micali, and Wigderson gave an example of
a problem in P not known to be in NP: Graph Non-Isomorphism. But the final solution to this
question was provided by Lund, Fortnow, Karloff, and Nisan [LFKN] and Shamir [S] in December in

from the later version of this paper [GMR2]. In [GP}, the authors present several alternative definitions of knowledge
complexity.

3This proof system is perfect zero-knowledge of unbounded rounds of message exchanges.

“Papadimitriou [Pa] introduced the term ‘games against nature” to describe complexity classes arising from polyno-
mially bounded games against an indifferent, randomizing adversary. Arthur-Merlin games are particular games against
nature, the crucial restriction being the condition that the winning chances are always bounded away from 1/2.

5Goldwasser and Sipser [GS] proved that for language recognition the two models are equivalent. Thus from a
language recognition viewpoint, the public coin model suffices, even though interactive proofs are simpler to construct
using hidden coins.

SThe Graph Isomorphism problem, trivially in NP, is not known to be in co — NP, and is believed not to be
N P-complete. Thie proof system for Graph Isomorphism is perfect zero-knowledge.

"Note that the existence of an interactive proof system for the langnage L does not imply its existence for the
complement of L. This proof system for Graph Non-Isomerphism is constant-round and perfect zero-knowledge.

8This is a computationally zero-knowledge proof system.

91n {FoSi], Fortnow and Sipser conjectured that co — N P-complete problems do not have interactive proof systems.
In other words, they believed that the class I P of languages accepted by interactive proofs is not much larger than NP.
But later it was proved that the interactive proof systems have far greater power than originally believed.

104 perfect zero-knowledge proof of Graph Isomorphism was presented in [GMW]. Fortnow’s comstruction converts
this perfect zero-knowledge protocol to an interactive protocol for Graph Non-Isomorphism which is identical to the
protocol described in [GMW]. Also note that Aiello and Hastad [AH] proved a complementary result of this fact. That
is, they proved that if L admits a perfect or statistically zero-knowledge proof then L can also be recognized by a single
round interactive proof.
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1989. In fact, Lund, Fortnow, Karloff, and Nisan proved that the entire polynomial-time hierarchy
is included in IP!!. They achieved this result by giving an interactive protocol for the permanent, a
well-known # P-complete problem [V]. Right after this result, Shamir settled the question of charac-
terizing IP. Using techniques similar to those of Lund, Fortnow, Karloff, and Nisan, he proved that
IP = PSPACE [S]. This fact demonstrated the unexpectedly immense power of randomization and
interaction in efficient provability.

It was an intriguing question that the parallel versions of the protocols in [GMR1] and [GMW]
are still zero-knowledge. Trying to answer this question, Goldreich and Krawczyk [GK] proved that
only BPP languages have 3-move interactive proofs which are black-box simulation!2 zero-knowledge.
Since the parallel versions of the above examples are 3-move interactive proofs it follows that these
interactive proofs cannot be proven zero-knowledge using black-box simulation zero-knowledge, unless
the corresponding languages are in BPP. The proof in {GK] uses the infinite computing power of the
prover. But in [FS3], Feige and Shamir showed that zero-knowledge is not preserved under parallel
composition even if the provers are only polynomially bounded.

It is not plausible that the result in [GK] could be extended to 4-move interactive proofs since such
proofs are known for languages believed to be outside BPP3,

On the other hand, for Quadratic Residuosity and Graph Isomorphism, Bellare, Micali, and Ostro-
vsky exhibited perfect!* zero-knowledge proofs that require 5 moves!® and no unproven assumptions
[BMO]. In fact, more generally, they showed that any random self-reducible language [AL, TW] has
a 5-move perfect zero-knowledge interactive proof.

2 INTERACTIVE PROOFS FOR DECISION PROBLEMS

Extending the notion of the interactive proof system for a language, Galil, Haber, and Yung intro-
duced ‘interactive proofs for decision problems’ [GHY1, GHY?2]. In fact, they extended the ability of
interactive proof system from confirming that a given string z is in a language L to deciding whether
z € L or z ¢ L. Even though they use ‘minimum-knowledge’® instead of ‘zero-knowledge’, they are
essentially the same.

They gave a nontrivial example of a language L7 so that both L and its complement I have
minimum-knowledge interactive proof systems for confirming membership. In other words, they use
the same protocol for both the proof of membership in L and the proof of nonmembership of L which
releases no more knowledge than the value of the membership bit'®. Furthermore, by following the
protocol, the prover demonstrates to the verifier either that € L or that & ¢ L in such a way that the
two cases are indistinguishable to an eavesdropping third party that is limited to feasible computations.
They call this property ‘result-indistinguishability’'®. Also they proved that the concatenation of two
minimum-knowledge protocols is minimum-knowledge.

1n fact, they showed that every language in BPP#F has an interactive proof system. Together with Toda’s result
that P#P contains all the languages of the polynomial-time hierarchy [T], the above theorem implies that PH C IP,
So, unless PH collapses, there are interactive proof systems that can not be converted into bounded-round protocols.

12 A1 known zero-knowledge protocols are also black-box simulation zero-knowledge. For details, see [GK].

13The protocols for Quadratic Non-Residuosity [GMR1] and Graph Non-Isomorphism [GMW] are examples of this,

14Because of Fortnow’s result, their protocol can not be extended to N P-complete problems unless the polynomial-
time hierarchy collapses.

15By that time the known proofs for both languages required an unbounded number of rounds.

16They also defined ‘perfect minimum-knowledge’.

17This language is in NPNco— NP. In [IY], Impagliazzo and Yung provide a minimum-knowledge interactive proof
for any language in IP.

18Their protocol is perfect minimum-knowledge and perfect result-indistinguishable and can be converted into a
constant round protocol. Also note that the proof that their protocol is minimum-knowledge with respect to the
verifier and result-indistinguishable with respect to the eavesdropper does not rely on unproven assumptions about the
complexity of a number-theoretic problem.

19 All messages are sent in the clear. This property with minimum-knowledgeness enables one to define a cryptosystem
in which each user receives exactly the knowledge he is supposed to receive, and nothing else.



3 INTERACTIVE Proors OF KNOWLEDGE

In [C], Chaum obtained a result similar to those of [GMW], but under a very different model which
emphasizes the unconditional privacy of the prover’s secret information even. if the verifier has unlim-
ited computing power. Independently, Brassard and Crépean [BC] considered a model in which all
parties involved are assumed to have reasonable computing power, and they also obtained a protocol
unconditionally secure for the prover. In these models, the prover is not allowed to be infinitely pow-
erful. Therefore, these protocols are not proof systems in the terminology of [GMR1]. This model is
often called an ‘argument’. Recently, Chaum proposed to call the GMR-model as ‘statistically con-
vincing’ protecol and the latter model as ‘computationally convincing’ protocol [B2]. In [BCC], the
authors presented perfect zero-knowledge, computationally convincing protocols for alf N P-problems
under the Certified Discrete Log Assumption.

Eventually Tompa and Woll [TW] and Feige, Fiat, and Shamir [FFS] independently proposed some
formalizations of ‘interactive proofs of knowledge’. The two definitions differ in some technical ways,
but the concepts are the same. In particular, Feige, Fiat, and Shamir observed that in the GMR-model
the prover reveals one bit of knowledge to the verifier (namely that a string is in a language). But
in their model the prover’s goal is not to prove that = belongs to L, but to prove that he knows the
status of z with respect to L?0. They demonstrated the advantage of their model by proposing an
efficient identification scheme,

Even though the FFS-scheme is very efficient, their scheme lacks in generality. Their scheme is for
the purpose of identification, and is not designed to handle N P-complete problems. On the other
hand, the more general protocols of [BC, BCC] require an unbounded number of rounds. So one
natural question was: To what extend can we combine generality and efficiency? For this question,
Brassard, Crépeau, and Yung [BCY] proved that any NP statement can be handled by a 3-round
perfect zero-knowledge, computationally convincing protocol.

Shortly after this, Feige and: Shamir introduced a different solution to. the same problem [FS1]. They
constructed 2-round zero-knowledge proofs of knowledge for any N P language under the assumption
that one way functions exist. They also remarked that under the stronger Certified Discrete Log
Assumption, their protocol is perfect zero-knowledge.

4 Proors OF COMPUTATIONAL POWER

In [Y], Yung tried to extend ‘proof of knowledge’ to a proof which demonstrates more than just
possession of a witness to some computation, but rather possession of algorithmic power. And he gave
a perfect zero-knowledge proof of the computational power to factor. He also remarked that if we allow
the protocols to be computationally zero-knowledge, we can prove more problems. In a subsequent
work by Okamoto, Chaum, and Ohta, a more efficient and constant round zerc-knowledge proof?!
of computational power for some problems was given assuming the existence of a one way function
[OCO]. They also introduced a formal definition of interactive proofs of computational power.

5 MULTI-PROVER INTERACTIVE PROOFS

Many cryptographic systems have been developed: based. on some assumptions, like the existence of
one way functions. Trying te remove such assumptions, Ben-Or, Goldwasser, Kilian, and Wigderson
[BGKW] introduced a new model of generalized interactive proofs??. They call this new model the
multi-prover interactive proofs. Then they proved that all NP languages have perfect zero-knowledge
proof systems in their model®3, without making any intractability assumption.

20This model restricts the prover’s proofs of knowledge to problems in N.P.

21The perfectness, statisticalness, or computationalness depends on the agsumptions.

221n [FST], Feige, Shamir, and Tennenholtz modeled a model similar to this, called a ‘multi-oracle model’. Based on
the assumption that one of the oracles is trusted, they showed that PSPACE languages can be recognized in a 2-oracle
model.

23They exhibited a sequential two-prover protocol and remarked that the parallel execution of their protocol is also
a perfect zero-knowledge proof system with a single round under a weak definition which requires only a constant
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This generalized interactive proof model consists of two computationally unbounded and untrusted
provers who jointly agree on a strategy to convince the verifier of the truth of an assertion and then
engage in a polynomial number of message exchanges with the verifier. To believe the validity of
the assertion, the prover must make sure that the two provers can not communicate with each other
during the course of the proof process. Thus the complexity assumptions made in previous work have
been traded for a physical separation between the two provers.

The main feature of their model is that the verifier can check its interactions with the provers against
each other. They also showed that any language which can be recognized in their extended model can
be recognized in perfect zero-knowledge making no intractability assumptions. Furthermore, it was
shown that adding more provers than two adds no more power to the model. Along the same lines of
Goldreich, Mansour, and Sipser [GMS], they showed any two-prover system has an equivalent system
that accepts with probability one for strings in the language.

Using this model, Ben-Or, Goldwasser, and Kilian [BGK] presented two efficient identification
schemes, where the verifier (e.g. the bank) interacts with two untrusted provers (e.g. two bank
identification cards) who have jointly agreed on a strategy to convince the verifier of their identity.

As mentioned before, it is now known that JP = PSPACE. A natural question is how powerful
the multi-prover system is. This question was answered by Babai, Fortnow, and Lund [BFL] in 1990.
They showed that MIP = NEXP, where MIP is the class of languages that have multi-prover
interactive proof systems. From this fact, it follows that polynomial-time intractable languages may
admit efficient proof systems since NEXP # P [SFM].

Since Ben-Or, Goldwasser, Kilian, and Wigderson showed that all languages that have multi-prover
proof systems have perfect zero-knowledge ones with no cryptographic assumption, all languages of
NEX P have perfect zero-knowledge multi-prover proof systems.

6 INSTANCE-HIDING PROOF SYSTEMS

In [AFK], Abadi, Feigenbaum, and Kilian considered the instance-hiding schemes for a function 24
The protocol allows the verifier V to obtain the value of f(z) without revealing to the prover any
information about & (other than its length). But in this protocol, V does not necessarily obtain any
evidence of the correctness of this value. That is why the provers are called ‘oracles’. Even though
V does not entrust any information about  to the provers, but he must trust the provers to behave
correctly.

Later, Beaver, Feigenbaum, and Shoup [BFS] introduced the notion of an instance-hiding proof
system for a function f. Note that in this model, there are multiple provers. Roughly speaking,
an instance-hiding proof system for a function f is a protocol in which a polynomial-time verifier is
convinced of the value of f(x) but does not reveal the input to the provers. Thus the verifier need not
entrust any information about z to the provers, nor need he trust the provers to behave correctly.

In an instance-hiding proof system for a function f, the provers do not know the input = (except
its length). Thus they can not hope to prevent a verifier from learning f(z') instead of f(z), where
|#'| = |z|. So, it is natural to define the notion of zero-knowledge for instance-hiding proof system
which captures the intuitive idea that the verifier, even a misbehaving one, learns the value of f at
exactly one input of length n and nothing else. In other words, the provers learn nothing about =z,
and the verifier learns nothing but the value of f(z).

In [BFS], it was shown that any instance-hiding proof system can be made zero-knowledge?>. In

probability of cheating. Later, Lapidot and Shamir [L.S2] showed that under the stronger definition which requires a
negligible probability of cheating every problem in NP has a one-round two-prover protocol which is perfectly zero-
knowledge under no cryptographic assumption. This fact was extended to PSPACE and NEXP in [CCL] and (L83},
respectively.

24They showed that no NP-hard function has a one-oracle instance-hiding scheme that leaks at most |z|, unless

the polynomial-time hierarchy collapses. In [BF], Beaver and Feigenbaum proved that all functions allow multi-oracle
instance-hiding schemes.

25The constant-roundness is not considered.



fact, it was proved that if a Boolean function f is the characteristic function of a language in NEXPnN
co— NEXP? | f has a perfect zero-knowledge instance-hiding proof system??. A main open problem
in this model is concerned with the number of provers?8.

For a more detailed discussion on this scheme, the reader is referred to [B1].

7 INTERACTIVE PROOFS WITH SPACE BOUNDED VERIFIERS

In sections 4 and 6, we considered some variations of the GMR-model in which the nature of the
provers is altered. We may also consider the variations in which the nature of the verifiers is altered.
Such a model was first considered by Condon [Co]. In that paper, Condon described ‘probabilistic
game automata’ that are the natural space bounded analogues of Arthur-Merlin games and interactive
proof systems??. It was also shown that if the protocols are allowed to run for arbitrarily many rounds,
exponential-time languages may be proven to a log-space verifier. Eventually a more realistic model
was considered.

In [K], Kilian considered a model in which protocols are polynomially bounded, both in the number
of rounds of communication, and in the number of computational steps allowed for the verifier. He
also defined the zero-knowledgeness®® for his model (called ‘language-recognition zero-knowledge’) and
showed that anything provable in his model can be proved in language-recognition zero-knowledge.

In [FS2], Feige and Shamir investigated the power of space bounded verifiers in models with many

provers®!,

8 NON-INTERACTIVE PROOF SYSTEMS

The main ingredients of zero-knowledge proof systems are interaction, hidden coins, and computational
difficulty. One may ask if all of them are really essential for the zero-knowledge proofs. In [BFM],
Blum, Feldman, and Micali considered this question and introduced the interesting concept of non-
interactive zero-knowledge proofs. Roughly speaking, they showed that only computational difficulty
is essential. To be more precise, they proved that if the prover and the verifier share a common
random string, the prover can non-interactively and yet in zero-knowledge convince the verifier of the
validity of any theorem under the assumption that it is hard to distinguish products of 2 primes from
products of 3 primes®?,

Using Graph 3-Colourability, an N P-complete language, they proved the existence of bounded33
non-interactive zero-knowledge proof systems for all N P-languages. They used their result to con-
struct a public key cryptosystem secure against chosen ciphertext attack3?.

Two natural problems were proposed; whether many provers could share the same random string,

and whether it is possible to implement non-interactive zero-knowledge with a general complexity
assumption?®,

26Note that if a Boolean function f has an instance-hiding proof system, then f is the characteristic function of a
language in NEXPNco—~ NEXP.

271t is claimed that Feigenbaum and Ostrovsky have characterized the functions which have one-oracle instance-hiding
proof systems. They also claimed that the existence of a one way function implies that one-oracle instance-hiding systems
can be made computational zero-knowledge.

28The best known upper bound for number of provers is nflogn, where n is the input length.

290ne of the interesting results in [Co] is that the private coin of the verifier adds power to space bounded probabilistic
games. This must be contrasted with the fact that Arthur-Merlin games and interactive proof systems recognize the
same class of languages [GS]. :

301n [DS], they defined a reasonable notion of zero-knowledge, which models the GMR-notion of computational zero-
knowledge.

31For further results on the power of space bounded interactive proofs, see [CL] and {Ds].

32This computational assumption is weakened in [DMP1] where the assumption is that Quadratic Residuosity is hard.
See also [BDMP].

33Using a randem string, the prover can prove in zero-knowledge only a single theorem.

34Rabin’s scheme, whose breaking for a passive adversary is as hard as factoring, is easily vulnerable to this attack.

3570 try to solve this problem, De Santis, Micali, and Persiano [DMP2] proposed a meodified model called non-
interactive zero-knowledge with preprocessing. They proved that the existence of any secure probabilistic encryption
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Important progress for these questions was made by Lapidot and Shamir. In [LS1], they constructed
publicly verifiable3® non-interactive zero-knowledge proof for any N P-statement under the general
assumption that one way permutations exist. If the prover is polynomially bounded then their scheme
is based on the stronger assumption that trapdoor permutations exist3”. However, their scheme is a
bounded non-interactive zero-knowledge proof system.

In [FLS], Feige, Lapidot, and Shamir have shown how to transform any bounded non-interactive
zero-knowledge proof system with polynomial-time provers into a general non-interactive zero-knowledge
proof system in which polynomially many independent provers can share the same random string and
use it to prove polynomially many statements of polynomial length. The transformation is based on
the general assumption that one way functions exist.

On the other hand, in [D] Damgsrd proved an arbitrary N P-statement non-interactively without us-
ing Karp-reductions to 3-SAT or Graph Hamiltonicity. Also he presented a statistical38 zero-knowledge
non-interactive computationally convincing protocol with preprocessing for any N P-statement under
the existence assumption of collision intractable hash functions. It is still open to construct a perfect
(or statistical) zero-knowledge computationally convincing protocol in the shared string model for an
N P-complete problem.

The non-interactive zero-knowledge proof systems have become an important primitive for crypto-
graphic protocols, with applications such as signature schemes and encryption schemes secure against
chosen ciphertext attack. Using non-interactive zero-knowledge proof systems, Bellare and Goldwasser
provided a simple new paradigm for digital signing®® and message authentication secure against chosen
message attack [BG]. In [RS], Rackoff and Simon proposed a non-interactive public key cryptosys-
tem based on non-interactive zero-knowledge proof of knowledge and showed that it is secure against
chosen ciphertext attack4®.

In [DP], it was shown that after a constant-round preprocessing stage, it is possible to give any
polynomial number of non-interactive proofs of knowledge for any N P-language. Their proof system
is based on the existence of one way functions and non-interactive zero-knowledge proof system for
language membership®!.

9 REMARKS

Besides the proofs mentioned in this article, there might be other types of zero-knowledge proofs (e.g.
interactive proofs for promise problems [GKu]). Also it is quite possible that the author is ignorant
of some significant work concerned with zero-knowledge proofs.
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