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Abstract
1sider here the multivariable version of a result appeared in Fuhrmann
ser [6]. We show that the singular values and the Schmidt vectors of
nkel operator with symbol a normalized coprime factorization of a
:an be given an explicit representation in terms of the plant, of its
ptimally robust controller and of the Schmidt pairs of another Hankel
or. Our derivation is obtained using techniques of superoptimal
extension developed by Young.
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-oduction

ce of Hankel operators in the theory of robust control has been
ice the seminal paper of Adamjan, Arov and Krein [1]. Nevertheless,
features have been studied in detail only recently, in [6] for relations
midt pairs and robust control, and in Young (see [9]) for a generaliza-
vasic thinking of [1] to the multivariable case. The work of Young, in
as never been exploited very much. Still, we believe that there is some
: gained by using Young’s approach to extend the results of [6] to the
2 case. This is, in fact, the basic idea of this work.

1009 AB Amsterdam, The Netherlands



The paper is structured as follows: section two begins with some notation, and
then gives a brief account of the results of [9] adjusted to our setting; section three
contains the main result (Theorem 3), and some corollaries.

2 Preliminaries and notation

We work in the Hilbert space setting of the plane; we define [7] L2(I) to be the set
of the vector or matrix valued (the proper dimension will be clear from the context)
square integrable functions on the imaginary axis, and H2 to be the subspace of L?
of functions analytic in the right half-plane and s.t.

(o 2]

1 . : :
itilg o L tr(F*(z + iy)F(z + iy)) dy < o0

where * denotes transposed conjugate. If F' and G are vectors, the inner product in
H? is
+

(F.G) = 517; [ €w) Fliw) d

where bar denotes conjugate. Analogously, His the subspace of L? of functions
analytic in the right half-plane and s. t.

sup (esssup ||F(z+iy)|| ) < o0
>0 yER

where ||F(x+iy)| denotes the usual matrix norm. (H2 and H>are defined similarly
on the left half-plane).
Let F be function of L*®: we denote by P (P_) the orthogonal projection of L?
onto H2(H?). The Hankel operator with symbol F' is defined as
Hrh = P_Fh heH? , (1)
A Schmidt pair (£,7) of Hp is a pair of vectors £ € Hi, n € H? such that

Hp§ = on, Hin = of. (2)

for a convenient positive number o, called singular value. It can be shown (see [1]
or [5]) that if F € H2 and is rational of degree n, then there exist n singular values.

g, 2 0y 2 ... 20p

and n pair (&1,M1) - .. (&n, 7.) (Schmidt pairs) satisfying (2).



In a few places we will also need the conjugate Hankel operator Hp with symbol
F:
Hyh = P,Fh he H? 3

Let a matrix G € L*> of dimension p x m be given. To fix notation we will
assume p < m. We say that a factorization NM~! of G is a right normalized
coprime factorization (NRCF) if

M*M+N*N=1 (4)
and G =M NN is a normalized left coprime factorization (NLCF) for G if
MM + NN =1 (5)

It is well known that internally stabilizing controllers K = UV~ = VT oG
satisfy the Bezout equations VM —UN = I and MV —NU = I, and that if (U, Vo)
is one solution, then any other controller is obtained by the Youla parametrization

K= U+ MQ)(Vo+NQ)™ QeHY (6)

The matrices M, N,M,N,U,V,U,V € H are called a doubly coprime factorization

of a plant G if
M N[V -N] _[Io -
UVI|-U M| |o0oI

Let 0;(G) denote the i-th singular value of a matrix G. A function R* is called
superoptimal Nehari extension of a function F* € L* if

e 0;(R*(w)) is constant for 1 <i < p
e the Hankel operators with symbols F* and R* coincide

the second property is equivalent, as is well known, to the fact that the strictly
proper antistable parts of the functions coincide. '
Define now A; for 1 <i < p as

Ai = sup o;(R*(s))
sECT

and set A = diag{\;}, and denote by F# the pseudoinverse of a matrix. We can
now quote a theorem from [9]:



Theorem 1 Let Rj be a mx p matriz-valued function in H* such that A\, > 0. Then
there exists a unique function R* € L of minimal degree which is a superoptimal
Nehari extension of R§ and it is given by

14
R =Y xmitf 8
i=1

where & and n; are the Schmidt vectors of H, R} corresponding to the singular values
Ai. Therefore
R = A Rn; = A&

Moreover, the vectors & and &; are pointwise orthogonal for i # j. The same holds
for m; and ;.

Remark There are two facts which need to be mentioned about the above formu-
lation, which differs slightly from the one in [9], to which we refer for the details
we discuss in the next few lines: the first is that our setting is continuous and not
discrete, and therefore a Cayley transform argument has to be used to transpose the
result; the second is that our formulation corresponds to a one sided Pick-Nevanlinna
problem, and therefore the statement of the theorem simplifyes considerably. In par-
ticular, all spaces that in the proof of Theorem 2 in [9] are in L2, are in our case
in H2; in particular, the vectors &; are in H2, and hence they are trivially Schmidt
vectors of R*. Since Hgr. = Hp; the &; are also Schmidt vectors of the last operator.

We say that the singular values A; and the Schmidt vectors &; occurring in Theo-
rem 1 are Young singular values and Young vectors for Hg.. Note that, togheter with
the values A; they uniquely determine the Hankel operator Hg.. The pairs {&;,7:}
are likewise called Young pairs. Setting X = [£,&,...,&) and Y = [, 72, ..., 1p) we
can write (8) as R* = YAX~L

Corollary 1 Let X and Y as above. The superoptimal Nehari extension of F can
then be written as:

R = (Y#»AX* (9)

Proof: the claim follows directly from Theorem 1 applied to the adjoint operator
(Hrs)*, which coincides with the (conjugate) Hankel operator with symbol Ry and
whose (conjugate) Young pairs are {7;,&;}. Then the superoptimal (conjugate)
Nehari extension of Ry is S = XAY#. But from the definition it follows that S* is
a superoptimal Nehari extension of R and thus, in view of uniqueness, S* = R*. m

Lemma 1 Let X = [,&,...,&] and Y = [m,m2,...,m). Then there exist Q,Q
inner and D diagonal outer in H2 such that

X=QD Y:Q*[%*]:QID* (10)
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RR* = QA2Q* and R*R = QA%Q"

since the columns of X are pointwise orthogonal in H?, X*X is diagonal,
refore a diagonal outer spectral factor D. Obviously Q = X D! is inner.
” we follow a quite standard argument(see e.g. [3]). Again in view of
-thogonality in H?, there exists an outer p x p diagonal function E such
= EE*, and therfore Q; = E7'Y* is a p x m in Hsuch that Q;Q; is
, and therefore a projection, a.e.. Thus so is I — Q;Q, which can be
. an essetially unique manner) as Q,Q, where @, is an (m — p) X m
@,
@

1. In conclusion, the function Q= is inner. Moreover, it is

, by construction.

hat D = F, observe that we have just shown that

R* :-Q—*[ E(‘)* ]AD—IQ*

of corollary 1, it is
R = XAY* = QDA[(E~")*,0]Q
ng the conjugate,
-1 *
Z)’*[ " ]AD*Q* - Q*[ v }AD*Q*

es E7'AD* = E*AD7!,i.e. D = E, since D and E are both outer. »

> have said so far is based on the properties of some particular Schmidt
», the Young pairs. We now turn to a generic Schmidt pair: let \; and
2, respectively, the k — th singular value and Schmidt pair of Hg., for
ind denote the Young pairs with the index k; for 1 < i < p. First of all,
 that there exists unique ¢ € H? and ¢ € H2 such that

R*& = Meme + Yk (11)
Re = Meie + o (12)

are called, following [5], fundamental equations for Hg.. They clearly
the Schmidt pairs. Then the following lemma is immediate:

The Hankel operator Hr has singular values —Ax, with k # ki, and
tors {¢r, ¥r}, again with k # k;

)



Proof: multiplying (11) by R and using (12), we obtain:

Rip = — M + (RR* — A0)éx (13)
where, in view of corollary 1, (RR* — A2)¢x € H2. Analgously,

R*¢r = —Nthe + (R*R — X (14)

and now the last term is in H2. Therefore (13) and (14) are fundamental equations

for Hg, as wanted.
We will define now our function R* using the following result from [6] :

Theorem 2 :let (M, N) and (M, N) be coprime factorizations of G, and let (U,V)
satisfy the Bezout equation
MV -NU=1I

Then the strictly proper antistable part of Rf of M*U + N*V is independent of
the choice of U and V. Similarly, let (U,V) be a solution to the Bezout equatzon
VM —UN = I. Then the strictly proper antistable part R, of UM + VN is

independent of the choice of U and V. Moreover, Ry = RO, and there exist unique
pairs Uy, Vo, Uy, Vo such that

Ri = M*Uy + N*Vy = UM, + Vo, (15)
Still a direct consequence from [6] is the following:

Proposition 1 Let R* € L™ be a function whose stable strictly proper part is Rg.
Then there exist unique pairs (U, V) and (U,V) such that

2]

R =MU+NV=UM +VN

v ][] [5]e

Multipling on the left by [M*, N*] we get

Proof: from (6) we get

M*U + N*V = M*Uy + N*Vo + (M*M + N*N)Q = R} + Q

Therefore choosing Q = R* — R} will yield the desired (U,V)m
The following well known result (it is a direct consequence of the Youla parametriza-
tion), will be needed:



Corollary 2 The following equalities hold:

M ] U1 [ N
Similarly, ) o
N 1, [U N
[-M_R“[V_+_—M‘*] (17)

Proof: multiplication of (16) by the matrix [ __A]/\[/.* ]\][V* ] yields immediately the
result. Similarly for (17)

3 Main results

We can now make a particular choice of R* and (U, V) in view of Theorem 1. Given
a function G = NM~1 = H_ITV_, we can define R} to be the superoptimal Nehari
extension of M*U + N*V, where (U, V) is any solution of the Bezout equation.
Clearly, in view of Theorems (1) and (2), R% is well defined and does not depend
on the choice of the controller. Define next Uy, V3, Uy, V€ H as the solutions
(existing and unique in view of Proposition ( 1)) to:

M*UA—FN*VA:RZ (18)
UM +VA\N' = R} (19)
‘Then we have the following:

Lemma 3 Let (M,N) and (M, N) be coprime factorizations of G, and let Uy, Vy,
U, Vabe defined from (18) and (19) for R} as in theorem (1). Then they constitute

e e

a doubly coprime factorization of G which implies R=R and UV-1=V U

Proof:we have

M N M* Nt | [ M* N* M‘N_I
N -M||N - ||V || N -7

Then
- — - —1|M N |[M* N ][U
VaUr =TV, = [VA,—UA][N —M‘H'N* —‘M*Hvﬂ
= [I,R;][ff}}:o .



The controller K = UV-! = V_'U is called superoptimal robust stabilizing
controller of G.

The next theorem extends to the multivariable case a result of [6].

Theorem 3 Let (£, mk) be the Schmidt pairs of H R%- Then the Hankel operator

Hy _. 1 has singular values ox = A and Schmidt pairs
[ M ] 1+ X%

—

N

where the ¢ are as in (12)

Proof: in view of (7) (19) and (12), we can write

R b a ol e

and L .
M N M -V £ = 0 £ = 0
~N* MLV +U [P R e+t
. . M -—N .
Multiply on both sides by [ M ] and subtract from the second equation the

first multiplied by Ax:

M-V U] [M N[ -22&— o
[-N*_I_U]ék—)\k[—v'*}nk—l: ] k'f(/’k kk}

or

[—AWI* ]fk(1+)\i)=)\k[-€-* ]nk_/\k[_%—:* }¢k+ _ _VU ]kar [ _A;][V ]¢k

where the first two terms in the second member are in H?and the other two are in
H?2. Hence we have shown that

A U M
ot e (7 (% 1o



To conclude the claim, observe that
— 1 ([ T" M
-

and thus

He 1 ([U’*]n [W]¢) i ¢
= ] ——— 5+ [T — | = e} =
M e \LV N V1+X2
which is exactly what we wanted. m

The obvious dual of the previous result, with a similar proof, is t

Theorem 4 The Hankel operator with symbol H| [ ] has Schmid

M*,N*

1 U M
with singular values oy = A
14+ A7

Corollary 3 Let (&,m;) be the Young pairs of H R Then the F
H [ i } has Young pairs

v

N

with singular values o; = A
;71 + A2

Again, a similar result holds for the operator H [p1+.5]

Corollary 4 The following equalities hold:

M o N U] 1 [-W :
L R AW S T /A b

M 1l U 1[ N
[N]"h == ‘/\—Z[V:}fz—i-/\—z[_m—*}&

_ M [ Ua 5.___1__ ~Va’ :
- L+A2| VA [>* 142 U,* T

and

©



or consequence is the following:
ok

r 5 The superoptimal Nehari extension [ g ] of [ AW/I* ] is given by:

A -V ] —1y*

[5]=] o Jea+ma 22)
M +A U,\" | [ D 11
[ a)- [0 e 5 Jsnroe

1e second equality follows from Theorem 1 and Lemma 1. The first is

e

subtracting [ %ﬂk ] from the second, and using (20).
L the fuctions Up,Va,Ua,V psatisfy the conditions:

Un*Ur + Va*Va = QU + AQ? (24)
[UATA" + VaVA'IQ, = Q1( +4%) (25)
md @Q are as in (10)

Itiplying (21) by [Up*, VA*] we obtain

>‘i * *
Rz = Tt (UA*Up + VA*™ V)&

Rani = Ai&;, we have
C (Un*Un+ Va' V)t = (1 + AD&

' (10), we get the result. A similar argument holds for the other equation.
n now to the inverse problem, that is to characterize all plants stabilized
| controller ia superoptimal manner.

S € HS as the unique outer solution to

S§*S = Upx*Un + Va*V

(24), it is
Q*S*SQ = (I +A?) (26)

10



which implies that S is coercive and therefore a unit in Hfand the vector [ ‘[i:rr ] =

[ 10va ]S ! clearly constitutes a normalized coprime factorization of the controller.
A

Simlarly, for [U4,V ], we can define the outer spectral factor S € HY as the solution
to
55" =TUsUA" + VaV'
and obtain a left normalized coprime factorization of the controller:
[Un, VNl =5 [Ua, Val
Again, in view of (25) o
Q1SS*Q1* =+ A2) (27)

So the equations relating plant and superoptimal controller now write, in view of
(10), (20), (21), as

[%} = gA JYA(I+A2) Lx-1 +[_‘?} ]X(I+A2) X7t (28

- FgA } I*D*A(I+A2)‘1D“1Q*+[ i ] QU +4%)7'Q*
- 3 ]s QDAU +A)IDTIQ" [_gN](ﬁ*)-‘

(we recall that Q; = [I,,0]Q). Multiplying by S* and setting
T =5'Q,'D*A(I + A)~'D™'Q*s*

M—* * __ U N * VN
7 o= e [ 5] 2
The dual equation (21) yields:

[ % ]y_ [ ‘U,A ]XA(I+A2)“ [g }Y(I+A2)‘

we get finally

Multiplying by D~!(I + A?) and using (27),
V] - [V ]sczzxczl(‘s‘*) 5, [;g* [sar
[ e [g e

11



Lemma 5 T*T =55 —1 and TT* =S55*—1
Proof: from (26) we have

T*T = S'Q,"D*A(I +A%)~'D'Q*S*SQ(D~Y)*(I + A%)~ADQ,5
= §Q\D'ADH (DI +A*)T'ADQ,S
= STQuA(I+4%)7'Q,S
= 55-1

Similarly,

JE——

TT* = SQ(D™Y)(I+A%)~'ADQ,S5°Q," D*A(I + A%~ DT'Q*S*
SQ(D™Y*ADD*A(I + A®)™'D™1@*S*

SQA2(I + A2)—1Q*S*

= §§*—1

I

Since, from (26), L = SQ(I + A?)~! is inner, we obtain
TT* = LA’L* (30)

So T*L has Young values A, and thus so does T* (apply Hr. to LH2, see [9]
for details). Therefore, given normalized coprime factorizations of the plant, the
superoptimal controller and all the functions T, S, S are uniquely determined.

If we now consider the inverse problem, i.e. given normalized coprime factoriza-
tions of the controller, what can be said about all the other functions occuring in
(29)? Clearly the key point is to find the function 7™, since everything else is then
uniquely determined. Now we want also (30) to be satisfied for a given A. Two
questions arise: for which A does (29) possibly have a solution, and how to compute
it. The first question finds a simple answer in the following

Lemma 6 (29) has a solution only if A > Ak, where Ak are the Young values of
Hyymivyn

Proof: it is clear that there exists, in view of theorem (2) applied to (U,V) in-
stead of (M, N), a unique superoptimal Nehari extension R of P_(Un*M + Vy*N)
with Young values Ag. Therefore, from the very definition of superoptimal Nehari
extension, o;(R(iw) > 0i(Rk(iw), and therefore we reach the conclusion. m

The next result is about the reduction of the 2 block interpolation problem (29)
to a one block problem.

12



et T* satisfy _
NS*=VxN'T* - Uy (31

S € HY with S outer. Then T* also satisfies

MS*=Un"T* +Vy (32

4

€ HY, and therefore satisfies (29). Moreover, M,N,S can be choser
N) are normalized coprime.

> be the minimal degree inner function (denote this degree by nx) suck
/nP* € H>, and denote by (z;,v:),% = 1,...,nk the zeros of P* (i.e.
,v;) for which P*(z;)v; = 0. Then (29) is equivalent to

(U—N*T* + VN)P*
(Vn'T* — Uy)P*

(Zi)’l),; =0

i=1,...,n
(), =0

?*(2;)u; from the second equation, we get
T*P*(z:)v; = [(Va") " Un P*] (2:)vs
in the first yields

[T (VN Un P (v = ~ (Ve P*] ()

[(VN*)—IUN*UNP*] (Z,;)U,; = — [VNP*] (Z.,')’Ui

[(UN*UN -+ VN*VN)P*] (Zi)'U,; =0

ways verified, and thus so is (32). =

sion, to solve (29), we just need to look at (31). The interpolation
:ave obtained can in principle be solved, but we have to do it throught
unetrization: in fact, given A, for each fixed L, we have to parametrize
[' to (31) satisfying (30).

lem drops if we make the simple choice A = AI. In this case (31)
andard Pick-Nevanlinna problem (see e.g. [2] or [3]), and we reobtain
results about optimal controllers (see e.g. [5] or [8]). Define

T = {T € L%;||T|| £ A and T satisfies (31)}

ain the characterization of all plants stabilized by a given controller
2d stability margin.

13



Theorem 5 let T € Txx. Then the pairs (M, N) defined by (29), and the pair

(M, N) given by
Mlg _[Un]p [VN
Batiaita 9
are normalized coprime factors of the same plant G and K stabilizes G with stability

margin not smaller than (1 + X2)~!

The proof is standard and will not be given here.
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