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Summary

For positive recurrent nearest neighbouring, semi-homogeneous random walks on the lattice {0,1,2,...,}
x{0,1,2,...,} the bivariate generating function of the stationary distribution is analysed for the case
where one-step transitions to the North, North-East and East at interior points of the state space all
have zero probability. It is shown that this generating function can be represented by meromorphic
functions. The construction of this representation is exposed for a variety of one-step transition vectors
at the boundary points of the state space.
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1. INTRODUCTION

Since the early seventies random walks on the lattice {0,1,2,...} x {0,1,2,...} have received quite
some attention in the literature, this being mainly due to their use in modelling traffic flow patterns in
telecommunication and computer networks. For details concerning their applications cf., e.g. Takagi
[17]. For the Performance Analysis of such networks information concerning the stationary distribution
of those random walks is of prime importance. Around 1980 it appeared that the determination
of the stationary distribution could be formulated as a Boundary Value Problem, cf. Fayolle and
Tasnogorodsky [8], Cohen and Boxma [4], Cohen [5]; for a review paper, see [6], here the problem
formulation as a singular Fredholm integral is also discussed.

Nearest neighbouring random walks are a special but important subclass. From the early sixties
dates a study by Groeneveld, unfortunately, it has never been published. By using uniformisation he
has solved the functional equation for the “shortest queue” model and shown that the solution can
be expressed in terms of elliptic functions; Malyshev’s approach [14] is of a similar character. Among
the nearest neighbouring models the “shortest queue” is a much studied one. Its basic analysis is due
to Kingman [13] and Flatto, Mckean [9]. In the context of Boundary Value Problems this model has
been analysed in [8] and [4].

In a nearest neighbouring random walk the one-step transition out from an interior point (3,7) €
{1,2,...}x{1,2,...} of the state space leads with probability one to a neighbouring point (i+h,j+k),
(h, k) € {~1,0,1} x {~1,0,1}\{(0,0)}. In the shortest queue model the one-step transitions with
(h, k) € {(1,1),(1,0),(0,1)} all have probability zero. In Hofri [11] and Jaffe [12] also models with
this feature are discussed almost along the same lines as in [9], and as with the “shortest queue”
model the bivariate generating functions of the stationary distributions are meromorphic, i.e. their
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only singularities are isolated poles. These random walks are featured by the absence of one-step
transitions to the North, North-East and East, (N, NE, E) and the conjecture arises whether for such
random walks the generating function of the stationary distribution, if it exists, is always meromorpbhic.
In the present study it will be shown that under some mild conditions this conjecture is true. Questions
concerning the algebraic character of the generating function have recently been also studied by Fayolle,
lasnogorodsky, Malyshev [7]. Flatto and Hahn [10] provides a model with an algebraic generating
function, here the one-step transition to the North-East has a nonzero probability.

The character of the generating function of the stationary distribution of a nearest neighbouring
random walk is determined by the number of branch points of the zeros of the so called kernel

Pip2 — ¢3(P1,Pz);

where @3(p1,p2)/(p1p2) is the bivariate generating function of the distribution of the one-step transi-
tion out from an interior point of the state space. The kernel is in general a biquadratic in p; and pj,
and its zeros, e.g. p; as a function of py, have generally four branching points, two in- and two outside
the unit disk if the drifts g3 — 1 and v3 — 1 are negative, cf. (2.6). In the case with no N, NE and
E one-step transitions there are only two finite branching points, both are inside the unit disk. The
branching points inside the unit disk play an essential role in the analysis of the functional equation
for the bivariate generating function at the stationary distribution. The branching points outside the
unit disk play a decisive role in the analytic continuation of the bivariate generating function into the
domain outside the torus generated by the two unit disks.

In the present study we consider the nearest neighbouring walk without one-step transitions to the
N, NE and E at interior points of the state space; it is assumed that the process is positive recurrent,
cf. assumption 2.1. It is shown that the generating function of the stationary distribution can be
described in terms of meromorphic functions. The construction of these functions is exposed; some
weak restrictions have been made, cf. assumption 4.1. Even with these restrictions quite a number of
variants have to be considered.

The organisation of the present study is now described, In section 2 the model of the nearest
neighbouring random walk is defined by its one-step transition vectors at interior and at the boundary
points of the state space {0,1,2,...} x {0,1,2,.. .}. The random walk is semi-homogeneous, i.e. the
distribution of the transition vector at interior points is independent of the position of such a point,
similarly for the boundary points on the positive horizontal axis and the positive vertical axis, cf. (2.1)
and (2.2). In this section the functional equation to be solved is formulated on the set of zero tuples of
the kernel. By using the analytic properties of these zero tuples the functional equation is replaced by
two equations with two unknown functions Q;(p), Q,(p), defined for Ip| < 1; the two branching points
of a zero tuple located inside the unit disk are here instrumental, see section 3. From the structure of
the coefficients in these two equations it is shown that £, (p) and Q22(p) can be continued analytically
into [p| > 1. In section 4 it is shown that the only singularities of these analytic continuations are
poles; for the determination of the residues at these pole sets recursive linear equations are derived.
The pole sets of Q;(-) and Q5(-) are generated by the zeros in [p| > 1 of some of the coefficients in the
two equations for 2;(-),Q(-); the number of such zeros depends on the character of the transition
vectors at the boundary points of the state space. From the results so obtained it is seen that the
solution of the two functional equations for Q;(p) and Q(p), with Q; (p), Q2(p) both regular in |p| < 1
and continuous in [p| < 1 are meromorphic functions with known pole sets and recursively defined
residues in |p| > 1. In section 5, £;(-), and also £2;(-), are expressed as the sum of a polynomial and
a number of meromorphic functions with given poles and residues. These meromorphic functions are,
apart from a factor, explicitly known, their construction follows from the results in section 4. The
polynomials and their degrees have still to be determined. Substitution of the expression for 2;(-) and
§23(-) into the two equations for these functions (see section 6) leads to the determination of the degrees
and of the coefficients of these polynomials, and a set of linear equations for the unknown factors in
the meromorphic functions remains. It is shown that the equations have a solution and so £ (p), ()
are determined. It is finally shown that the solution so constructed leads tc the unique solution of



the functional equation for the bivariate generating function of the stationary distribution. In order
not to interrupt the exposition of the construction of the solution all the algebraic computations have
been exposed in the appendices, A, B and C.

The construction of the generating function of the stationary distribution may be also formulated
as a Boundary Value problem, cf. [4], and as such it can be solved completely, also when one-step
transitions to the N, NE and E occur. If they do not occur then the present approach is simpler,
because it avoids the explicit calculation of a conformal mapping. In a future study the author
will develop a technique for the case with N, NE and E one-step transitions which also avoids the
calculation of such a mapping from an integral equation.

The present investigation has been initiated after reading the studies Adan [1]. Adan, Wessels,
Zijm {2]. In his search for a direct derivation of explicit expressions for all state probabilities of
the two-dimensional stationary distribution Adan starts from the equilibrium equations for these
probabilities. For the general equation of this set, i.e. the equation containing no state probabilities
of the boundary points of the state space, he constructs a class of solutions. By choosing suitable
linear combinations of these solutions Adan tries to satisfy the boundary conditions, i.e. the equations
containing boundary states. Via an iterative procedure he succeeds in constructing a sequence which,
whenever it converges absolutely at all points of the state space, provides in the limit the solution of
the equilibrium equations and the norming condition. This aspect of absolute convergence is actually
the problem of choosing the exponents of convergence in constructing the meromorphic functions, cf.
section 5 and appendix C, Adan’s approach leads to an algorithm for the numerical evaluation of the
various state probabilities.

2. DESCRIPTION OF THE MODEL

We consider the two-dimensional stochastic process {z,,n = 0,1,2,...} with state space S,
Zn = (Xa,¥n) €S :=1{0,1,2,...} x {0,1,2,...}.

For the characterisation of the structure of the z,-process we introdiuce the following four sequences
of stochastic vectors,

i. for every fixed k =0,1,2,3, (2.1)
(P, n&k)),n =0,1,2,..., is a sequence of i.i.d. stochastic vectors with (651’“),172")) € S;

ii. the four families {(£Sbk),ng°)),n =0,1,2,...} are independent families.

The structure of the z,-process is defined by the following recursive relations:

i 2 = (z9,70) € S is the starting point; (2.2)
. Xppr =[x — 1+ £ |

Yo+l = [Yn — 1]+ + Th(mk),

with
k=3 for x>0, y.>0,
=2 ,, =0, >0,
=1 ,, >0, =0,
=0 ,, =0, =0,

and




ot = max (0,0) for @ real
We introduce the following notation and definitions

1. (&x, ;) shall indicate a stochastic vector with the the same state space and the same distribution
(k) (k) : (2 3)
as (€27 05 ), ie. .

(gkank) ~ (651,”1 T’Sr.k))) k=0,1,2,3;

= dulpp) == B{pt o), Iml <1, Ipal <1,

e = E{&}, = E{ﬂk}-

From (2.1) and (2.2) it is seen that the z,-process is a discrete time parameter Markov chain.
The class of nearest neighbouring random walks to be analyzed in the present study is specified by
taking

$o(p1,p2) = brop1 + bo1p2 + bripipa, (2.4)
$1(p1,p2) = h11p?ps + ho1p1pe + h_1,1p2 + h1op} +h_1,0,
$2(p1,p2) = wi1p1P% + wiop1p2 + wi,_1p1 + wo1P3 +wp, 1,
$3(p1,p2) = r—1,1P3 +r_10p2 +7_1,_1 +10,-1p1 + 11,217,
with
$u(l,1)=1, k=0,1,2,3,

and all coefficients in (2.4) nonnegative.

Note that (2.2) and (2.4) imply that out from a point (z,y) with z > 0,y > 0, no one-step transition
can occur to the North, the North-East and the East.

We introduce

AsSsSUMPTION 2.1,
i ps—l=r, g ~{rogg+r_1g+r_q,_1} <0, (2.6)
va=l=r_33—{ri,1+rg_1+r-1,1} <0;

i, 0< 47’_1111'1,_1 <1

1-
1. #1*1'—1/11 Fa <1,
1—v
V]_—].—}l.zl_#‘: <1

iv. hiz+hor >0 or wy +wyy >0
V. hpy >0 whenever hy; = hg; =0,

wyg >0 ' wyy = wyp = 0.



REMARK 2.1. Concerning (2.6)ii it is noted that 4r_;;37r;,.y = 1 implies r_13 = r,—1 = -;— since
0<r3,:€1,0< 3 €1, 7031 +71,-1 £ 1; and so the second inequality in {2.6)ii is implied
by (2.6)i. Although the case r;,_; = r_;; = 3 is an interesting case, we shall discard it because
its analysis requires a slightly different approach, similarly if 7_;; = 0 or r1,_1 = 0. The condition
(2.6)iv has been introduced to guarantee that any two states of S can be reached from each other
with positive probability, so that the state space S is irreducible. The conditions (2.6)v have been
introduced to restrict the number of variants which have to be considered in the analysis, see the
derivations in appendix C. However, if (2.6)v is not assumed the required analysis does not change
essentially.

Whenever the conditions (2.6)i hold and the state space S is irreducible then the conditions (2.6)iii
are necessary and sufficient for the z,-process to be positive recurrent, cf. Cohen [1], section II.2.6,
and hence they imply that the z,-process possesses a unique stationary distribution. If (2.6)i is not
introduced it is still possible that the z,-process is positive recurrent, cf. {1]; however, we shall not
discuss here such cases. O

In the present study our interest concerns the study of the functional equation for the stationary
distribution of the z,-process. To formulate this equation let

(%x,¥)

be a stochastic vector with distribution the stationary distribution of the z,-process
Put

®(p1,p2) 1= E{pchg’}, Il <1, |p2} < 1.
1t is then easily derived (cf. [1], (IL.4.1.3)) that:

- (Prp2 — ¢3) ®(p1,p2)/2(0,0) = p1p2dho — 3+ (2.8)
(p2¢1 — 3)p1Qu(p1) + (P12 — h3)p2Q2(p2) for |p1] < 1, [p2] £ 1,
with
Qu(p) = 5-{2(p1,0) ~ 8(0,0)}/2(0,0), |;| <1, (2.9)

D2(p2) == 3 {®(0,p1) ~ 2(0,0)}/2(0,0), |p2| <1,
¢jE‘/’j(P11P2)7 7=0,1,2,3.
From (2.7) and (2.9) it follows that:

Qi (p) is regular for |p| < 1, and continuous for |p| <1, analogously for Q,(p); 0 € Q;(1) <1,

j=12 (2.10)
Put
wa(p1,p2) := pa — P2(p1,p2), (2.11)

wl(plyp2) =p1 ¢1(p1,p2),
wo(p1,p2) =1 — ¢o(p1,p2).

By ($1,P2) we shall denote a zero tuple of the kernel

Z(p1,p2) = ¢3(p1,p2) — P1p2, (2.12)



rﬁl)ﬁ2)) .7 =011721 (213)

1 (2.8), because by definition

I <1, lﬁll <1, 'ﬁ2! <1, (214)
equation
+ @282 (f2) + o = 0, (2.15)

ion applies for every zero tuple (f1,52) of Z(p1,ps2), cf. (2.12), with |p1| < 1, [pa] < 1.
s of the functional equation (2.15) for the conditions (2.10) is the main goal of the

TALYSIS OF THE FUNCTIONAL EQUATION
on we derive some properties concerning the solution of the functional equation (2.15)

(2.10). Zero tuples (f1,52) of the kernel Z(p;,ps) have been analysed in appendix A,
. For every fs and p; given by

—{p2 — 70,1 % (L — 4r1,_17_11) % /(B2 — 621) (P2 — 622)}» (3.1)
-1 ’

o tuple of Z(p1,p2); here the two signa correspond with py = Pi5(5,), 1 = Pi1(p2), <f.
wre the branching points of §; as a function of p,. Lemma A.2 states that for Bol =1
1) lies in |p;| < 1, the other one Pi1(B;) is in |p;| > 1. Note that —1 < 8y < b2z < 1,

i1 Kp <L}, H:={p:|p| <1}\G, (3.2)

each of the functions in (3.1) is regular in H and continuous in the closure 7 of H.
w;(p1,p2),  =0,1,2, cf. (2.11), are polynomials in p; and py, and hence w;(P1,P2),is
H, continuous in fy € H.

and p1 = Pi3(f2), so |Pia(p2)| < 1, cf. (a.8), the functional equation (2.15) reads

P2)) + 620(F2) + o = 0. (3.3)

wj(Pi2(P2),2) and Qy(P2) are regular in P € H, continuous in py € H, cf. (2.10).
t follows from (3.3) that 21(P12(p2)) can be continued analytically out from |f] = 1
nd this continuation is continuous in 7. Because the coefficients in w;(p1,p2) are all
wnd (2.11), and the coefficients in the series expansions of Q,(p), and of 02, (p) are all
. (2.9), and have a sum bounded by one, it follows that (3.3) may be rewritten as: for

2 (B2) /(B2 ~ 821) (P2 — 622) = 0, (3.4)

(P2) convergent power series in $ with real coefficients.



For py € (631,822) the square root in (3.4) is purely imaginary and since for such a ps, ¥1(f2) and
1o (p2) are both real, because they are power series with real coefficients, it follows by continuity from
(3.4) that

$1(p) =0, Pa(p) =0 for pE (Sa1,b0)- (3.5)

From (3.1) it is seen that Py(py) and Py; (p2) are each other’s complex conjugates for py € (821, 622)
and so (3.5) implies that (3.4) also holds for pa € (621,022) with the “+” sign replaced by the “-” sign,
that is we have for py € {691, 622),

@10 (P11(P2)) + @2Q2(P2) + @9 = 0, (3.6)
with here

d’j = w]'(Pll(ﬁ2)7ﬁ2): j=0,12.

Using the same arguments as above it is seen that (3.6) can be continued analytically out from
P2 € (821,622) into H. It follows that the relations (3.5) are equivalent with: for |ps| < 1,

w1 (Pra(p2), p2) % (P12(p2)) + wa(Pia(p2),p2)2(p2) + wo(Pra(p2),p2) =0, | (3.7

w1 (P (P2)7P2)91 (P11(p2)) + w2 (Pr11(p2),p2)a(p2) + wo(P11(p2),p2) = 0. (3.8)

Analogously, we have, cf. remark A.1, for |p;| £ 1.
wi(p1, P (p1))S (p1) + wa(p1, Po1 (p1)) 22 (Pa1(p1)) + wo(p1, P (p1)) = 0, (3.9)

- wi{p1, Paa(p1))Qu1(p1) + wa(p1, Paa(p1))Q2(Pa2(p1)) + wo(p1, Pa2(p1)) = 0. (3.10)

Because w;(p1,p2), 7 = 0,1,2, are polynomials in p; and ps, and Py2{(p) and P;;(p) are regular in
the entire finite p-plane slitted along G, it is seen that all the coeflicients in (3.7) and (3.8) are regular
in this slitted p-plane. From lemma A.2 we have P;;(1) > 1 and since all coefficients in (3.8) are real
for p» = 1 and Q,(p) is a power series in p with nonnegative coefficients it follows that £2;(p;) has an
analytic continuation in |p;| < Py1(1). Analogously, {23(p2) has such a continuation in |ps| < Pp1(1),
cf. (a.11), and Q;(P11(1)), Qa2(P21(1)), are both finite. So the relations (3.7) and (3.8) hold for
|p2| € P21(1), and (3.9) and (3.10) hold for |p;| < Py;1(1), i.e. the domain of validity of (3.7) and (3.8)
has been extended by analytic continuation, similarly for (3.9) and (3.10). Actually, the relations (3.7)
and (3.8) are linear in Q3 (-}, Q2(+), and their coefficients are all regular in the ps-plane slitted along G,
and so by analytic continuation it is seen as above that ;(p) and Q2(p) possess analytic continuations
for |p| > 1, except possibly at those points p where the coeflicients of Q3(p) in (3.7) and Q4 (p) in (3.10)
are zero, at such points Q;(-) and/or Q2(-) may have poles, and these poles may generate via (3.8)
and (3.10) other poles, see section 4. Branching points cannot occur, since Pia(p), Pi1(p), are regular
in the slitted p-plane and the relations (3.7) and (3.8) are linear in Q;(-) and Q3(-). Consequently,
it follows that € (p) and Q2(p) which are regular for |p| < 1, cf. (2.10), are meromorphic functions
for |p| > 1, if their singularities, i.e. their poles, do not have a finite accumulation point, and this
is actually the case, as will be shown, cf. {c.2) of appendix C and (6.5). Note that a function is a
meromorphic function if it is regular in the finite complex plane except for at most a finite number of
singularities in every bounded domain, these singularities being simple or multiple poles.

REMARK 3.1. Because the z,-process is positive recurrent and the state space S is irreducible cf.
remark 2.1, 2y (p) and Q2(p) cannot be polynomials. o

REMARK 3.2. From the derivations above it is readily seen that the set of relations (3.7) and (3.8) is



equivalent with the set (3.9) and (3.10), these sets are obtained from each other by analytic continu-
ation. - O

4. ON THE DETERMINATION OF THE POLES AND RESIDUES.

In the proceeding section it has been shown that ;(p) and Q2 (p) should be meromorphic functions
with poles located in |p| > 1, cf. (2.10). In this section we shall discuss the location of these poles
and derive relations for the residues at these poles.

Because Q;(p) and Q3(p) are meromorphic and the coefficients in (3.7) and (3.8) are regular for
|p| > 1, the principle of permanence, cf.[3], p.106, implies that (3.7) and (3.8) hold for |p| > 1; i.e. for
el 2 1,

w1(Pr2(p), p)2(Pr2(p)) + w2 (Pr2(p), p)Ra(p) + wo (Pra(p),p) = 0, (4.1)

w1(Pi1(p), p)Q1(Pu1(p)) + w2 (Pr1(p), p)2a(p) + wo (Pr1(p),p) =0. (4.2)
For the present we consider the case, cf. (2.6)iv,

w11 +wpy > 0, (4.3)

the discussion of the other case of (2.6)iv, is similar. Hence lemma B.l.ii guarantees the existence of
a zero o) such that

we(Pra(eM),eM) =0, |oM]> 1. : (4.4)
This zero o(*) generates recursively the two sequences, cf. remarks A.2 and A3,

{o,i=1,2,...} and {r®,i=1,2,...}, (4.5)
with

= Pi(c) and o) = Py (7).
From (a.8),(a.11) and remarks A.2 and A.3 , it is seen that

1<|e®M < ]rD < |6@] < ... < o] < [7H)] < o6HD| < | (4.6)

ol = P (r()y), 7O = Ppo(aG+D),

o® and ) gre all positive or are all negative.
Put |

A3(p) 1= 01 (Pra(p),p) 2 (Piz () + wo(Pia (p), ), | (27)
and suppose for the present (cf. remarks 4.1 and 6.5 below) that

0 # |42(c™)] < 0. (4.8)
It then follows from (4.1) and (4.8) since o(!) is a simply zero, cf. (4.4) and lemma B.L.ii, that

p =0 is a simple pole of Uy (p). (4.9)
Consequently, if

wi(Pi(p),p) #0 for p=oV), (4.10)



then (4.2) implies that

p =71 = Py; (6V) is a simple pole of Qi (p). (4.11)
If, however '

w1 (Py1 (e, 0M)) = wy (+O), P (v (1)) = 0, (4.12)

then p = 7(1) is a pole with multiplicity two of Q;(p).
Suppose that (4.10) holds and that

w1 (Pr2(p),p) #0 for p=o(, (4.13)
then, cf. (4.1),

Q02(p) has a simple pole at p = o, (4.14)
since

wa(Pya(c(),0(®) £ 0. (4.15)

This relation (4.15) holds, because (4.3) and lemma B.1.ii imply that wy(Py2(p),p) has only one zero
in |p| > 1 if wi; = 0, whereas if w3 > 0 it has two such zeros but with different signs and this
contradicts (4.6).

If
w1 (Pra(0™),0) =0, (4.16)
then
Q2(p) has no pole at p = o(?), (4.17)

It is seen that if ©25(p) has a pole at o) then starting from (4.11) with p = o(?) instead of p = o(*)
analogous conclusions follow. So by starting with ¢{1) it is seen that o{) may generate pole sequences
of Q1(p) and Q2(p), however, we have to consider in more detail (4.8), (4.10) and (4.13). See the
following remark.

REMARK 4.1. As exposed in remark A.3 we may complete the sequences (4.5) by 7(9, ¢(®, 7(-1)|
o1, ..., so that '

[r-M < 1< o)) <L < JrD] < o] < |70 < oW} < |7V < .., (4.18)

with n finite, supposing that a 7-element is the first one which becomes in absolute value less than
one, if it is a o-<lement only minor changes are needed in the following considerations. g
If n = 0 so that

Q1 (Pra(0™)) = 2 (+®),  |79] <1,

then, cf. (2.10), | (7(M)] < 1, i.e. 42(c(V)) is finite, and so Q2(p2) has a simple pole at py = o(¥) if
Az (o)) # 0; otherwise, if A2(c) =0, (1) does not generate a pole of Q;(p).

If » > 1 then consider (4.1) for p = 6, ..., 0(~?+1), Whenever for all those p the coefficients in
(4.1)

w1(Pr2(p),p) # 0, (4.19)
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then Q1 (Pi2(p2)) and Q3(p2) have no poles for those p and so A3(c(!)) is finite; note that wy (Pi2(p),p) #
0 for those p, cf. the proof of (4.15).
Further if

wi(P2(p),p) #0 forall p=olG+tD), i=1,2..., (4.20)

then, since wy(P12(p),p) # 0 for p = o+, = 1,2,..., cf. (4.15), it follows from (4.1) that if

A (0{1)) = 0 then all ©;(Pi2(p2)) and all ,(ps) are finite for p=0oUt) i=12 .. and so o{V) does

not generate pole sequences for Q;(p) and Q,(p). Concerning A3(c(1) # 0. see, remark 6.5 below.
The analysis in the following sections will be based on

ASSUMPTION 4.1. For i = —n+1,-n+2,...,0,1,2,..., cf. (4.5) and (4.18), it is supposed that
i wi(r®, Py (r®)) = wi (P (0 ®),6®) #£ 0, (4.21)
i, wi(r®W, Py (v0)) = wy (Prs (o+D), o(+1)) £ 0.

REMARK 4.2. It is readily seen that (4.21)i excludes the case that poles with multiplicitly larger than
one do occur, cf. (4.12), whereas (4.21)ii disgards the case with a finite number of poles generated by
o(1), cf. (4.16). From the definition of the o® and 7@ it is readily seen that in general assumption
4.1 will apply. 0

From the discussion above it follows for the case (4.3) if A(oy) # 0, cf. (4.7) and remark 4.1, that

(Qa(p) has a simple pole at p=o), cf (4.9),
Q]_(p) 1 R 1) 1 p’—:T(l)) cf. (411)1
QZ(?) 1) Rl ¥ 33 1 P= 0'(2)1 cf. (414),

and, generally,

Q2(p) has a simple pole at p=ol), i=1,2,...,

; . 4.22
Ql(p) 19 X ) ) 9y P=T(l); 1=1,2,...; ( )
assumption 4.1 excludes the case of poles with multiplicity larger than one.
Next we start with the determination of the residues at the various poles.
Put, fori=1,2,...,
Ry (W) = lim(_)(p - 'r(i))Ql (p), (4.23)
p—rl

Rg(a(i)) 1= lirr}.)(p — a(i))Qg(p).
p—otll

It follows from (4.1) with As(o(!)) # 0, note that |4, (e™M)] < o0, cf. remark 4.1, that since o is a
simple pole of Qy(p),

d
Ry(e™) = _Az(a(l))[.&;m (Pr2(p), )], 2 o) (4.24)
Further from (4.2),

_ _w2(Pu(p),p) wo (P11 (p), p)
(Pulp) = —wl(Pu(P),P)Q (¢) - w1 (P11 (p),p)’

and so
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—ealfulehe) 4 o Ry (oD '
wl(Pll(P),p)[dppn(p)]}F”"RZ( ). (4.25)

‘ollows from (4.1),

L n(Palehe) dp "
w2(P12(P),P)[dpP12(p)] Y pmotn Ba (1Y), (4.26)

we for2=1,2,...,

wa(Pu(p),p) d .
REceny ol 4.27
{“’1(P11(P),p)[dp 11(P)]}p=oto Ra(0) @)
wi1{Pia(p),p), d » o

= Palo),p) dp” —otrny Ba (V).

{“"2(P12(P);P)[dp 12(p)] }p—— ey R ()
3ecause Pia(p) and Py;(p) are for |p| > 1 regular functions of p it is seen from (4.5)
ives in (4.26) and (4.27) are all nonzero and finite. !

OF MEROMORPHIC FUNCTIONS

| > 1 be a zero of

p), : (5.1)
uch a zero exists, cf. lemma B.1. Denote by S3(c) the sequence

0-(1)’7-(1)) 0-(2)17-(2)1 . -}a (52)

0 = Py (0®), o0+ =Py (r®), i=1,2,.... (5.3)

th 7, || > 1, a zero of

), (5.4)
quence

r() g 2 @) 3, (5.5)
) o= Py (¢, D) =Py (@), i=1,2,.... (5.8)

2(0) generates the meromorphic functions

o~ Ra.(c™) p
2o 5.7
2 50 0! (5.7
o Bio(mD) P o,
-; p—r(i) [1'(1)] ! (58)

D) and Ri(r() are defined as Ry(o ) and Ry (M) in (4.27), the index o has been




in the notation to indicate that the seriesin (5.7) and (5.8) are generated by the sequence

2); (5.9)

1o are the smallest nonnegative integers for which series

(¢M) Ry, (W)
mao+1 and Z T(l) mis +1’ Tesp., (5'10)
lutely.

(c-2), (c.3) and the existence of the limits in (c.11) and (c.12) it is readily seen that my,
ilways well defined for the sequence Sz (o), for details see remark 6.1 below.
7, the sequence S)(7), cf. (5.5), generates the meromorphic functions

_ i Bir(O) 2y, (5.11)

P~ 7-(‘) T(l)

i=1

- Z R2r(a( )) ]m,.,., (5-12)

= p- 0-(1) 0-(1)

e the 7 and o®) are different from those in (5.7), (5.8).

ms in (5.7), (5.8), (5.11) and (5.12) are well defined in the sense that they converge
. absolutely in every finite circle |p| < R, with R > 1, whenever the terms with poles
le with radius R are deleted from the sum, cf. [2], p. 309, [6], p. 219.

: C it is shown, cf. (c.18), that

Aoy My, = My, (5.13)
delete the indices “2” and “1” and hence define

20 = Mg, My i=ma, = my,. (5.14)
OF THE FUNCTIONAL EQUATION

on we shall construct the solution of the functional equation (2.15), i.e. we shall show
Q5(:) are to be determined.

1 B.1 it is seen that wy(Pi2(p),p) has at most two zeros, say, o3; and o33 in ol > 1,
wi(p, P22(p)) has at most two zeros, say, 711 and 7ig, in [p| > 1. Assumption (2. 6)1v
it at least one of these possible four zeros exists. In the subsequent analysis we shall
:se four zeros, if, however, a zero does not exist then all symbols referring to that
ro should be deleted from the text, cf. remark (6.4) below.

esent it will be assumed that

£0, Az(092) #0 and Ai(m11) # 0, A1(112) # 0, (6.1)
:mark 4.1, with

w1(p, P22(p))Q2(Pa2(p)) ';'wo(P, Py (p)). (6.2)

For the relevant alterations to be made in the subsequent analysis if (6.1) does not
tk 6.5, below. O
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Each of the zeros 021 and 03y generates a sequence of the type as defined in (5.2), and similarly do
the zeros 111 and Ty3, cf. (5.5). Denote these sequences by

Sa(021), S2(022) and Si(r11), Sa(m2); (6.3)

and (4.21) is assumed to apply for the elements of S3(03;) and those of S3(o22) and the analogous
assumption is made for the elements of S1(711), as well as for those of S1(712).

For each of these four sequences we construct a pair of meromorphic functions, cf. (5.7) and (5.8)
for 031 and 093, and (5.11) and (5.12) for 731 and 712; note that here (6.1) is used, cf. remark 4.1.
These pairs of meromorphic functions are denoted by

{Mz(ploa1), Mi(ploa)}, {Ma(ploaz), Mi(plo2e)}, (6.4)
{Mi(plm11), Ma(plm11)}, {Mi(plriz), Ma(p|mi2)}.

Put
Q2(p) := Qa2(p) + M2(p), (6.5)

Q1(p) := Qi (p) + Mi(p),

where

i My(p) := Ma(ploa1) + Ma(ploaz) + Ma(plmi1) + Ma(plmi2), (6.6)
M; (p) = Mi(ploa1) + Mi(ploae) + Mi(plri1) + Ma(plmi2);

ii. Qa(p) and Q1(p) are both polynomials in p of degree ny and n; respectively, these degrees will be
specified below.

Substitution of (6.5) into the functional equations (4.1) and (4.2) yields: for |p| > 1,

w1(P1a(p),p)Q1(Pi2(p)) + w2 (Pi2(p), p)Q2(p) + wo(Pr2(p), p) = I12(p), (6.7)
w1(P11(p),p)@1(P11(p)) + w2 (Pr1(p), p)Q2(p) + wo(Pr1(p), p) = 11 (p),

where
—I13(p) 1= w1(Pr2(p),p) M1(Pi2(p)) + wa(Pr2(p),p) Ma(p), (6.8)

—I1(p) = w1(Pr1(p), p) M1(Pr1(p)) + w2(Pr1(p), p) M2(p).
REMARK 6.2. Consider one of the sequences in (6.3), say S2(021) and put
T 1= P12(U§]i)) with ag) =091, (6.9)

T; :='r.g) o; :=agl), 1=1,2,....

It then follows from (6.7) for i =1,2,...,
w1(7i-1,04) Q1 (Ti—1) + wa(7i-1,01)Qa(0:) + wo(m—1,0:) = I12(03), (6.10)

w1 (13,0:) Q1 (1) + wa (73, 0:)Qa(0:) + wo (i, 03) = I11 (03),



ients a set of linear (recursive) equations for the elements of the sequences
h, t=0,1,...} and {Q(0:), 1=1,2,...}. (6.11)

at these sequences are uniquely determined when I13(0;), I1; (0;) and Q» (1) are known.

O
),
3 for hy1 >0,
2, =0 ho1+hio >0, (6.12)

L, =0, =0
3 for wy >0,
2, =0 wip+we >0,

1, =0, =0;

eadily’ seen that the following limits exist, cf. (2.4), (2.6), (2.11) and lemma A.3, and are

Pliﬂgo P wy(Pr2(p),p), o1 := PILH;OP_S"WO(PH(P),P), : (6.13)
A P (Pia(p)yp), 6101 i= lim p™" wi(Pua(p), p),
pli_)ngop_s’wl (Pia(p),p), G211 := Plilgop_”wz(Pu(P),P),

1es are finite and nonzero, except possibly for s; = 1 and s, = 1 where they may be zero
es, note that (2.6)iv excludes s; = s5 = 1.

onsider the sequence S3(0;) and with the abbreviated notation introduced in (6.9) put,
(5.14),

Rlo‘n(')' RZ() = R2¢‘7‘21 (): . (6-14)

C312
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I8 (ploa1) i=  wa(Pra(p),p) 222 [2]™, for i=1,

p—oy Loy

Ry(mi_1 P; y
= on(Po(p),p) gk (2

wa(Pra(p), p) 2LZL [ 2] for i=2,3,...; (6.15)

p—oi oy

~I(lon) == wi1(Pulp),p) gl [Buledm

wz(Pn(p),P)%—_!%z[% ™ for 1=1,2,....
Further we introduce
~Ip(plon) == =) 18 (plom) =
=1

= w1 (Pra(p), p) M1 (P12(p)|o21) + w2(Pr2(p), p) M2(Pr2(p)lo21),

(6.16)
~Iu(plon ==~y _I{) (plows) =
i=1
= w1(Pu(p), p)M1(Pr1(p)lo21) + wa(Pr1(p), p) Ma(Pr1(p)lo21)-
The form (6.15) may be rewritten as:
i =1 wi(Pia(p),p) Ri(ri-1) Pra(p) p—o;

I( ) oor) = 1 ’ m m+tay

iz (ploar) p—o; po i) [ p Pia(p) - P
i - (6.17)

B N

~1  wi(Pu(p),p) Rl(Ti)[Pu(P)m P=0i min

I(i) o —
11 (Pi 21) p—0; pot T P Pi(p) — =

ii.

G R

g m
p™ 0;

Ry(0:) wa(Pia(p),P) e,
o (p—o1)p™

i I3 (ploar) = —

Consider the term between parantheses in the first relation of (6.17). Because Pi3(p) is regular for
|p] > 1 this term is here also regular, note 7;_; = Pia(0;). Consider the series expansion of this term
in a neighbourhood of o;, note |o;| > 1. The second relation of (4.27) has actually been obtained
from (4.1) by multiplying (4.1) by p — o; and then letting p — o;. Hence the second relation of (4.27)
implies that this series expansion should contain the factor p — 0;, i.e. p = 0; is a zero of the term
inside parantheses of (6.17)i. Hence, by using assumption 4.1, lemma A.3 and (6.13), it follows that

the following limit exists and

0 < |lim p~™ I (plogr)| < 00, =2,3,..., (6.18)
p—00

with, cf. (6.14),
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Mgy, ~=max(m+s; —1,m+s; —1). . (6.19)
Similarly, from (6.17)ii and iii,

0<|lim p~rn I (plom)| <00, i=1,2,..., (6.20)
0 <| lim P~ DI (plom)| < oo.

Note that the existence of the zero 09 implies that sy > 2, ¢f. (6.13) and lemma B.1.
It further follows that the functions defined in (6.15) are regular for all finite p with |p| > 1, so that
the definition of m, cf. (6.14), implies for every finite R > 1, cf. (6.16),

N
p o Iip(plog) = —p~"om I}EHOOZI&)(PIUZIL o] < R, (6.21)

=1

where the sum in (6.21) converges absolutely and uniformly in p for 1 < [p| < R, to a finite limit
for N — oo, which is uniformly bounded for |p] < R, cf. the discussion in appendix C below (c.13).
Analogously for I11(p|og1). Consequently,

I15(p|oa1) has. a pole of order n,,, at infinitely (p = 00), similarly for I (p|oa1). (6.22)
LEMMA 6.1. Iia(plo2:1) and I 1(ploa1) are polynomials of degree n,, .

PrROOF. From the conclusions concerning the sum in (6.21) and the regularity of its terms it is seen
that Its(ploa1) is regular for finite p and hence from (6.22) and Liouville’s theorem it follows that
I3(p|oay) is a polynomial of degree n,,, analogously for I (p|o2;). 0

A similar analysis as that leading to (6.22) for the sequence Sy(0321) leads to analogous results for
the other sequences in (6.3). Put

i 7y 1= max(my + 51 — 1,m, + 59 ~ 1|u € (021,022,711, 112)), (6.23)

i, n(s1,s2) :=max(No,,, oy s Mryy s Bras 50)s

the index u being that one for which the max occurs in i. Further, cf. (6.6), (6.12), (6.16), (6.22),

112 := lim p~™0%) [0 (Pry(p), p) My (Pr2(p)) + wa(Pia (P)gP)Mz(P) + wo (Pr12(p), p)], (6.24)

p—o0o

1 := lim p~™e002)[wy (Py1 (p), p) M1 (Pr1(p)) + wa (Pi1(p), p) M2 (p) + wo(Pi1(p), p)), (6.25)

p—roo

note that these limits are finite and that (6.23) implies
n(sy,s2) >5; 21, j=1,2,3. (6.26)

Hence we obtain from the functional equations (6.7) by using (6.13), (6.24), (6.25) and (6.26); for

|| — oo,
61.12Q1 (012p)p°* + 62.12Q2(p)p®? = q12p™(*1:2) 4 O(p™(e1:22)-1), (6.27)

61.11Q1(a11p)p®* + 62.12Q2(p)p®? = v11p™(*1122) 4 O(p™(s1:52)~1),

Note that (2.6)iv excludes the case s; = 53 = 1, cf. (6.12).
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From (6.26) and (6.27) it follows that the degrees ny and n; of the polynomials Q2(p) and Q1 (p),
cf. (6.6)ii, are determined by

ny = n(s1,52) — 52, ny =n(sy,s5)— s1. ’ (6.28)

REMARK 6.3. In remark C.2 it has been pointed out that if in (c.21) m is replaced by m + h,
h=1,2,m..., then the convergence is maintained; and so in the definitions (5.7) and (5.8) we may
also take as exponents m, + kh with k a nonnegative integer. In doing so it is readily seen that the
degrees of @y and @; then become larger. Such a change in exponents in (5.7) and (5.8) implies that
in the representation (6.5) a polynomial is substracted from M3(p) and added to Qz(p). |

The relations (5.7), (5.8), (5.11) together with (6.5) and (6.6) characterise the structure of the
functions Q4 (p) and Q4 (p), they also determine these functions uniquely, as it will be shown below.

Because the degrees of the polynomials Q»(-) and @Q;(-) have been determined we need for the
explicit determination of the coefficients of these polynomials in total n; 4+ ng + 2 linear equations.
In remark 6.2 it has been shown, by using the sequence Sa(o2;) which generates the pole sets of the
meromorphic functions Ma(plo21), M1(p|oa1), that the values of the polynomial Q;(p) at the 7-points
and those of @2(p) at the o-points of the sequence Sy(031) can be expressed as linear combinations
of I12{o) and I1; (o) at the o-points of Sz(021). In total we need only ny -+ ny + 2 of those relations.
So @2(-) and @1(-) are known, whenever I;3(p) and I1;(p) are known, see remark 6.5 below for their
uniqueness. To show that these functions are completely determined note that a pair of meromorphic
functions {My(ploa1), Mi(ploa1)}, cf. (5.7), (5.8), is determined by S3(o2;) apart from a factor,
because all residues Ry,,, () of Ma(p|oa1) and those of My(p|oa1) at their poles are linear functions
of Ry, (021 ) with aél) = 091, cf. (4.24) and (4.27); actually they are all proportional to Rzan(agi)).
By using the expression (4.24) for the residue Ry,,, (ag)) it is seen that M, (plog;) and My(p|os) are
completely determined apart from a factor which is a linear function of Ql(Pm(az} )), supposing that
As (US)) # 0, cf. remark 4.1 and remark 6.5 below. If Az(a(l)) = 0 then S3(0og1) does not generate a

pole set. Similarly, for the other pairs of meromorphic functions in (6.4), i.e. it remains to determine
Qu(p) for p = Pra(ofy’) and p = Pia(o;) | 6.29
1\p) 1or p 12109;,") and p 12\%35 ), (6.29)

Q(p) ,, p=Pou(ry)) and p= Pu(rH).

Hence by using (6.7) and (6.8) four linear equations are obtained for the unknowns

(P(0l)), (Pia(0$), D(Pu(r(), Q(Pea(3), (6.30)

since as shown above the coefficients in the polynomials Q2(p) and Q1(p) depend linearly on the
unknowns in (6.30).

REMARK 6.4. It has been mentioned already in the beginning of the present section that if wy (P2 (p), p)
and wy(p, Pa2(p)) do not have in total four zeros in |p| > 1 but less, then only the sequences generated
by the existing zeros do occur, as do the functions derived from these sequences. It is then readily
seen that for the number of remaining unknows we are left with a same number of linear equations,
whenever the corresponding terms in {6.1) are nonzero, cf. remark 6.5 below. O

For the ultimate determination of Q(p1,p2), cf. (2.7) and (2.8), it remains to determine £2(0,0)
since 0 (p) and s(p) have been constructed above. By taking ps = 1 in (2.8), dividing the resulting
expression by p; — 1, note that all coefficients in (2.8) are zero for p; = py = 1, we obtain for p; — 1
a linear relation for (0,0) because the norming condition requires ®(1,1) = 1; ®(0,0) so calculated
is unique and positive, see the following remark. O
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REMARK 6.5. Apart from assumption 4.1, which has been introduced for technical reasons, cf. remark
4.2, our analysis is essentially based on assumption 2.1. The conditions (2.6)i, iii guarantee that the z,-
process has a unique stationary distribution and so Q(py,p2) should be regular for |p;| < 1, continuous
for |p1| < 1, for every fixed p; with |ps| < 1; and, similarly, with p; and p, interchanged. It is seen that
Q1 (p) and Qa(p) as defined in (6.5) satisfy the conditions (2.10), independently of the values of the
unknowns in (6.30). The relations (4.1) and (4.2), or equivalently (6.5), stem from the requirement
that zeros of the kernel Z(p1,p2) |p1| < 1, |p2] £ 1, should be zeros of the righthand side of (2.8),
because of the boundedness of ®(p1,p2) in p1 <1, |ps] < 1. From these relations and the regularity
properties of Q;(p) and Q,(p) a set of linear equations for the coefficients in the polynomials Q;(p)
and Q2(p) and the unknowns in (6.30) has been obtained, the number of unknowns and that of the
equations being equal, independently of the number of zeros of wa(Pi2(p),p) and of wi(p, Paa(p)) in
[p| > 1, cf. remark 6.4, but there is at least one such a zero, because of (2.6)iv, see lemma B.1. Because
there is a unique Q(p1,p2) satisfying (2.8) and the mentioned regularity conditions; the set of linear
equations, just mentioned, should have a unique solution and the same holds for the determination
of ®(0,0), cf. remark 6.4. This uniqueness of ((p;,ps) leads also to the conclusion that at least one
of the inequalities in (6.1) should apply for the zeros of wy(Pi2(p),p) and of wy (p, Paz(p)) in |p| > 1.
If it turns out that for such a zero the relevant inequality in (6.1) does not hold then this zero does
not generate a pole set S.(-), cf. (6.3), and the inherent functions My(p|-), M1(p|-) are identically
zero. Actually the conditions in (6.1) can be only verified if the relevant unknowns in (6.30) have
been solved from the linear equations, on the other hand it is evident from the analysis above that
only incidentally one or more of the conditions‘in (6.1) are not satisfied. O

ACKNOWLEDGEMENT. The author is grateful to Mr. S.C. Borst for his very useful comments.

APPENDIX A. ON THE ZEROS OF THE KERNEL

For the analysis of the functional equation (2.15) we need several properties of the zero tuples of
the kernel (2.12), these properties will be derived in this appendix.

From (2.4), (2.5) and (2.12) we have

Z(p1,p2) = ¢3(p1,p2) — p1p2
(a.1)

=r_y11p} + T—1,0p2 +7-1,-1 + 70,171 + T1,-—1P§ — PiPa.

Generally, a zero tuple of Z(p;,ps) will be indicated by (51,52). It is readily verified that, cf. also
(2.:6),

1-—-1/3

Pr=1=p=1 or fp=1+—""2>0, (a.2)
-1,1
1-—

pr=1=p =1 or p=1+-—""F 5o
1,-1

Denote by D3(p2) the discriminant of the right-hand side of (a.1), considered as a quadratic in py,

D3(p2) = (1—4ri,1r-1,1)p5 — 2pa(re,~1 + 2r1,_17_10) — dry 17,1 78
(a.3)
=(1- 47'1,~—1"—1,1)(P2 = 621)(p2 — b22),
with

521,622 the two zeros of D3(p2), 1621! S !522]. (3.4)
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LemMma A.1.
—1 < by < g < 1. (a.S)

PROOF. From (a.3) we have
1 1 2 2
Ds(;) = ;2-{(1 —r0,-19)° —4dri,—1(r—1,1 +r-109 +7-1,-19")}. (a.6)

Obviously, (a.2) implies that
D3(1) > 0. (a.7)

It is seen that g2 D;(1/q) decreases on [0,1], and
2 1 2. (L
q Da(*;) >q Ds(;) for ¢q€[0,1],

so D3(p2) has no zero for p; ' = ¢ € [—-1,1]. Because D3(rp,~1) < 0 it follows, cf. (a.7), that D3(‘-11')
has two real zeros and so (a.5) follows. o

LEMMA A.2. The two zeros Py1(p2), Pia(p2) of Z{p1,p2) may be defined so that
|P12(P)| < lpl < IPllp] for |P| 2 1) r 74 17 (3'8)

1-—
Pp(l) =1< Pyy(1) =1+ —£2,
_ T1,—1
and Pi1(p), Pia(p) are both regular functions of p for |p] > 1 and can be continued analytically out
from |p| = Linto {p: |p| < 1,p & (621,622)}-

PROOF. Put p; = zpy then Z(p1,p2) = 0 implies, cf. (a.1),

z= E{zgapgﬁnrz}. (a.9)
From (2.4) it follows that £ + ;3 < 2, and (2.6)i, ii, imply

Pr{€; +m3 =2} =r_11+7r,1 <L
Hence for |pa] > 1, p2 #1, |z} =1,

[B{z8sp8s+ M2} < 1. (a.10)

Because both sides of (a.9) are regular functions of z for |z| < 1, Rouché’s theorem, cf. [16], p. 155,
shows that (a.9) has a unique zero in |z| < 1 for |ps| > 1, p» # 1. For p; = 1, (a.9) has one root in
lz] €1, viz. z =1, cf. (a.2). From (a.1) it is seen that (a.9) is a quadratic equation in 2. Since for
|pa] > 1 it has exactly one root in |z| < 1, the other root is in |z| > 1. Take Py3(pz) for |pz| > 1 as
the zero of Z(p;,ps) which corresponds to the zero in |z| < 1 and Py1(p2) as the zero corresponding
to |z| > 1, then the relation (a.8) follow. Lemma A.l implies that the branching points 621 and 622
of Py;(p2) and Pjp(py) are located in (—1,1), and so the zero Pi;(p2) and Pi2(p2) are both regular in
[pa] > 1. Since 85, and 8,2 are their only branching points, (a.5) implies that they can be continued

analytically into {p : |p| < 1,p & (621,822)}.
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REMARK A.l. The analogous lemma for Z(p;,ps) can be formulated for its zeros as a function of py
with |p1| > 1. So for |p1] > 1 we designate these zeros by Py;(p1) and Pyy(p;) and such that

1Por(p1)| > |p1| > [Po2(p1)l, [po] > 1. o (a.11)
REMARK A.2. Take |p\”] > 1 and put

p) = Paef"), P =Pu(lY), #P=Pul?), P = Pu(e),
then from (a.8) and (a.11),

Pgl) = P22(P§1)), p§” = P12(sz))-

These mappings are illustrated in the figure below

Py, (Pgl)) Py (p§ )) Py (sz))
® [ ] [ ®
pg) \_/ pgl) \(\_}/pgz) vpgz) \v\_
Pyy (Pgl)) Py (Pg )) Py, (sz))

for real pgl) > 1. From lemma A.2 and remark A.1l it follows that

1< P < P < o2 < 162 < ... 0 (a.12)

LeMMA A.3. The following limits exist and

. 1 1
ajp = lim Piy(pe)/pr = —{1-(1 - 41'1,_11'_1,1);} >0, (2.13)
Pz —300 21‘1 -1

. 1 L
Qqy == phm Pu(pz)/pz = 5;——1{1 + (1 - 47'1,—1’"-—1,1);} >0,
300 -

. ‘ 1 1
o9y 1= lim P = 14 (1—dry i
21 Pll 21(P1)/P1 27‘—1,1 {1 (1 4"'1. 17 1,1)2} >0,

. 1 L
Qg 1= p}gllwpzz(p1)/p1 = '2';;‘_17{1 ~(1—4ry,1r_11)7} > 0.

PROOF. From {a.1) we have

P = Y {2 —ro,1 £ (L—4r_y1m1,1)3 /(B2 — 621) (P2 — b22)},

’

and from this relation together with (2.6)ii, (a.8) and (a.11) the relations (a.13) follow. |

REMARK A.3. It is readily verified by using (2.6)ii that in the (p;, ps)-plane the curve Z (p1,p2) =0,
p1 and pp both real, represents a hyperbola. Its center is in the first quadrant and its asymptotic
directions are given by p; = a11p; and p; = aaps, cf. (a.13). From lemma A.1 it is seen that the two
branches of the hyperbola are located inside the acute angles between the asymptotes, note ;; > 0,
aya > 0.
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a.12) corresponds a zero

(i), 1P < 1pf, (a.14)
rom lemma A.2. If ngo)l > 1 then we can again apply this lemma and define
@), 15571 < 12",

hen again using the lemma we may define

Pia(py)),

> we may continue the éequence in (a.12) to the left, i.e. by elements which decrease in
e. From the location of the hyperbola just described and by using (a.5) it is seen that

>n of the sequence in (a.12) stops after a finite number of steps, because one of the pgi),

»—=2,..., will be in absolute value less than or equal to one.

noted that the iterated zeros of Z{p;,ps) in remark A.2 are all real if pgl) is real and they

e same branch of the hyperbola Z(p;,pz) = 0. Since of these branches one is located in
lrant, the other in the third quadrant, cf. (a.5), it is seen that in a sequence of iterated
sros all have the same sign and do not have a finite point of accumulation. 0

. ON THE ZEROS OF wa(P12(p),p)

:ailed analysis of the relations {4.1) and (4.2) we need information concerning the zeros
coefficients. Put, cf. (2.11),

w2 (Pi2(p),p) = p — ¢2(Pr2(p), p), (b.1)
.0,
) = _15 - E{{M}&ﬁﬁﬂrﬂ, (b.2)

estigation of the number of zeros of fa(p) in |p| < 1 and |p| > 1 we have to distinguish

1 > 0.
om (2.2) and (2.4) that
~3<0 and Pr{{,+mn,=3}=wn >0. 7 (b.3)
1,
1 P -
R (o4

p) is a regular function of p for [p| > 1 and |Pia(p)/p| £ 1 for |p| > 1, cf. lemma A.2, it
or [t| <1, |p| > 1, cf. (b.3),

;(_?;)]Ezpﬁﬁm—?'}] <1,

plying Rouché’s theorem, cf. [15], it is seen that fa(f,p) has for |f| < 1 two zeros in



zeros are obviously continuous functions of £ and both have a limit for £ — 1. Denote
ralues by, say, os; and o3y, then

lo22] > 1. ‘ (b.5)
! lemma A.3 it is readily verified that
(0)/p1EpE ) = Blafi (6 + m = 3)} > 0; | (b.6)

he expectation in (b.4) is equal to one for p = 1 it is easily seen that the zeros of (b.4)
oth real for real ¢ with |t| < 1. Hence, 021 and o9, are then both real; one, say, 021, is
sher is positive, so

099 Z 1. (b7)

: 1 is a zero of fa(p). To investigate whether o9 > 1 or 092 = 1 we consider the
1 respect to p~! of both terms in the right-hand side of (b.2). So

d
f“_l)]£°u3"’ﬂ’}!u=1 =3~ #251312 (P)lp=1. (b.8)
! Pi5(p) we have

E{[Pi2(p)]ép"s},

hat, cf. (2.6)i,

1- V3
=1 = = ) b.9
' 1—ps (b.9)
)i,
WY =2 (v - 1= a2 > 2 (b.10)
— K3

ing in (b.2) p by ™! it is easily seen that at u = 1 the slope of u? is less than that of
33}, and hence, if wy; > 0, then f2(p) has in |p| > 1 three zeros, viz. one at p, = 1
1,ie 091 < —~1, 099 > 1.

f p1 from w(p1,p) = 0 and w3(p1,p) = 0 leads to an algebraic equation of the sixth
6)iii) and so this equation has six zeros. It has been shown above that exactly three
‘e located in |p| < 1, one at p = 1, the other two in |p| > 1, and as it is readily seen
| > 1 all have multiplicity one. Hence of the six zeros three are located in lp] < 1.

=0, wyig +wy; > 0.

: have

1 _gPe®e, ¢in, : |

; Bl > [SaptatTa=2}, (b.11)
d (2.4),

wip +wo1 >0 = £,+1,-2<0, Pr{f, +n, =2} =wy +we > 0. (b.12)
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mpletely analogous with that of case i above shows that fo(p) has exactly two zeros in
p = 1, the other is positive both have multiplicity one. For the present case elimination
P1,P) =0, wa(p1,p) = 0, yields an algebraic equation of the fourth degree, and so f2(p)
0 zeros in |p| < 1. .

consider

ny =wyp = wey =0, wy,_1 >0, wp,_1 >0.

we have
P,
=1 E{{————-l;(p) ]Enpgz'*'na_l}, (b13)
and (2.4),
10 = 0,1111'__1 > O,U)o,_1 >0=> 62 + 1y < 1,PI‘{£2 + Ny = 1} =wy,-1 > 0. (b.14)

shown for the present case that fo(p) has in |p| > 1 exactly one zero, viz. p = 1, its
one. Because now fa(p) = 0 is equivalent with an algebraic equation of the third degree,
two zeros in |p| < 1.

3 above leads to the following lemma, cf. also Adan [1], p. 48.

The function wa (Py2(p),p) has at p = 1 a zero with multiplicity one (note (2.6)i) and:
t has three zeros in |p| < 1 and two zeros in |p| > 1, p # 1, one is negative, the other is

wip +wer > 0, it has one zero in |p| > 1, p # 1, which is positive and has multiplicity
| < 1 4t has two zeros;
10 =wer =0, wy,—y >0, wo,_y > 0 it has no zeros in |p| > 1, p # 1, and two zeros in

p2| > 1 is a zero of wy(Pi3(p),p) then wy(Py1(pa),p2) # 0.

statements i, ii, iii have been proved above. The fourth statement follows from (2.4),
ma A.2, |

For the function w;(p, Pa2(p)) the lemma analogous with lemma B.1 may be proved,
. and proof are similar, so they are omitted. 0

AsyMpTOTICS OF Ry (7(9), R3(c)) FOR i — o0

»n we derive the asymptotic behaviour for i — oo of the residues R; (7)) and Ry(c(?),

'h the asymptotic behaviour of oY and 7! for i — oo, cf. (4.5). From (2.6)ii it is seen
inction of pp, with @a(p1,p2) — p1p2 = 0, represents a hyperbola, cf. also remark A.3,
ic directions given by, cf. (a.13),

2 and  p1 = oape; (c.1)
1.5), (2.8) and (a.11) it is readily seen that

=00, lim |[7{¥] =00, (c.2)

ences {0(),i=1,2,...} and {7 =1,2,...}, do not have a finite accumulation point.
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From lemma A.3 and (4.5) it follows that
() )
fm o =en >, m oy = a1 <1,
from which it follows readily that
(i+1) (i+1)
lim d = I lim z > 1. (c.4)
isco oli) 19 100 'r(“)
Next we consider _
Wy (P (619),0)  wy(r®,0() (c5)
w1 (Pr1(e),0() wl(f(i) o) )
wipy +wip = 5o + w1,-1 5 + wor B 4 wo, 155
hupi+hor = g+ horig- Hho +Hhoesls | g =0
gy = ol
It follows from (2.6)iv, v, (c.2) and (c.5) that: for ¢ — oo,
wg(T(i),O‘(i)) 1 w1
wy (1), o) = o b Lol (*))) for wi >0, k11 >0,
1 1 1
= TP kg, —{ww +wor—— }(1 +0( (,))) yy wir =0, k11 >0,
(c.6)
= 0wy {hoy + hyoans } (1 + O( (‘))) vy w11 >0, ki =0
_ Wip + o1 oy
o1 O(m)) ’9 w1 = 0, hu = 0.

" hoy+ hgan

Similarly, we obtain for ¢ — oo
o (r6-,009)
wy; >0, b1y >0,

w1 (Pafo®), o)
wp(Pr2(0(2)),0) wy(r (-1, 0(9)
= 0!12-’2-1-(1 + O %‘.) )] for
= Dby {wsp +woy ;%2‘}*1(1 +0(=7)) o wu=0,hu>0, (c7)
= gl +hoeu}(1+0(-) 4y win >0, =0,
Bmod L wee

For p1,p; satisfying Z(p1,p;) =0, i.e. cf. (2.12),
P1p2 + 71,2103 +r_10p2 +7o,—1p1 + 71,1 =0

2
T—1,1P2 —

we have
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dpy _ _pil-2rap/p—r-w/m (c8)

dps  p2 1—2r_1p1/ps —7o,—1/P2

With p; = P11(p2), and p1 = Pia(p2), |p2] > |, we obtain from lemma A.3, with some algebra,

. dPui(p) . dPys(p)
= lim ——= = .9
Pl'l—‘°° dP o1, p—»IEo P (C )
From (4.27) we have
Ry(ol1)) wi(Pra(p),p)) wa(Pui(p),p) , d [ ] -
= P, c.10
B | aFul)) wCub)y) @ O GO (e:10)
From (c.16), (c.7),(c.9) and (c.10) it results that
. Rz(a("'*'l)) _
i];]jilow =1 for > 0, h11 > 0,
— Wo + Wi o1z  wi =0, hyy >0,
wo1 + wioai2 a1
(c.11)
ho1 + ooz @11
= o1 + oas o1 N >0, hyy =0,
ho1 + hipon1 012 W=
ko1 + hipo1z wor + wigoy
= v win =0, k11 =0;
ho1 + higo1 wor + wipon2 " H
| Ry (+0+1) _om wz(Pn(a.(i+1)),a.(i+1)) wl(Pm(a.(i))’a_(i)) _
imoo By (r() a1z imeo wy (Pra (o)), o(41)) wy (Pra (o), 0 (3))
(c.12)
(i+1)
= lim ____Rg(a )
1——)00 Rz(g‘("))
for all the four cases occurring in (c.11).
REMARK C.1. Note that (2.6) iv, v imply that the quotients in (c.11) are well defined. 0

For the definition of the meromorphic functions introduced in section 5 we have to investigate the
existence and determination of the smallest positive integers my and my for which the series

Ry a(t+1)) Ry ( T(*))
) d
; oD }matt and Z [r O mati (c.13)
converge absolutely, cf. (5.10).

Put, cf. (c.11) and (c.12),

pim e Rz(o_(i+1)) . Rl(,,.(i+1))

20 = fim L >0 14
imoo Ra(0))  imeo Ry(r®) ~ (c.14)

where the value of p varies with the four cases in (c.11). It follows for fixed but sufficient large 7 and
kE=1,2,..., cf. (c.4), that
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Rz(g(i+k)) X oli+k) Q11 45
. S S —_— s R, c.15
BReo ~f o ~igLt (c.15)

Consequently, for every integer n,

R2 (U'(H'k)) Rz(a'(i)) [au

n+1
~ ——— k = ces o . 6
[cGHRFT ™ [p)]nl an} }E E=1,2, (c.18)

Because, cf. (2.6) ii and (a.13),
0< a]_g/an <1,

it is seen that the first series in (c.13) converges absolutely for that value, say, my of n =0,1,2,...,
which satisfies

n=0 i p22 <1,
11
« n a n+41 (0.17)
p[i] 21>p[ﬁ] y >1,
2551 (2551

and (c.17) implies that my exists.
Analogously, it follows from (c.4) and (c.14) that m; is that value of n = 0,1,2,..., which satisfies
(c.17) and hence it is seen that my = m;. Put

mi=my =msy. ' (c.18)

Because |o;| — oo, cf. (c.2), it follows that for fixed p and sufficiently large i,

-1
2)p| < |oi] = -:2,: < [Ia%l - 1} <2 (c.19)

Note that for £k = 1,2,...,

B(o ) p m_ 1ot B | 20
p—oCHR [gGrR | TP TR [oGHRJmAt :

and hence it follows from (c.16), (c.19), (c.20) and the definition of mz, (c.18), that the series

o Ra(0@) 1 p ™ SRy (r) [p]™
; 7 —o® [}77] and ; -0 |7 , (c.21)

converge uniformly and absolutely in every circle [p| < R, whenever the terms with poles inside the
circle with radius R > 1 are deleted, cf. [16] chapter 7.4, [3], p. 219.

ReEMARK C.2. It is readily seen that if in the series (c.21) the exponent m is replaced by m + h, with
k any positive integer, that the series so obtained also converge uniformly and absolutely in the some
sense as (c.21) does, see further remark 6.3. . |
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