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Parallel Block Predictor-Corrector Methods of
Runge-Kutta Type
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Abstract In this paper, we construct block predictor-corrector methods using Runge-Kutta correctors. Our
approach consists of applying the predictor-corrector method not only at step points, but also at off-step
points (block points), so that, in each step, a whole block of approximations to the exact solution is
computed. In the next step, these approximations are used for obtaining a high-order predictor formula by
Lagrange or Hermite interpolation. By choosing the abscissas of the off-step points narrowly spaced, a
much more accurately predicted value is obtained than by predictor formulas based on preceding step point
values. Since the approximations at the off-step points to be computed in each step can be obtained in
parallel, the sequential costs of these block predictor-corrector methods are comparable with those of a
conventional predictor-corrector method. Furthermore, by using Runge-Kutta correctors, the predictor-
corrector iteration scheme itself is also highly parallel. Application of these block predictor-corrector
methods based on Lagrange-Gauss pairs to a few widely-used test problems reveals that the sequential
costs are reduced by a factor ranging from 2 until 11 when compared with the best sequential methods.
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1. Introduction
We will investigate a particular class of (explicit) predictor-corrector (PC) methods for solving the initial-value
problem (IVP) for nonstiff, first-order differential equations

R M)

on parallel computers. It is our aim to improve the conventional PC methods by using parallel processors. At a first
level, PC methods can be characterized by the values {p, k, B}, where p is the order of the method, k is the number of
right hand side evaluations per step, and B characterizes the stability of the integration process, e.g., B may denote the
real or imaginary stability boundaries Bre and B;jm, of the method. Evidently, we would like to have a PC method in
which for given order p, the value of k is small and B is sufficiently large. The magnitude of B should take into account
the costs per step, which leads us to the definition of the effective or scaled stability boundary B/k.

For sequential computers, the PC methods of Adams type belong to the most efficient nonstiff IVP solvers. The
PECE mode of these methods are characterized by {p, 2, B}, where the effective stability boundaries (Bre, Bim)/2
monotonically decrease from (1.20, 0.60) for p = 3 to (0.16, 0.09) for p = 10. Less popular are PC methods based on
PC pairs consisting of 'last step value predictors' and Runge-Kutta (RK) correctors. In P(EC)P-1E mode, these RK-type
PC methods are characterized by (p, s(p-1)+1, B}, where s is the number of stages of the generating corrector. The
effective stability boundaries (Bre, Bim)/(s(p-1)+1) strongly depend on the particular corrector chosen, but are extremely
small for the higher-order RK correctors. The advantage of the RK type PC methods is their one-step nature facilitating
easy implementation and stepsize control. However, the relatively large number of right hand side evaluations per step
make them unattractive from a computational point of view.

With the introduction of parallel computers, several authors have proposed parallel methods (mostly of PC type)
and have tried to improve on the sequential PC methods. Parallel PC methods can again be characterized by (p, k, B} if
we define k as the sequential number of right hand side evaluations per step, that is, the wall-clock time per step
corresponds to the time needed to evaluate k right hand side functions. With this meaning of k, the effective stability
boundary on parallel computers can again be defined by B/k. Let us first consider the parallel implementation of the
Adams PECE methods and RK-type PC methods in P(EC)P-1E mode. The Adams PECE methods are again
characterized by {p, 2, B} indicating that these methods do not have intrinsic parallelism. For future reference, the
effective stability boundaries are listed in Table 1.1. If the RK-type PC methods are implemented on a parallel
computer, then we can characterize them by (p, p, B} which shows that the sequential costs are reduced by about a factor
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s. PC methods of this type have been discussed in [14, 16, 10, 13]. An actual implementation, including a stepsize
strategy, and a detailed performance analysis can be found in [10] where they were called PIRK methods (parallel iterated
RK methods). The effective stability boundaries of PIRK methods using 'last step value' predictors are listed in Table
1.1 (these methods possess stability boundaries that do not depend on the particular corrector chosen).

Table 1.1, Effective stability boundaries (Bre, Bim)/k of PC methods

p=3 p=4 p=5 p=5 p=7 p=8 =9 p=10

Adams PECE (1.20,0.60) (0.96,0.58) (0.70,0.48) (0.52,0.35) (0.39,0.26) (0.29,0.18) (0.22,0.13) (0.16,0.09)
PIRK (k=p) (0.84,0.57) (0.69,0.70) (0.63,0.00) (0.59,0.00) (0.56,0.25) (0.54,0.42) (0.52,0.00) (0.50,0.00)

Table 1.2. Effective stability boundaries (Bre, Bim)/k of various parallel methods

Method p k  B:=(Bre Pim
Multiblock method [5, Method {(2.7),(2.9)}] 3 2 249, -)
BRK method [13, Method (4.1)] 3 01 (0.64,0.65)
Miranker-Liniger method [19] 4 1 (0.50,0.04)
Shampine-Watts-Worland [21, 23] 4 2 (0.44,0.58)
Multiblock method [S, Method {(2.11),(2.13)}] 4 2 167, -)
Hermite-Gauss method [18] 4 2 -
BRK method [13, Method (4.7)] 4 1 (0.53,0.05)
BRK method [13, Method {(4.3),(4.6)}] 4 2 (0.06,0.05)
Cyclic mutistep method [7, Table 2] 6 2 -
BRK method [13, Method {(4.12),(4.13)}] 6 2 (0.87,0.29)
Cyclic mutistep method [7, Table 2] 8 2 -
BRK method [13, Method {(4.14),(4.15)}] 8 2 (0.15,0.07)

There have been several attempts to construct parallel methods without starting from a conventional sequential
method [15, 19, 5, 11]. For a number of these parallel methods, Table 1.2 lists the corresponding {p, k, B/k} values (as
far as available). We remark that the cyclic multistep methods mentioned in this table refer to parallel modifications of
the original methods of Donelson and Hansen [6]. ‘

A further increase of the amount of parallelism in step-by-step methods consists of computing parallel solution
values not only at step points, but also at off-step points, so that, in each step, a whole block of approximations to the
exact solution is computed. This approach was successfully used in [7] for obtaining reliable defect control in explicit
RK methods. In this paper, we want to use this approach for constructing parallel PC methods where the value of k is
substantially less than the order p and where, at the same time, the effective stability boundaries are acceptably large. In
our case, the block of approximations is used for obtaining a high-order predictor formula in the next step by some
interpolation formula, e.g., Lagrange or Hermite interpolation. By choosing the abscissas of the off-step points
narrowly spaced, we achieve much more accurately predictor values than can be obtained by predictor formulas based on
preceding step point values. Moreover, the precise location of the off-step points can be used for minimizing the
interpolation errors or for maximizing stability boundaries. Since the approximations at the off-step points to be
computed in each step can be obtained in parallel, the sequential costs of this block PC method are equal to those of
conventional PC methods. Furthermore, by using RK correctors, the PC iteration scheme itself is also highly parallel
(cf. [16, 91). The RK-based block PC methods may be considered as block versions of the aforementioned PIRK
methods, and will therefore be termed block PIRK methods (BPIRK methods).

We concentrated on BPIRK methods based on Lagrange predictors and Gauss correctors. The number of sequential
function calls per step of Lagrange-Gauss BPIRK methods equals k = m+1, m denoting the number of iterations
performed. Using p-point Lagrange interpolation predictors (i.e., the dimension of the block of approximations equals p
resulting in predictor formulas of order p-1) and pth-order Gauss correctors, we obtain a p-dimensional BPIRK method
whose order equals p for all m (even m = 0). The abscissas of the off-step points were used for minimizing the predictor
errors (in some sense, see Section 2.3). For these BPIRK methods, we computed the effective stability boundaries. It
turned out that for k < 4, the scaled stability boundary Bre/k assumes values in the range [0.31, 0.44]. The values of
Bim/k are less constant and are often quite small (see Table 2.2 in Section 2.4). Table 1.3 lists cases where k is minimal
while both Bre/k and Bijm/k are 'substantial'. These figures show that the requirement of 'substantial' scaled stability
boundaries makes the fourth- and tenth-order BPIRK methods relatively expensive. However, our numerical experiments
reveal that in actual applications, the BPIRK methods of order four and ten already perform efficiently fork=1ork=2.
Hence, we conclude that minimizing the interpolation error leads to sufficiently stable methods requiring only one or
two sequential function calls per step.



Table 1.3. Effective stability boundaries (Bre, Bim)/k of
BPIRK methods based on {Lagrange, Gauss} pairs

p=4,k=3  p=6,k=2  p=8,k=1  p=10,k=4

(0.42, 0.42) (0.39, 0.15) (0.39,0.20) (0.37, 0.36)

In Section 3, we present comparisons with sequential and parallel methods from the literature for two widely-used
test examples from the literature, viz. FEHL: the Fehlberg problem (cf. [8, p. 174]) and JACB: the Jacobian elliptic
functions problem (cf. [8, p. 236]). Let R be the factor by which the sequential costs (i.e., wall-clock time) are reduced
by applying the BPIRK methods to obtain the same accuracy. Then, from a comparison with sequential methods, we
find the following reduction factors:

Problem Method from the literature BPIRK R
FEHL Dormand-Prince method of order 5 order 4 2

Dormand-Prince method of order 8 order 8 5
JACB Runge-Kutta-Hairer method of order 10 order 10 11

These conclusions encourage us to pursue the analysis of BPIRK methods. In particular, we will concentrate on a
performance analysis of other predictors and on stepsize strategies that exploit the special structure of BPIRK methods.

2, Block PIRK Methods
For simplicity of notation, let the IVP be a scalar problem and let us consider the s-stage implicit RK method

(2.1) U = ype + hAf(U), yn+1 = yn + hbTH(U),

where A is an s-by-s matrix, b is an s-dimensional vector, e is the unit vector, U is the stage vector with components
Uj, and where f(U) denotes the vector with components f(Uj;). Suppose that we apply (2.1) at t,, with distinct stepsizes
ajh, wherei = 1, ..., rand aj = 1. Then we obtain a block of r numerical approximations yn+1,; to the exact solution
values y(t, + ajh) defined by

2.2) Ui = yne + &ihAf(UD, Yneli=yn+aihbTEUY, i=1,..,T.
Let
23) Yo :=(n1s s V) Ts Ynl = Yn,

and let us approximate the stage vectors Uj by
2.4) Ui©® = v;Y, + hWif(Yp), i=1,...,T,

where V; and W; are s-by-r matrices determined by order conditions (see Section 2.1). Regarding (2.2) as correctors and
(2.4) as predictors for the stage vectors, we arrive at the PC method (in PE(CE)™E mode)

U;O = V;Y,, + hW;f(Yy), UiD) = e1TYy + ahAf(U;G-D), j=1,..,m,
2.5) i
Yn+l,i = €17 Yp + aihbTEU; M), Y1 = (¥ne1,1 o » Yne1,) s

where i =1, ..., r and where e; denotes the first unit vector. We may distinguish the following types of predictors:

Hermite: U;(® = VY, + hWif(Yy), Lagrange: U@ = v;v,,
Adams:  U;® =y, je + hW;f(Yy), Explicit BDF:  Uj(® = V;Y;, + hW;f(yy, re).

In the case of a Lagrange predictor, the PE(CE)™E mode reduces to P(CE)YME mode. If r = 1, then (2.5) reduces to the
PIRK method studied in [10]. We shall call (2.5) an r-dimensional BPIRK method.

Given the vector Y, the r values yn+1,i can be computed in parallel, and on a second level, the components of
the ith stage vector iterate U;0) can also be evaluated in parallel. Hence, r-dimensional BPIRK methods based on s-stage
RK correctors can be implemented on a computer possessing r parallel processors each of which is itself a parallel
system with s parallel processors. The number of sequential evaluations of f per step of length h equals k = m+2. If the
matrices W; vanish, then k = m+1.



2.1.  Order conditons for the predictor

The order conditions for the predictor to be of order q are derived by replacing both Y, and U;(® by exact
solution values. On substitution of y(ty-1€ + ha) and y(tze + ajhc), respectively, setting ¢ := Ae, and by requiring that
the residue is of order g+1 in h, we are led to the conditions

(2.6 y(tpe + ajhe) - Viy(tpe + h(a-e)) - hWiy'(tqpe + h(a-e)) = o(hatl), i=1,..,r

Using the relation y(te + hx) = exp(hx %) y(t), we can expand the lefthand side of (2.6) in powers of h:

26)  [ew(haereD) - (vi+ Win ) explha ) Iyctn

q .
=Y, ci0(h 2y + i@ (h Dy = oD,
j=0

where t* is a suitable chosen point in the interval containing the values ty.1+aih,i=1, ..., r, and where
(2.72) C;i0) := 3.1,-[(aic+e)j -Vial - jwial11=0, j=0,1,..,q i=1,..,r.

The Ci(j), i=1,...,r, represent the error vectors of the predictor formula. From (2.6") we obtain the order conditions
(2.7b) c;=0, j=0,1,..,q i=1,..,r
The error vectors C;(@+1) are the principal error vectors of the predictor (it is assumed that C;(+1) does not vanish).
If the conditions (2.7) are satisfied, then the iteration error associated with the stage vector and the step point
value satisfy the order relations
Ui - Ui = 09 ™), viy1 - Yot i = aihbT[EU)) - £(U;0)] = OQA+™M+2),

where vp41 ; denote the exact corrector solutions. Thus, we have

Theorem 2.1. If the conditions (2.7) are satisfied and if the generating corrector (2.1) is of order p, then the orders of the
iteration error and the BPIRK method (2.5) are pjter = q+m+1 and p* := min (p,piter}, respectively. []

Let q > r-1 and define the matrices
P; = (e, ajc+e, (ajc+e)?, ..., (aic+e)r'1), Q:= (e, a,aZ, .., ar’l), R:= (0, e, 2a, 3a2, ..., (r-l)a"'z),
Py* = ((aic+e)f, - (aic+e)q), Q* = (ar, s aq), R¥ := (ra"l, s qaq‘l),

where the matrices P;*, Q* and R* are assumed to be zero if q = r-1. Then the conditions (2.7) can be presented in the
form

@7 P;-ViQ-W;R=0, Pi*-ViQ*-WjR*=0, i=1,..,r.
Since the abscissas aj are assumed to be distinct, we may write
V;=[P;- WiRIQ}, P;*- [P;- W;RIQ'1Q* - WR* =0, i=1,..,r.

Using Theorem 2.1, explicit expressions for the predictor matrices V; and W; can be derived. The following
theorem presents these matrices for Lagrange predictors and Hermite predictors:



Theorem 2.2.Let0=1and 0 =2 respectively indicate the Lagrange and Hermite predictors. If
q=6r-1, Vi=[P;- (0 - DWiRIQ'L, W= (8- 1) [P;Q"1Q* - P*IRQIQ* - R*I'L, i=1,..,1,
then pjter = Or + m, p* = min {p, Pjter}, k=m + 0, where RQ-1Q* - R* is assumed to be nonsingular. []

In the application of BPIRK methods, we have two natural PC pairs, viz. Lagrange-Gauss pairs and Hermite-
Radau pairs. The Lagrange-Gauss pairs have the advantage of (i) a maximal corrector-order for a given number of stages,
(ii) no additional evaluations of f in the predictor (since we are aiming at a small number of iterations, say one or two,
one extra f-evaluation substantially increases the total effort per step), and (iii) less round-off if the abscissas a; are
narrowly spaced. The disadvantage of Gauss correctors of being only A-stable, is not relevant here, since BPIRK
methods are designed for nonstiff problems, so that more stable correctors such as the L-stable Radau correctors, are not
needed. In the case of Radau correctors where the last component of the stage vector is identical to the step point value
Yn+1,i» Hermite predictors are more natural because the additional f-evaluation needed in Hermite interpolation formulas
is already available. An important advantage of using Hermite interpolation is the reduction of the number of processors
needed for the implementation of BPIRK methods.

In this paper, we confine our considerations to Lagrange predictors and Gauss correctors. In the near future, we
intend to compare BPIRK methods employing Lagrange, Hermite, Adams and BDF predictors.

2.2. Region of convergence

In actual integration, the number of iterations m is determined by some iteration strategy, rather than by order
considerations. Therefore, it is of interest to know how the integration step affects the rate of convergence. The stepsize
should be such that a reasonable convergence speed is achieved.

We shall determine the convergence factor for the test equation y' = Ay, where A runs through the eigenvalues of
the Jacobian matrix of/dy. For this equation, we obtain the iteration error equation

28 U -Uj=azA [U;GD-Uj), z:=hA, j=1,..,m.

Hence, with respect to the test equation, the convergence factor is defined by the spectral radius p(a;zA) of the iteration
matrix ajzA, i =1, ..., r. Requiring that p(ajzA) is less than a given number o, leads us to the convergence condition

o) - &
ooy~ @

2.9 ih < ,
@9 : p(A)

where y(o) presents the convergence boundary of the method. In Table 2.1, the maximal convergence boundaries (o) are
given for Gauss correctors of orders up to 10. In actual computation, the stepsize should of course be substantially
smaller than allowed by y(1). Notice that for a given integration step h, the maximal damping factor is given by
o = ajhp(0f/dy)/y(1), so that the higher-order correctors listed in Table 2.1 give rise to faster convergence.

Table 2.1. Convergence boundaries y(cx).

p=4 p=6 p=8 p=10

Gauss-Legendre 3460  4.650 6.06a  7.30c

2.3.  On the choice of the abscissas aj

The accuracy of Lagrange interpolation formulas improves if the abscissas of the interpolating values are
narrowly spaced. However, this will increase the magnitude of the entries of the matrix Vj, causing serious round-off
errors. There are several ways to reduce this round-off effect: (i) multi-precision arithmetic, (ii) direct computation of the
extrapolated values, and (iii) limitation of the spacing of the abscissas. The use of multi-precision arithmetic is the
most simple remedy, but not always available and usually rather costly. Direct interpolation of the values yp 1, ...,
¥Yn,r requires in each step and for each component equation of the system of IVPs the solution of a linear system of
dimension Or. Again, this option is rather costly. Probably, the most realistic option is a limitation on the minimal
spacing of the abscissas a;. In [7] where Hermite interpolation formulas were used for deriving reliable error estimates
for defect control, it was found that on a Silicon Grafics Inc. Power Iris 4D/240S-64 machine with 15 digits precision,
the abscissas should be separated by 0.2 in order to suppress rounding errors. For the more stable Lagrange interpolation
formulas, we expect that slightly smaller spacings are still acceptable.

In order to derive further criteria for the choice of suitable values for the absissas a;, we need insight into the
propagation of a perturbation € of the block vector Yy, within a single step. We shall study this for the test equation
y' = Ay. First we express yn+1,i in terms of Y. Applying (2.5) and (2.8), we obtain the recursions



UiO = [V; + zWj] Yp, U;0) - Uj = azA [U;G-D - Up, j=1,..,m.
Hence,

(2.10) Vneli =e1T¥q +azbT (U™ - Uj] + aizbTU; = e, TY,, + azbT[aizA]™ [Ui(®) - Uj] + 2i2bTU;
= (1T + 2;zbT [I - ajzAT Lee; T) Yy, + ajzb T [a;zA]™ [V; + zW; - [1 - aizA] Tee; T] Yy
= R(aiz)elTYn + aisz[aizA]m [Vi +zW;-[I- aizA]‘leelT]Yn, i=1,..,r,

where R(z) is the stability function of the RK corrector. Let us now replace Y, by Yn" = Yp, + €. Then, the perturbed
value of yp+1,i is given by

@109 y*ne1i=Yneli + R@iz)eTe + azbT[aizA]m [V + 2W; - [1 - ajzAllee Te.

This relation shows that the first component of the perturbation € is amplified by a factor of O(1), whereas all other
components are amplified by a factor of O(hmt1),

Let us now return to the choice of the absissas a;. The values of the a; influence the accuracy of the predicted
stage values, and hence the accuracy of the block vectors Yp. Let € represent the effect on Yp of using inaccurate
interpolation formulas in the preceding steps. Then, from the preceding discussion, we may conclude that the first
component of € is not damped. Since the components of the block vectors Yj, are calculated independently from the
predicted stage values, it is important that the interpolation error corresponding to the predicted stage values used for the
first comlzomlz;nt of the block vector are small. Thus, we should try to minimize the magnitude of the principal error
vector C1\a+1),

In the case of Lagrange {)redictors where q = r-1, we have to minimize the magnitude of C1®. Although we may
use (2.7a) for minimizing Cj 1), it is more convenient to start with the usual expression for the remainder term in
Lagrange interpolation formulas. For sufficiently differentiable functions y(t), the r-point Lagrange interpolation
formula can be written in the form (see e.g. [1, formulas 25.2.1 - 25.2.3])

@11)  y(a+th) = Y, Li(x) ylta1 +aih) + CO) (h %)' y(t*), Car):= :,— ITre+1-a,
i=1 "=l

where L;(t) are the interpolation coefficients and t* is a suitably chosen point in the interval containing the values
tn.1+a;h, i = 1, ..., r. The principal error vectors of the Lagrange predictor formulas defined by Theorem 2.2 are given
by Ci(‘f) =C)(cay), i=1, ..., r. Recalling that aj = 1, we are led to minimize the magnitude of the values

T

C(r)(Cj) = 114— H [cj+1-3],j=1,..,s.

i=1
Confining our considerations to block dimensions r > s+1, we set
(2.12a) a;j=1, aj=1+cj, i=2,..,s+L.

By this choice, the principal error vector €10 vanishes, so that now all inaccuracies introduced by the predictor formula
are damped by a factor of O(h™*1) (cf. (2.10"). If r > s+1, then we have additional abscissas for improving the predictor
formula. It is tempting to use these additional abscissas for reducing the magnitude of the other error vectors. From
(2.11) it follows that the largest error constant (corresponding to the largest values of a; and c;) can be minimized by
choosing the remaining abscissas close to 1. However, as already observed, the minimal spacing of the abscissas should
be sufficiently large to avoid round-off. From (2.12a) it follows that the averaged spacing of the abscissas ay, ... , as4+1
is 1/(s+1) for correctors with cs # 1 and 1/s otherwise, the minimal spacing being, in general, smaller. Therefore, it
seems recommendable to choose the remaining abscissas outside the interval [1, 1 + cg]. In our numerical experiments,
we have chosen the remaining abscissas such that averaged spacing equals that of the abscissas aj, ... , as+1. This leads
us to define the remaining abscissas according to

@12)  ifcy# 1 then o= SE1 i=se2, L x, else ai=—si§1;l, i=s42,..,1

For Gauss correctors, the order p = 2s, resulting in an averaged spacing 2/(p+2). Recalling that the 15 digits
experiments reported in [7] indicate that a minimal spacing of 0.2 is acceptable in the case of Hermite interpolation, we
expect that on 15 digits computers and for orders up to p = 10, an averaged spacing of 2/(p+2) should be acceptable in
the case of the more stable Lagrange interpolation formulas. We remark that the optimal location of the off-step points
for defect control as derived in [7] is in the interval where the defect is to be computed, rather than advancing the current
step point as in (2.12).



. 7
Finally, we remark that the abscissas defined by (2.12) enable us to develop various cheap strategies for stepsize
control. For example, if r > s+2, then the difference yn.1,s+2 - ¥n,1 can be used for obtaining an error estimate.

2.4, Stability
From (2.10) it follows that we may write

R(alz)elT +ayzbT[ajzA]™m [V1 +2zWqp-[I- ale]'leelT]
Yn+1 = Mmr(2) Yn, Mmr(2) = .
R(az)eT + a;zbT[a;zA]™ [V + zWy - [1 - azAl lee; T)

Evidently, the asymptotic stability region for m -> o is the intersection in the z-plane of the stability region
Scorr Of the generating corrector and the region of convergence defined by the points z where the eigenvalues of ajzA are
within the unit disk. Hence, if the corrector is A-stable, then the asymptotic stability region in the left half plane is
completely determined by the region of convergence (see Table 2.1 for convergence boundaries).

For finite m, the stability regions are given by

Sstab(myy) := {z: p(Mm:(2)) < 1}.

The associated real and imaginary stability boundaries Bre and Bim can be defined in the usual way.

Let us consider methods where r = p and where the number of iterations is chosen dynamically by some iteration
strategy. This type of methods use ‘'maximal’ block dimension r (in the sense that the order of the predictor equals that
of the corrector) and iterate until a stable result is obtained assuming that the process converges. Again restricting our
considerations to Lagrange-Gauss pairs, we obtain the results listed in Table 2.2. Because the effective, real stability
boundaries are almost constant for all k, we may use k = 1 if only the real stability boundary plays a role. The
imaginary stability boundaries show a less regular behaviour. BPIRK methods with (r, p, k) = (4, 4, 3), (6, 6, 4),
(8, 8,2), (10, 10, 4) possess reasonably large effective real and imaginary stability boundaries (these cases are collected
in Table 1.3). Notice that in all cases the convergence regions contains the real and imaginary stability intervals, so that
the integrations step will not be limited by convergence conditions, but rather by accuracy or stability conditions.

Table 2.2.  Effective stability boundaries (Bre, Bim)/k of BPIRK methods
of order p* = p using Lagrange-Gauss pairs with r=p.

p k=1 k=2 k=3 k=4

4 (0.44,0.00)  (0.40,0.00)  (042,042)  (0.37,0.37)
6 (0.40,0.08)  (0.39,0.15)  (0.39,0.03)  (0.38, 0.39)
8 (0.39,020)  (0.38,0.28)  (0.38,0.35)  (0.37,0.05)
10 (031,0.00)  (0.37,0.00)  (0.36,0.03)  (0.37,0.36)

3. Numerical experiments

We tested accuracy and efficiency aspects of BPIRK methods based on Lagrange-Gauss pairs. All experiments are
performed on a 28 digit computer, so that the effect of rounding errors is negligible. In Section 3.1, we will concentrate
on the accuracy of the methods. In particular, the effective order and the influence of the number of iterations on the
efficiency will be tested. In Section 3.2, we compare the BPIRK methods with block RK methods, and in Section 3.3 a
number of tenth-order methods are compared. In all experiments, the abscissas a; are defined according to (2.12).

The maximal absolute error obtained at t = T is presented in the form 10-4 (A may be interpreted as the number
of correct decimal digits). Negative values of A are indicated by *. If the order of accuracy shown in the experiments
equals the theoretical order p*, then, on halving the (fixed) stepsize, the number of correct decimal digits should increase
by 0.3p*. Hence, the number of steps denoted by Nsieps and A are related according 0 Nsgeps = ¢ 2 (0.3p*), where c is
a constant depending on the problem. In order to verify this theoretical relation, we define the effective order

B perr= ARLEN

In the first step, we always set r = 1 and k = m+1 = p, k being the number of sequential function calls per step.
For the subsequent steps, we used either r = 1 (PIRK methods) or r = p, while k is specified in the tables of results.
These methods will be denoted by PIRK(p, k) and BPIRK(p, k). The stepsize is chosen such that the total number of
sequential function calls (approximately) equals a prescribed number Ngeq. Since Nseq = p + k(Nsteps - 1), we have



Nseg -P . 1 T - tp
N =1+[___S_€£_+_]’ h:: >
steps p-r+1 " 2 Nsteps

where [.] denotes the integer part function and T denotes the end point of the integration interval (the effect of the integer
part operation causes that the actual number of sequential right hand sides may be slightly different from the prescribed
number Ngeq).

3.1. Accuracy tests
Consider the often-used test problem of Fehlberg (cf. [8, p. 174])

y1'= 2tyjlog(max{ys, 103}), y1(0)=1,
(3.2) 0<t<T,

y2' =- 2 ty; log(max{yy, 103}), y200) =e,

with exact solution y1(t)=exp(sin(t2)). yz(t)=exp(cos(t2)). The Tables 3.1 and 3.2 present results for the fourth- and
eighth-order Gauss correctors. We listed values of A for prescribed numbers Ngeq of sequential function calls and the
effective orders peff corresponding to the smallest stepsize h. In order to appreciate the accuracy of the BPIRK methods,
we added the A-values produced by the PIRK methods and by the ‘best’ sequential methods currently available. In
Table 3.1 we included results obtained by the 5(4) Dormand-Prince RK pair (DOPRIS) taken from [8, Figure 4.3], and
in Table 3.2 we included results obtained by the 8(7) Dormand-Prince RK pair (DOPRIS) (see [9, Table 5]). Unlike the
BPIRK results, the DOPRI results are obtained using a stepsize strategy, so that at first sight, a comparison may not be
fair, However, the BPIRK methods can be provided with a stepsize strategy without additional costs per step (see [9])
and, for problem (3.1), stepsize strategies do not change the (Nseg, A) results very much. This may be concluded from a
comparison of the PIRK(8, 8) results of Table 3.2 with the results reported in [9, Table 5] for the stepsize control
version of PIRK(S8, 8), i.e. the code PIRKS. Therefore, it seems fair to conclude that for the Fehlberg problem (3.1) the
BPIRK(4, 1) method is at least a factor two faster than DOPRIS, and BPIRK(8, 2) beats DOPRIS8 by at least a factor
five.

Table 3.1. Correct decimal digitsatt=T =5 for problem (3.2)

Nseq DOPRI5 PIRK(4,k) BPIRK(4, k)
k=4 k=1k=2 k=3
240 1.2 35 35 24
480 29 2.7 51 48 37
960 4.6 3.9 6.7 60 49
1920 6.0 5.1 82 172 6.1
Peff 4.0 50 4.0 4.0

Table 3.2. Correct decimal digits at t =T = 5 for problem (3.2)

Nseq DOPRI8  PIRK(S, k) BPIRK(8, k)
k=8 k=1k=2 k=3
240 1.5 68 81 74
480 6.0 10.8 11.7 9.7
960 7.0 8.3 13.8 142 121
1920 9.9 103 169 16.7 145

Peff 6.7 103 83 8.0




3.2. Comparison with other parallel methods

In [11] parallel block Runge-Kutta methods (BRK methods) of orders up to 8 for nonstiff problems have been
constructed and were shown to be highly efficient when compared with sequential methods. One of the test examples in
[11] is the equation of motion of a rigid body without external forces (problem JACB in [8, p. 236]):

¥1' =y2ys3, y1(0) =0,
(33) y2' = -y1y3, y200)=1, O0<t<T.
y3' = -.51y1y2, y3(0) =1,

Table 3.3 presents a comparison of the most efficient BRK methods with BPIRK methods of the same order. These
(fixed-stepsize) results show that the BPIRK methods are about four times as effi c1ent as the BRK methods. However,
the BRK methods are all two-processor methods, whereas the BPIRK methods require p2/2 processors.

Table 3.3. Comparison with methods from the literature for problem (3.3) with T = 20.

Sequential righthand sides Ngeq 120 240 480 960 Peff DP*=p
BRK [10, PC pair (4.3)-(4.6) of Table 5.4] * 33 47 6.0 43 4
BPIRK(4, 1) 43 58 172 8.7 50 4
BRK [10, PC pair (4.12)-(4.13) of Table 54] 32 5.1 69 8.7 60 6
BPIRK (6, 1) 68 9.3 113 134 70 6
BRK [10, PC pair (4.14)-(4.15)] 29 74 98 122 80 8
BPIRK (8, 2) 8.7 114 138 16.2 80 8

3.3. Comparison of tenth-order methods

We repeat the (fixed-stepsize) experiment performed in [8], where a number of methods were compared by
applying them to problem (3.3) with T = 60-and by counting the number of (sequential) function calls needed to obtain
10 digits accuracy. In Table 3.4, we reproduce the values given in [8], and [10] for a few tenth-order methods, and we
added the results obtained by our tenth-order BPIRK method. From these results we conclude that the BPIRK(10, 3)
method is about 11 times cheaper than the sequenual Runge-Kutta-Hairer method and about 4 times cheaper than the
PIRK(10,10) method.

Table 3.4. Comparison with tenth-order methods from the literature for problem (3.3) at T = 60.

Method k P Nsteps A Nseq
Runge-Kutta-Curtis (cf. [8]) 18 10 240 9.9 4320
Runge-Kutta-Hairer [8] 17 10 240 10.1 4080
PIRK(10,k) method [10, Table 4] 10 10 150 10.0 1560
BPIRK(10, k) 1 10 410 10.1 419

2 10 190 10.1 389
3 10 120 10.0 369
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