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Abstract »
ssent here some generalizations and some simpler derivations of results
'ed in Fuhrmann [4] and Fuhrmann and Ober [5]. The main result is
1e singular values and Schmidt vectors of the Hankel operator with
1 a normalized coprime factorization of a plant can be given an
t representation in terms of the plant, of its optimally robust
ller and of the Schmidt pairs of another scalar Hankel operator.
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‘oduction

he fact that Hankel operators have become, after the seminal paper of
rrov and Krein [1], a central tool in systems theory and in interpolation
e of its features have been studied in detail only recently in [4]. Among
; results are the connection between the singular values and Schmidt
he original operator, those of its Nehari extension, those of the ”one
ximant and those of a Hankel operator obtained from the last Schmidt
e original one. In another paper [5], Fuhrmann and Ober derive some
between the Schmidt vectors of a normalized coprime factorization of
those of a function obtained throught any controller which stabilizes
1e plant. We generalize some of the above results, and present simpler
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particular, Theorem 4.2 gives an explicit representation of the Schmidt
1e Hankel operator with symbol the normalized coprime factorization of
‘which is a 2 x 1 matrix function), in terms of the Schmidt pairs of a scalar
erator, which is simpler to study. Moreover, it also shown how from this
erator we can recover explicitly the plant (Theorem 4.4.
per is structured as follows: section two is notation; section three contains
le proof of results of [4] on Schmidt pairs of a Hankel operator, together
» mild generalizations. Section four is devoted to the Hankel operators
the theory of robust control.

eliminaries and notation

n the Hilbert space setting of the plane; we define [8] L%(I) to be the set
are integrable functions on the imaginary axis, and HZ to be the subspace
inctions analytic in the right half-plane and s. t.

o0

1 )
sup — / |f(z + i)|* dy < oo
>0 2T

-0

ner product in H? is

(o) = o [ fliw) ) do

denotes conjugate. Analogously, His the subspace of L? of functions
1 the right half-plane and s. t.

sup (esssup If(x+ )| ) < o0
>0 yG]R,

H>are defined similarly on the left half-plane). A space X € H2 is
if hX C X for all h € HY. If p(s) is a polynomial with real coefficients,

p*(s) == p(-s).
se function of L®: we denote by P, (P_) the orthogonal projection of L?
1%). The Hankel operator with symbol f is defined as

Hih = P_fh he H? (1)



A Schmidt pair (£,7) of Hy is a pair of vectors £ € Hf, 7 € H2 for which there
exists a positive number o, called singular value, such that

Hi = om, Hip = of. (2)

It can be shown (see [1] or [4]) that if f € H2 and it is rational of degree n, i.e.
f =mn*/d*, then there exist n singular values.

01 2 03 2 ... 2 0p

and 7 linearly independent pairs (&1,71) . . . (€n, 72) (Schmidt pairs) satisfying (2).
We assume in the sequel that o7 > 02 > ... > 0,. In thls case there exist
polynomials pi,...,pn of degree at most n — 1 such that & = B, 5; = 5,—*— where
€; is a real constant of modulus 1. Assume now that n*/d* is strictly proper, and
define the signed singular values of H z: 88 Ai = €;0;. In view of (1), (2) becomes

n* p; p: a4 :
where g; are suitable polynomials of degree at most n— 1. The equation (3) is called
fundamental equation (see [4]). In what follows we will also assume t monic.
The polynomials p; are determined up to a (constant) factor by %, as well as the
values \;; moreover, & is orthogonal to 2 for ¢ # j (see [1]). It can also be shown
that pr = ugsg, with uk stricly unstable of degree k—1 and s;, stable of degree n—k.

In particular, p; is stable, i.e. 1/p, € HY (or equivalently said, p;/t is outer. We

will be interested in the all pass functions @ = A\p—% o t,. Their relevance in Hankel
norm approximation stems from the following lemma, (see [1]):

Lemma 2.1 Two Hankel operators which coincide on a vector x € H3 coincide on
the whole invariant subspace generated by x.

It can be shown that with our assumptions ¢ has degree 2n — 1 and that its
first 2k — 1 singular values coincide with 0. Now, clearly Hy, and Hy, coincide on
&k, and therefore they coincide on the invariant subspace X} generated by &;. Since
this function can be written as & = , it is easily seen that X, = —&H 2 and that
it has codimension k£ — 1. The Hankel norm approximant is then deﬁned as Y1 — Pk,
and since its stable component belongs to the orthogonal complement of X, it has
degree at most k — 1. It is also easy to see that the Schmidt vectors of Hy, are of
the form ;—kl.:, where oy, has degree at most n + k — 2. .

In the next section we will investigate the relation which can be estabished
between the Hankel operators generated by these functions.



1e general structure

by examining the relatlon between the Hankel operators Hy, and Hy:
onsider the case ¢; = A\ 2L = t. Then the fundamental equation (3) can be
e [4]) as
nt o P | T
A1 == N+ — 4
‘ptt ¢ ¢t P1 @

, T3 = 0. Therefore

t* z : * t*
1p1* AL )\f?—- - )\Al—- p1*
4 41 t D1

B ek T

t t i

Y| Di

= —)\ — Ao E

vords, the Hankel operator with symbol % has signed singular values
-An and singular vectors 2 2z, In_ This result has been obtained first by

, and it admits a simple generahzatlon to the all-pass functions generated
1rmdt pair.

3.1 Let the Schmidt vectors of Hy, be f‘T‘:.c- and its signed singular values

lg. .- = fok—1 > figk > ... > linyk—1; then Hye has signed singular values
i1, 1 L1 <n-—k, and Schmidt vectors ﬁ’ , given by the fundamental
o Bi .
i — 1=2k,..., k-1
tuk = W T + o 1 , n+

om the fundamental equation we get

uso—ﬁ—i = 2 = o =
k kSk k 'Uv]:: kM kt*'u.k

a (87
2 2 Y i
— u,k_* - - “1_;_
tuk tuk Sk

the result. m




result in [4] admitting a simple generalization is the following: the
- LB has signed singular values 5, and Schmidt vectors —*—
I3
his, from the fundamental equatlon for 1 = n we obtain

plt p:a t ﬂ'nt
A S < LA L 5
o t* Pn | D1 Pn (5)

is equality to the fundamental equation again we get

Yottt ’t* p1

ying by % we get

t pn D; Dj t T Pi  Pn T
Ng=F =gt~ - ==
t*pn t t o, ot P D1

AjAn, yields the result. In conclusion, the fundamental equation for - ™ ;f’;;
Jltable p;:

ltpnp, 1pi  pi
= 6
Ao tFpE ¢ /\t*+ (6)

1e idea is behind the next theorem:

3.2 Let the Schmidt vectors of Hy, be fﬂ% and its signed singular values

... = [Pok—1 > Mok > ... > Unik—1; Then Hay iny ful has signed
°‘k+n l_t:‘kl: 1

lues 1 = Pein-1, Bz = fetn—ty--o) Bk = ... = fikin-1 = 1 and

;tors -—L

te the fundamental equation for ¢ and i > k

o o Spupt oy u of B
k o e e = i —_—
tuy, Spugt* tuy, t*uyg Sk

*
Ok 1 Uit n Prie-1 Uit
Ol pn—1 Uit Sk Ongk—1
e above to —3*2 we obtain
k

Pe = Hn




Qg Ukt o4 Brtk-1  upt o

Ol tk—1Ukt* Uit Sk Cnyk—1 ULt
*

% + .ﬂ.'_

£
upt* Sk

tion by f‘—ﬂ‘—‘—’ gives

ntk—
an+k 1 ukt a = 4 ; ﬂn-{—k—lai an+k—1ﬁ:
i - -
Oy k1 Ukt® ukt ugt* SkOip k1 Oy 15k

W Wiftn yields the result.
er result of [4] which can be easily obtained with this approach is

etween the Schmidt vectors of the operator H | _?i and those of its Hanl

roximant of degree n — 1. The original proof of this result is quite k
ved, and so we present this simpler derivation.

3.1 ([4]) H, w has signed singular values equal to the first (n—1) sig

A tpy
alues of Hy, and its Schmidt vectors are )\n 7 where the p; are as in

om (6) we get
ﬁzAm+%%m
t* Aj t* D

the n — 1 approximant has symbol.
Pat _ y 1P tpn

TP P pn

g the two equalities together:
Mnb ( P ; + _)‘_’ig_;_ Pﬁ)

D1Dn A t p:a. )
Ml Py (A tpy _,\n_tz_’:_l_>?i
PiPn t *m t'pn) t

BT P

7 t* Dy pnt*

. 1x j 1 71"np;‘:
P1Pn DL Pn AaDi AjPiD



and this is precisely the claim. Observe that \,p! = m,. m
It should be noticed that (7) actually means that the Schmidt vectors of the
approximant are obtained projecting the Schmidt vectors of H,, onto the state

space of the approximant, (Z—H 2)
Duality. From the above result we obtain a duality structure for a Schmidt
vector similar to the one presented in [4].

Let
Di t ~  _ Dit
Pr = D o Pk e
_ Olpgp-y Ul - Yon—k-1S5it*
Phn = Oy UL* Phin = Yan—k—15kt
where 9’-’51‘—:,——— is the last Schmidt vector of ¢ and "'2"’: -+ is the last Schmidt vector

of @r . Then the above results can be summarized as follows:
05 (pr) = o7tk (Pim)

o; (Px) = O-Enl-k—j+l (Prn)
It is known that the first (outer) Schmidt vector determines the whole Hankel

operator (see [1]) up to a constant factor. Is this true for any Schmidt vector? The
answer is affirmative.

Lemma 3.2 Let Bt be a stable and strictly proper rational function of degree n with
k — 1 antistable zeros Then there is a unique (up to a constant factor) Hankel
operator of degree n with Bt as its k-th Schmidt vector.

Proof. We can fix arbitrary Ax. Then we want to find a real A; and a stable
polynomial p; such that.

t ¥t t
/\1 = /\ pk . + —Lk
Px t* Dit DP1Dk

Multiplying by £ A;? we obtain

Mot _p, Lmt

M P1 Pk MDDk,
Computing in the zeros z; of t*, we get

/\1101(1) pk(z,.) i=1,...,n
D



Since t* is antistable, this is a Pick-Nevanlinna problem in the right half-plane,
and it admits a unique solution such that |);| is minimal. Thus the conclusion. =

4 Schmidt pairs and robust controller

Let now a rational plant e/d be given. We want to study the relations between
two Hankel operators which can be canonically associated to the plant and are
connected to its optimallty robust stabilizing controller. We say that (e/t,d/t) is a
coprime factorization (in H2)of e/d if (e,t) and (d,t) are coprime and t is stable,
and (e/t,d/t) is a normalized coprime factorizations (in H3?) of e/d if also

e'e +d'd =1t (8)

holds. Given a coprime factorization (e/t,d/t) of a plant, the coprime factorization
(w/p1,v/p1) of a controller u/v is said to satisfy the Bezout equation if

d eu _
f%—fﬁ—l (9)

It is well known (see e.g. [3]) that a controller satisfies the Bezout equation (9) for
some coprime factorization if and only if it is internally stabilizing for e/d. We will
define now a particular Hankel operator using the following result from [5] :

Lemma 4.1 Let (e/t,d/t) be a normalized coprime factorizations of e/d, and let

(u/p1,v/p1) satisfy the Bezout equation (9). Then the strictly proper antistable part
of
r_du e
R =%p t ¥
is independent of the choice of u/py and v/p;.

Therefore also the hankel operator Hg. is independent of the stabilizing controller.
In the sequel it will be assumed, as in the general case, that the singular values of
Hp. are distict. It is clear that in this case the first Schmidt vector is p1/t.

Lemma 4.2 Suppose (¢/t,d/t) is a normalized coprime factorization of e/d. Then
there exists a unique pair 'P%’ %}I € HY and A € R such that the Bezout equation

(9) is satisfied and
AN 2 1

i.e. A"1R* is all-pass of minimal degree, and |\| is minimal.

s _d'u L etv _\ 0
R + 3 /\?—;1— (10)



Proof: we could invoke the above lemma, but there is a also the following construc-
tive argument. We seek a solution of

dv — eu = tp;

d*u + e*'v = Aip}
Multiplying by Ap} and p; respectively, and regrouping coefficients, we get

(Adpi — e*pr)v = (d*p1 + Aep})u (11)

If we assume v monic, then we obtain 2n equations and 2n unknowns. We need
to check that the above expressions have no common zeros. But rewriting (11) as
av = fu we get aa* + 6* = (1 + A)p:pt, and therefore a and 3 are coprime. m

"The controller u/v obtained above is called optimally robust stabilizing controller
for g, and it is very relevant, in view of the following well known result by Vidyasagar
and Kimura.

Theorem 4.1 ([9]) Let g = e/d have a normalized coprime factorization like in
(8). Let B(g,e) ={g' : ¢ = (4 +Ag)7(8 +A%)} for some pair (AQ,A%) such that
t

t
lAg, A%”«: < ¢ Then k stabilizes all g’ in B(g, €) if and only if it has a factorization
t

U v
(p11’ pu) such that
&
o] <
P11 lleo

. d e u . . .
b) the Bezout equation ?p%l — 5, =1 is satisfyed.

The value ¢ depends only on the factorized controller: it can be shown ([9]) that

there is a maximal ., and it is achieved precisely by the controller defined in lemma

(4.2). The next result makes precise a connection which was first observed in [5],

where it is shown that Hg. and H d* [+ share the same stable Schmidt vectors:
e* /t*

the representation of the unstable vectors seems to be new.

Theorem 4.2 let (u/p;,v/p1) be as in lemma 4.2, and let \; and pi/t be the singular
values and Schmidt vectors of Hg.. Then the Hankel operator with symbol [ Z* ﬁ* ]

has signed singular values o; = 7;-\:\-5 and Schmidt vectors

*
A -

P
5-[E )

!
RV/ESY;

SIS,
e



Proof: in view of (4), (8), (9) and (10), we can write

d e ut . Py T

B, || B |E= R g _ | % + P
_e & w I* ol

tt tt pi

tt

d a _ v
A |3 S L
_F Y _t-: ;; it‘

P1

and

Multiply on both sides by [ t —;f ] and subtract from the second equation the
t
first multiplied by A;:

& _ v ut & e 2P )\.Ti
e P (e )| P O|PL= | Tt A )“p;
AT il v | et o
t* pl p‘ tlt P]_

i‘_ .’U._:. " .‘£ * Z . —£ :
[é]g}(lﬁg):&[;&]%—,\{ & ]%JF[&]%—Jr[ t ]’;& (12)
t 2

t* p1 t

e, '

or

where the first two terms in the second member are in H2and the other two are in
H?2. Hence we have shown that

A wol, a ..
Hrp g ﬁ:____‘_z_ 4 %L_ [T
[‘*—] LA AL e G

tt

To conclude the claim, observe that

. d
d e PyOIPL | e (T — RPL ML )\ B
£t o | e |t Pt it
p* tt pl pl
1

e g7es (|

d .
& ]& T
w7 V1+ X
which exactly what we wanted. =

The obvious dual of the previous result, with a similar proof, is the following:

and thus

AN AL
 WOR——
F:IP;

!
pr—
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Theorem 4.3 The Hankel operator H [4: e.} has Schmidt pairs

ERT
1 Pll Pi _ m | P

with signed singular values o; = '
Y1+ A2

LN

The relevance of the above results lies in the possibility of characterizing com-
pletely the operator H d* /e in terms of the scalar operator Hg., whose structure

e* /t*
is much simpler to study. An example is the next result:

Corollary 4.1 The Nehari extension of [ '/t ] is

B*/t*
v/t | pl+ N2 &+ o

Proof: it is sufficient to recall that, if (£,7) is the first Schmidt pair of a Hankel
operator and £ is scalar, then the Nehari extension is given by ® = n¢~1. The second
equality is otained then rearranging the terms in (12) |

Other relations can be derived from Theorem 4.2:

Corollary 4.2 The following equalities hold

(14 A%)d*p; = Mu*t + vt* (14)
(1+ X3e*p;, = W't — ut* (15)

Moreover
uu+ vy = (1+ X)pipy ' (16)

Proof: the only thing to show is that (16) holds. But mupltiplying each side of (14)
and (15) by its conjugate and adding each side, we get, in view of (8):
1+ X)’pipit*t = Nultut® + Mu'tv't + ut*vt*) + vt*v't
+ Avttut* — Avtutt + vttut*) + ut*u't
= (1+ ) t't(u*u + v*v) n

'The above equalities are used to show that the map from e/t,d/t to R* is in-
vertible.

11



Theorem 4.4 For any strictly proper rational function pp/t € HY withk—1 stable
zeros and M. € R there exists a unique Hankel operator with a 2 x 1 inner symbol

[ Zz ] such that its k — th singular value and Schmidt vector are precisely Ax and
D/t

Proof: in view of lemma 3.2 and theorem 4.2 we can restrict the proof to pi.
We are looking for functions d, e, u,v such that (14) and (15) are satisfied. We will
in fact work with the cojugates:

(1 + X®)dpi = M*u+ tv*
(14 Xep} = Mo — tu*

. To simplify notation, in this proof we work with d; = (1+%)d and e; = (1+%)e.
We know that there exist unique coprime polynomials (u1,v}) such that

P} = At*uy + to] a7
Then, for any d; we have d;p} = At*dyu; + tdyv}, and thus
dip} = (duy — st)t* A+ (dvy + Ast*)t
. We can choose s such that degu < degt
diui —st=u ' i+ As't=v (18)

and clearly, since dip} = ut*) + vt, it follows that also degv < degt. Multiplying
(17) by e1 we get likewise:

e1p} = (e1vy — Art*)t + (eyur + rt)At*

and thus
u= —eju; + Ar't v=-eu +rt (19)
Equating (18) and (19), we get |
urdy — st = —vie] + Ar't vid} + As*t = uge; + 1t
and eventually:

u; U di | _ st + Ar*t
v —ul || et | | —Ast* it

The matrix on the left is nonsingular: in fact its determinant is —u;uj —v19y, which
cannot identically vanish. Inversion and division by (1 + A?) will yield d and e. =

12
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