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Abstract

An algebraic specification of the A-calculus is described. The specification covers valid
substitutions, «, 8, and n conversions, left-most reductions, and let-constructs for A-
definitions. The complete specification of the A-calculus is given. By deriving parsers
from signatures, and term rewriting systems from equations, tools are generated au-
tomatically from the specification. Combining these tools by means of a user interface
description formalism, an environment for experimenting with the A-calculus has been
generated. The environment obtained in this way is presented.
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1 Introduction

In Amsterdam, the GIPE! group has performed a lot of research on the automatic
generation of programming environments from algebraic specifications of programming
languages. Thus far, this research has resulted in an algebraic specification formalism
called ASF+SDF? [BHKS89], and an environment generator called the ASF+SDF system
[K1i91, Hen91], capable of deriving parsers, term rewrite machines and syntax-directed
editors from ASF+SDF specifications.

While reading the (very pleasant) book Programming Language Theory and Imple-
mentation by Michael Gordon [Gor88], the idea to specify the A-calculus came to mind.
Gordon devotes one chapter to the description of the A-calculus. He needs another chapter
to cover the implementation of a A-calculus environment, consisting of tools to experiment
with conversions, left-most reductions, let-constructs, and so on. In this paper we give an
algebraic specification of the A-calculus (which, thanks to the free syntax allowed in the

*Partial support has been received from the European Communities under ESPRIT project 2177 (Gen-
eration of Interactive Programming Environments II - GIPE II) and from the Netherlands Organization
for Scientific Research — NWO, project Incremental Program Generators.

!GIPE is an acronym for Generation of Interactive Programming Environments.

2ASF+SDF emerged by combining ASF (Algebraic Specification Formalism) and SDF (Syntax Definition
Formalism), (see Section 2.1).



sorts BOOL

functions
true -> BOOL
false -> BOOL
and BOOL # BOOL -> BOOL
or BOOL # BOOL -> BOOL
variables p -> BOOL
equations
[1] and(p, true ) =p
[2] and(p, false) = false
[3] or( p, true ) = true
[4] or( p, false) =rp

Figure 1: Algebraic Specification of the Booleans

ASF+SDF formalism, closely resembles the description given by Gordon). Moreover, we
show how this specification can be used to obtain a A-calculus environment for free. This
environment supports syntax-directed editing of \-expressions, performing one-step «, 3,
and 7 conversions, left-most reductions, and let-constructs for introducing A-definitions.
It can be used for teaching purposes, to play with A-definitions, or to get acquainted with
the A-calculus.

The intent of this paper is to show, by giving a simple but nontrivial example, how sev-
eral existing ideas on algebraic specifications and environment generation [BHKS89, Kl1i91,
Koo092a, Koo92b, Hen91, HKR90, Wal91] can be combined. The algebraic specification
of the A-calculus itself, which also can be regarded as a term rewriting system describing
the A-calculus, seems to be new. Similar experiments to generate a A-calculus environ-
ment would be possible using other formalisms in other systems: in terms of denotational
semantics in the Programming System Generator PSG [BS86], in terms of attribute gram-
mars in the Synthesizer Generator [RT89] or the Gandalf system [HN86], or in terms of
natural semantics using TYPOL in the CENTAUR system [BCD™89].

2  Algebraic Specifications in ASF+SDF

To familiarize the reader with algebraic specifications, consider the specification of
the Boolean data type in Fig. 1. This specification consists of a signature (the sorts
and functions declarations), and a set of equations. From the signature we derive closed
terms (such as true, and(true,false), and(true,or(false,true)), ...), and open terms in which
variables are allowed (like and(true,p), and(p,or(false,q)), ...). The equations relate (open)
terms, and induce an equivalence (more precisely, a congruence) relation on the closed
terms. For instance, the terms true, true and true, false or true ... all are contained in
the same equivalence class. We will not go into detail concerning algebraic specifications
in general, but rather refer to [Wir90].

In this section we will introduce the main features of the formalism we use in this paper,
the ASF+SDF formalism. It supports modularization, user-definable syntax, associative
lists, and conditional equations. We will illustrate these features by presenting some
examples: modules that are also used in the algebraic specification of the A-calculus. The
formal “meaning” of an ASF+SDF specification is its so-called initial algebra [GTWTS].
Again, we will not discuss the formal aspects, but refer to [BHK89, Hen91] for the details.



module Booleans
imports Layout

exports
sorts BOOL
context-free syntax
true -> BOOL
false -> BOOL
BOOL and BOOL -> BOOL {left}
BOOL or BOOL -> BOOL {left}
"(" BOOL ")" -> BOOL {bracket}
variables p -> BOOL
priorities and > or
equations
[1] p and true = p
[2] p and false = false
[3] p or true = true
[4] p or false = p

Figure 2: Module Booleans with free syntax

2.1 Signatures as Grammars

In Fig. 1, the “form” of the terms derived from the signature was rather limited; it had to be
something like and(true,false), Or push(s,E). Preferably, we would like to have more freedom
in the equations, allowing us to write true and false, Or push E on S. This is possible by
replacing the signature by a description covering the concrete representation of terms, in
addition to their abstract representation.

This idea has been exploited in the ASF+SDF formalism. ASF+SDF resulted from
combining ASF and SDF. ASF (Algebraic Specification Formalism), which came first, is
a “pure” algebraic specification formalism [BHK89]. In ASF+SDF, ASF signatures have
been replaced by SDF definitions. SDF (Syntax Definition Formalism) is a formalism
to define lexical, concrete, and abstract syntax at the same time [HHKR89]. The main
idea of SDF is that a declaration of the form BoOL and BoOL -> BoOL is on the one hand
read as a declaration of the abstract function and : BOOL x BOOL — BOOL and on
the other hand as the declaration of a context-free grammar production (BOOL) ::=
(BOOL) ”and” (BOOL). The SDF reference manual [HHKR89] describes how abstract
functions are derived uniquely from a concrete syntax.

As Fig. 2 shows, this permits the use of all kinds of nice syntax in the defini-
tion of the equations®. There is, however, a price to pay: we have to take care that
the syntax is not ambiguous. Thus, in order to decide whether true and false or true
should be read as (true and false) or true Or as true and (false or true), we have to
add a priorities declaration, which in Fig. 2 favors the first alternative. Likewise, we
indicate whether true and true and true is to be read as (true and true) and true Or as
true and (true and true), which we do by declaring and to be left associative. The im-
port of module Layout (third line of module Booleans) is explained in Section 2.2

3We will CAPITALIZE sorts, and use uncapitalized words for function names introduced in signatures.
Non-alphanumeric or capitalized function names should be quoted



module Identifiers
imports Layout

exports
sorts ID
lexical syntax
[a-z] [a-zA-Z0-9\-’]* -> ID
context-free syntax
prime(ID) -> ID
variables Chars -> CHAR+
equations
[1] prime( id(Chars) ) = id(Chars "’")

Figure 3: Module Identifiers

module Layout

exports
lexical syntax
[ \t\n] -> LAYOUT
"%A" “[\n]* "\n" -> LAYOUT

Figure 4: Module Layout, defining white space

2.2 Lexical Syntax

A lexical syntax section can be used to define basic lexical words like numbers (consisting of
a non-zero digit followed by zero or more digits) or identifiers (one or more alphanumerical
characters, starting with a letter, possibly including hyphens or primes). For the A-calculus
specification we need variables, which we define as the Identifiers of Fig. 3. Besides defining
the identifiers, the signature of module Identifiers (Fig. 3) introduces a function prime. This
function will be used in the A-calculus specification to represent new variables prime(V),
prime(prime(V)), ... The equation of module Identifiers states that the result of applying
a prime function to an identifier is the same as appending a ’ character to it. (Details
concerning the built-in cHAR sort can be found in [HHKRS&9].)

As the reader may have noticed, module Booleans of Fig. 2 imports module Layout.
It is needed to define “white space” in the equations. Module Layout (Fig. 4) uses the
predefined sort Layour [HHKR89, Chapter 4]. It defines spaces, tabs, or newlines as white
space, and comment as lines starting with two percent signs (%%).

Finally, variable declarations are treated as declarations of lexical syntax. For example,
if we wanted to have several variables p, p1, p2 po1, ... in module Booleans (Fig. 2) we could
have written variables p[0-9]1* -> BOOL, defining all these variables in a single declaration.

2.3 Associative Lists

ASF+SDF supports list functions and variables. List functions have a varying number of
arguments, and list variables may range over any number of arguments of a list function.
An example can be found in module IdSets (Fig. 5), defining sets of Identifiers*. The line

*Alternatively one could have defined a module sets parameterized by the element sort. We omitted
this for simplicity.



module IdSets
imports Booleans Identifiers

exports
sorts ISET
context-free syntax
II[II {ID II,II}* II]II - ISET
ISET "-" ID -> ISET
ISET "U" ISET -> ISET {left}
"member-of?"(ID, ISET) -> BOOL
variables
[XY] -> ID Es[123] -> {ID ","}x*

Set -> ISET

equations
[1] [Es1, X, Es2, X, Es3]
[2] [Es1] U [Es2]

[Es1, Es2, X, Es3]
[Es1, Es2]

[3] [Es1, X, Es2] - X

[Es1, Es2] - X

[4] member-of?(X, Set) = false

Set - X = Set

[5] member-of?(X, []) = false
[6] member-of?(X, [X, Es1]) = true

[7] X '=Y

member-of?(X, [Y,Es1]) = member-of?(X, [Esi])

Figure 5: Module IdSets, using built-in lists

u[" {ID ","}* 1" -> ISET defines terms like [1, [E1], [E1, E2], ... to be sets of 0, 1, 2, ...
elements. The asterisk * indicates zero or more elements, while the comma is the concrete
representation for the separators (note that by definition they are separators rather than
terminators, see [HHKR89, Chapter 5]). The list notation is an abbreviation for the
declaration of infinitely many functions [...], each with a different number of arguments.
If appropriate, instead of an asterisk indicating “zero or more”, the plus character can
be used to indicate “one or more”. Lists without separators can be defined by omitting
the curly braces and the separator (e.g., Foo+). More details on lists can be found in
[HHKR89, Hen91].

List variables are needed to define equations over list functions. Module IdSets defines
the variables Es1, Es2, and Es3 of Fig. 5 as ranging over zero or more elements separated
by commas. Equation [1] states that duplicate elements in sets are irrelevant. Equation
[2] joins two sets; equations [3] and [4] remove one element from a set. Equations [5] to
[7]1 define the membership function on sets.



module Lambda-syntax
imports Identifiers

exports
sorts L-EXP
context-free syntax
ID -> L-EXP
lambda ID+ "." L-EXP -> L-EXP
L-EXP L-EXP -> L-EXP {left}
"(" L-EXP ")" -> L-EXP {bracket}
variables
E[0-9°]% -> L-EXP
V[0-9°] -> ID
VL0-9°]*"+" -> ID+
priorities
{ lambda ID+ "." L-EXP -> L-EXP } < { L-EXP L-EXP -> L-EXP }
equations

[1] lambda V+ V . E = lambda V+ . lambda V . E

Figure 6: Module Lambda-syntax

2.4 Conditional Equations

To obtain more flexibility in algebraic specifications, conditional equations can be used. In
module IdSets (Fig. 5) we have seen examples of the use of a positive condition [4], and a
negative condition [7]. The idea of conditions is that the consequence (below the bar) only
holds if the sides of the conditions (above the bar) can be proved equal or unequal. Neg-
ative conditions should be used with care, since they destroy a desirable model theoretic
property of algebraic specifications (namely, the unique initial model property) [Kap88].
We will be careful, and use negative conditions in the sense of [MS88]. In doing so, the use
of conditions becomes merely an abbreviation mechanism allowing more succinct specifi-
cations. In [DK92] it is shown how in practice any specification using conditions can be
translated to an equivalent unconditional specification.

To facilitate the description of equations having an if-then-else like character,
ASF+SDF supports the otherwise:® construct. An otherwise: equation only applies if no
other equation is applicable. Using the otherwise:, the member-of? function can be defined
as follows:

[6°] member-of? (X, [Esl, X, Es2])
[6°7°] otherwise: member-of?(X, Set)

true
false

Again, the otherwise: construct is merely an abbreviation, since it can always be rewritten
to a number of positive conditional equations. For a discussion of the consequences of
otherwise-equations, we refer to [DK92].

5In the current version of ASF+SDF, “otherwise:” is called “default”. We prefer the more intuitive

“otherwise:”.



3 Specification of the \-calculus

The A-calculus originated in the 1930s by the work of A. Church as a theory to study
functions [Chu41]. Ever since, it has inspired many other important developments, such
as LISP (McCarthy), denotational semantics (Strachey), and functional programming
(Henderson, Turner). By now, A-calculus has grown into a major topic in programming
language theory. It is used to study computation, design and semantics of programming
languages, as well as specialized computer architectures [Gor88]. Barendregt [Bar84] is a
solid treatise on the theory of the A-calculus.

In this section we follow the description of Gordon [Gor88], replacing his (sometimes
informal) definitions by modules of our algebraic specification.

3.1 Syntax

The module Lambda-syntax (Fig. 6) defines the syntax of the A-calculus. The consecutive
lines of the context-free syntax section define A-expressions to be

1. variables (x, y, ...);

2. abstractions of the form lambda x y . E with bound variables x, y and body E. The 1D+
indicates that 1ambda should be followed by at least one bound variable.

3. Function applications: if E1 and E2 are A-expressions, then so is E1 E2. It is intended
to denote the result of applying function E1 to an argument E2.

The 1eft declaration indicates that function application is left-associative, i.e., E1 E2 E3
means ((E1 E2) E3). The priorities declaration indicates that lambda Vv . E1 E2 is to be read
as (lambda V . (E1 E2)) rather than as ((lambda V . E1) E2) (i.e., the scope of the variable
v extends as far to the right as possible). The single equation of the module states that
lambda Vi ... Vn . E is just an abbreviation for lambda Vi . ( ... .(lambda Vn . E)). The
brackets "(* and ")" can be used to override these conventions. In the variables section we
have defined v1, v2, E1, E2, ... which we will use for arbitrary variables and A-expressions
respectively.

3.2 Substitutions

In Section 3.3 we will explain how a function abstraction lambda x . E1 can be “called”
with actual value E2 by substituting the actual value 2 for all occurrences of the formal
parameter x in expression Ei. Before doing so, we have to define the substitutions them-
selves (module Substitute, Fig. 7). A substitution of expression E’ in expression E for all
free occurrences of variable v is denoted by E[E’/v]. A variable is free in an expression, if it
is not bound by a lambda abstraction. Free variables are defined precisely by the equations
[£1]1, [£2], and [£3], following [Bar84, p. 24]. When defining substitutions E[E’/V] care
has to be taken that variables free in E> do not become bound in E[E’/v]. The specification
does so, and follows the valid substitutions of Gordon® [Gor88, p. 73]. Consequently, the
A-expression (lambda y . y x)[y/x] is equal to (lambda y’ . y’ y).

5Tt is possible to merge equations [s5] and [s6] into a single equation which omits the check whether v’
is free in E, and always introduces a fresh variable, This, however, leads to the introduction of unnecessary
fresh variables.



module Substitute
imports Booleans Lambda-syntax IdSets

exports
context-free syntax
L-EXP "[" L-EXP "/" ID "]" -> L-EXP
free-vars( L-EXP ) -> ISET
fresh-var( ID, L-EXP ) -> ID
equations
[si] Vv [E/V] =E
[s2] VvV 1= W
v’ [E/V] = W

[s3] (E1 E2) [E/V] = (E1[E/V]) (E2[E/V])
[s4] (lambda V . E1) [E/V] = lambda V . E1

[sb] V '=1V’, member-of?(V’, free-vars(E)) = false

(lambda V’ . E1) [E/V] = lambda V’ . (E1[E/V])

[s6] V !'=V’, member-of?(V’, free-vars(E)) = true,
fresh-var(V’, (E E1)) = V>

(lambda V’.E1) [E/V] = lambda V’’> . ( E1[V’’/V’][E/V] )

[f1] free-vars(V) = [V]
[f2] free-vars(El1 E2) = free-vars(El) U free-vars(E2)
[£f3] free-vars(lambda V . E) = free-vars(E) - V

[g1l] member-of?(V, free-vars(E)) = true

fresh-var(V, E) = fresh-var(prime(V), E)

[g2] otherwise: fresh-var(V, E) =V

Figure 7: Module Substitute for valid substitutions



module Convert
imports Substitute

exports
context-free syntax
alpha( L-EXP ) -> L-EXP
beta( L-EXP ) -> L-EXP
eta( L-EXP ) -> L-EXP
equations

[b1] beta( (lambda V . E1) E2 ) = E1 [ E2/V ]
[b2] otherwise: beta(E) = E

[a1] V’ = fresh-var(V, E)

alpha( lambda V . E ) = lambda V’ . (E[V’/V])

[a2] otherwise: alpha(E) = E

[el] member-of?(V, free-vars(E)) = false

eta( lambda V . EV ) = E

[e2] otherwise: eta(E) = E

Figure 8: Module for «, 3, and n conversion

3.3 Conversions

Conversion rules are ways to transform one A-expression into another. Module Convert
(Fig. 8) defines the so-called «, (3, and n-conversions. The most important one is (-
conversion, which simulates evaluating a function: (lambda Vv . E1) E2 is by (3-conversion
equal to E1[E2/V], i.e., by replacing the formal parameter v by an actual value E2 (equa-
tion [b1]). Functions that have the same form apart from the names of the bound vari-
ables denote the same function by a-conversion. Thus, lambda Vi . E can be replaced by
lambda V2 . (E[v2/v1]), provided v2 does not occur free in E (equation [a1]) [Bar84, p.
26]. By n-conversion, functions do not change when “putting a lambda around an existing
function”. For example, by 1 conversion lambda x. (sin x) denotes the same function as
sin itself (equation [e1]). If a A-expression E is not an «, (3, or n-convertible, then the
otherwise: equations [b2, [a2], and [e2] guarantee that functions alpha, beta, and eta are
equal to the unchanged expression E.

3.4 Left-most reductions

In general, given a A-expression E, it may be possible to apply [-conversion at several
places called redexes. After repeated application of B-conversion a A-expression in which
no (-redex is available, the normal form, may be reached. Whether a normal form is
found may depend on the order in which G-reduction is applied to the redexes. A strategy
that always leads to a normal form (if it exists) is left-most reduction, which repeatedly
reduces the left-most redex [Gor88, p.121].



module Reduce
imports Convert

true

false

exports
context-free syntax
Im-step( L-EXP ) -> L-EXP
Im-red( L-EXP ) -> L-EXP
"is-beta-redex?" ( L-EXP ) -> BOOL
"has-beta-redex?"( L-EXP ) -> BOOL
equations
[11] is-beta-redex?( (lambda V . E1) E2 ) = true
[12] otherwise: is-beta-redex?(E) = false
[h1] has-beta-redex?(E1l E2) = is-beta-redex?(E1 E2) or
has-beta-redex?(E1) or has-beta-redex?(E2)
[h2] has-beta-redex?( lambda V . E ) = has-beta-redex?(E)
[h3] has-beta-redex?(V) = false
[11] is-beta-redex?(E1 E2) = true
Im-step(E1 E2) = beta(El E2)
[12] is-beta-redex?(E1 E2) = false, has-beta-redex?(El) =
Im-step(E1 E2) = lm-step(E1) E2
[13] is-beta-redex?(E1 E2) = false, has-beta-redex?(E1) =
Ilm-step(E1l E2) = E1 Ilm-step(E2)
[14] 1m-step(lambda V . E) = lambda V . lm-step(E)
[15] 1Im-step(V) =V
[16] has-beta-redex?(E) = true
Im-red(E) = Ilm-red(Ilm-step(E))
[17] otherwise: lm-red(E) = E

Figure 9: Module Reduce for left-most 3 reductions

10



module Let
imports Lambda-syntax Substitute
exports

sorts DEF LET

context-free syntax

expand( L-EXP, LET ) -> L-EXP
|I(II ID ||:|| L—EXP ll)u -> DEF
"(" let DEF+ ")" -> LET
% empty % -> LET
variables
D[0-9’ T *"+" -> DEF+
D[0-9°]* -> DEF
equations

[e0] expand(E, ) = E
[e1] expand(E, (let (V:E’))) = E[E’/V]
[e2] expand(E, (let D+ D)) = expand(expand(E, (let D)), (let D+))

Figure 10: Module Let

Module Reduce (Fig. 9) defines left-most reductions on A-expressions. The function
lm-step yields the result of exactly one left-most step. It uses the auxiliary function
has-beta-redex? to find the left-most redex. The function 1m-red repeats left-most steps
until the A-expression does not change any more. If a A-expression E has a normal form,
then 1m-red(E) is equal to that normal form. Module Reduce only defines left-most (-
reduction. It can easily be extended to cover n-reduction as well, but we omitted this to
keep our example simple.

3.5 J\-definitions

Besides being a language for reasoning about functions, the A-calculus is used to represent
all kinds of objects. Similar to the way natural numbers can be represented by the sets
0,{0},{0,{0}}, ... in set theory, all kinds of objects can be represented by A-expressions.
Module Let (Fig. 10) introduces notation for such A-definitions. For example, in the
classical work of Church, a number N is represented by the normal form lambda £ x . £ x.
A way to obtain this is by defining:

(let (zero: 1lambda f x . x)
(succ: lambda n f x . n f (f x)))

According to these definitions, sucec (suce zero) can be (-reduced to lambda £ x . £ (f x).
A-definitions can be used in plain A-expressions by replacing the name by the corresponding
definition; this is specified by the expand function (Fig. 10). It would be fairly easy to
extend the module Let to cover letrec structures for recursive functions as well (which
can, of course, be rewritten to a let containing a fixed point operator, and an application
of this operator to the function defined in the letrec). Again, we omitted this to keep the
specification as small as possible.

11



3.6 Correctness

Let S be the specification as described in the previous sections, and let S = S\ [16] be the
specification without equation [16] of module Reduce, which defines how function 1m-red
repeatedly performs beta reductions in a left-most order.

The main argument when discussing the correctness of the specification is that each
term of sort L-EXp in S’ is equal to either a single (free) variable, an application, or an
abstraction with one bound variable. In other words, the specification is sufficiently-
complete with respect to the constructors v, E1 E2, and lambda V . E of sort L-EXP. This can
be shown using structural induction, arguing that simple A\-expressions satisfy the property,
and that the more complex ones maintain it. Equation [1] of module Lambda-syntax
guarantees that any abstraction with several bound variables is equal to an expression with
exactly one bound variable. Equations [s1] to [s6] of module Substitute eliminate terms of
the form E1[E2/v], distinguishing the three possible constructors of E1, and the occurrences
of free variables in E2. Each of the functions for «, §, and n conversion also satisfy
the property; non-convertible A-expressions are covered by the otherwise: equations. The
function 1m-step of module Reduce again is sufficiently complete; cases are distinguished
according to the constructor of the expression, and to whether the (sub)terms have (-
redexes in case of application.

Taking equation [16] also into account, the sufficient completeness is lost; the function
lm-red Operating on a “looping” A-expression like (lambda x . x x)(lambda x . x x) cannot
be eliminated.

In a similar way, one can easily show that a term rewriting system obtained from the
specification S’ by orienting the equations from left to right is sufficiently complete, has
unique normal forms, and does not contain infinite reductions.

4 The Generated Environment

4.1 Tools

The two most important tools that can be derived from an ASF+SDF specification by the
ASF+SDF-system [K1i91, Hen91] are a parser and a term rewriting machine. A parser is
a program that analyses the structure of a sentence according to a given grammar. From
the SDF part of an ASF+SDF specification, a parser can be generated that is capable
of parsing sentences and mapping these to the corresponding terms over the derived sig-
nature [HKR90]. A term rewriting system automatically evaluates terms by performing
reductions according to the equations [Klo91]. Each equation is interpreted as a rewrite
rule by giving it an orientation from left to right [BHKS89]. For instance, in the module
Booleans (Fig. 2) the term true and false or true can be rewritten according to equation
[1] to false or true, which in turn can be rewritten according to rule [4] to true. Note
that, in general, the term rewriting system obtained in this way can be incomplete with
respect to the original algebraic specification; this is due to the fact that equations are
interpreted only from left to right.

Both term rewriting machines and parsers can be “specialized” to one module. E.g.,
a parser restricted to module Lambda-syntax only knows how to parse A-abstractions,
variables, and applications, but does not know anything about substitutions. Likewise,
term rewriting machines can be restricted to modules or even particular functions. In this

12
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Figure 11: Example of the generated A-calculus environment

way, numerous parsers and term rewriters can be derived from a single specification.

Given a parser, a syntaz-directed editor can be derived [Ko092b], allowing both textual
and structural editing on the tree obtained by parsing the text. Plain text editing is
allowed within a focus designating one particular subtree. Structural editing enables focus
movements and expansion of nonterminals according to the grammar.

Moreover, with the various user-interface events (such as mouse clicks, buttons pushed,
or key stroke sequences) occurring in the editor, term rewriting actions can be associated.
For example, the action “call beta with current focus as argument” can be attached to a
button “Beta”. A collection of such editors typically forms the basis for an inter-active,
generated environment.

4.2 Layout of the Environment

From the modules presented in this paper the ASF+SDF system,’ generates the A-calculus
environment showed in Fig. 11. We will discuss this generated environment first.

Fig. 11 displays four windows, each containing a syntax-directed editor. The largest
window contains a let expression showing all kinds of A-definitions that the user wishes to

"Actually, the ASF+SDF-system can do more than just generate the environment; a major part of it is
the meta-environment, an interactive, incremental environment supporting editing, checking and testing
specifications [K1i91].
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experiment with. If desired, he or she can edit these definitions, add new ones, and so on.
In the three small windows, A-expressions can be manipulated. They can be edited, and
the focus can be positioned on every subexpression. The subexpression in the focus can be
changed by the various buttons attached to each A-editor. There are buttons to «, 3, or
n-convert the focus, to perform one left-most reduction step, or to reduce the expression
in the focus by left-most reduction to its A normal form. The expand button replaces all
occurrences in the focus of A-defined identifiers by their corresponding definition given in
the let-construct (from the big window in Fig. 11).

As an example of the practical use of such a generated environment, let us consider
A-definitions of numerals. Wadsworth [Wad80] gives several alternative A-definitions for
numbers, and proves all kinds of propositions about them. To develop some intuition
concerning his definitions, one could edit the A-definitions in the 1et-editor, and add:

(let (cK : lambda x y . x)
(cI : lambda x . x)
(w-zero : cK cI)
(w-succ : cK)

)

Now a term like w-sucec (w-succ w-zero) can be entered in some A-editor. In this editor
it is possible to experiment with the Wadsworth numeral representations by clicking the
various buttons with the focus at different positions, thus performing «, 3, n-conversion,
or left-most reduction (steps) on any desired subexpression. The intuition thus gained may
help in proving, disproving, or conjecturing statements about Wadsworth’s A-definitions
for numbers.

4.3 From Tools to Environment

In Section 4.1 we have seen that single tools can be derived from an algebraic specification,
and in Section 4.2 we presented an example environment using tools derived from the
A-calculus specification. In this section we will briefly discuss how the exact layout and
behavior of the environment can be defined. The environment has been generated from
(1) the modules as described in Section 3, and (2) a user interface description. The user
interface description of the A-calculus environment is the topic of this section.

The basic desired functionality of the A-calculus environment is given in Fig. 12. It
summarizes the buttons of a typical editor for A-expressions. For each button it gives
(1) the name, (2) the desired behavior as a function of the subexpression currently under
the focus, and (3) the module in the algebraic specification defining that function. The
functionality indicates that the expression under the focus should be replaced by the
result of rewriting the indicated function with the expression under the current focus
as argument. For example, if the focus is on the A-expression lambda x . sin x, clicking
the Eta button will reduce the term eta(lambda x . sin x) according to the definitions of
module Convert, and will replace the focus by sin, the result of the reduction. The five
buttons for conversions and reductions only need the focus of the A-calculus editor itself
as input for the functions to be evaluated. The button Expand, by contrast, needs more.
It assumes the existence of a second editor (the Definitions-editor) and assumes that it
can access the expression under the latter’s focus.
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‘ Button ‘ Functionality ‘Module‘

Alpha alpha(  Current-focus ) Convert
Beta beta(  Current-focus ) Convert
Eta eta( Current-focus ) Convert

LMStep 1m-step( Current-focus ) Reduce
LMReduce lm-red( Current-focus ) Reduce
Expand | expand( Current-focus , Definitions-focus ) Let

Figure 12: Buttons for the A-calculus environment

The user interface layout and behavior of the A-environment of Section 4.2 and Fig. 11
was specified using a preliminary version of a user interface description formalism devel-
oped by Koorn [Ko092a]. The formalism contains, for instance, primitives to retrieve and
update focus values in different editors, or to move the focus around in a particular ed-
itor. The description for the A-calculus environment basically consists of the table with
the 6 button definitions of Fig. 12, and covers about 25 lines. Given this description of
the buttons for A-calculus editors, and the nine modules of the algebraic specification of
the A-calculus presented in Sections 2 and 3, the A-calculus environment of Fig. 11 was
generated completely automatically using the ASF+SDF-system. No programming was
needed.

5 Concluding Remarks

We have presented an algebraic specification of the A-calculus. Thanks to the free syntax
of the formalism, the specification closely resembles the description of the A-calculus given
by Gordon or Barendregt. Examples where this similarity is quite clear include the valid
substitutions [Gor88, p.73], free variables [Bar84, p.24], or the syntax with its notational
conventions [Gor88, p.62]. The formal definition has been used to obtain an environment
for experimenting with the A-calculus for free; this environment supports «, 3, and n
conversion, left-most reductions, and A-definitions.

The ASF+SDF specification presented in this paper focuses on the basics of the
A-calculus. It is easy to extend the ASF+SDF specification to cover other reduction
strategies, to extend to a typed A-calculus, to translate to De Bruijn sequences [Bru72],
to experiment with the explicit substitutions in the Ao-calculus [ACCL90], and so on.
Again, having specifications of these immediately provides one with tools to experiment
with them.

Our specification shows that from a purely formal definition, inter-active environments
can be generated. We realize that the A-calculus is not a very complex example, which is
relatively close to algebraic specification and term rewriting. Nevertheless, the simplicity
of the example illustrates the ideas of the environment generator all the better. We hope
(and expect) that in the future more and more compilers or environments will be derived
as nice and easy as this A-calculus environment.
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