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Abstract

We consider in this paper the set 72 of p X p complex matrix- valued
rational inner functions of fixed McMillan degree n. We show that this
set has a smooth manifold structure, and we exhibit two atlases for
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tary groupU(p); the second studies Z2 as transfer functions and rests
on Schur parameters. Similar results are obtained for the real-valued
functions.
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Introduction and preliminaries

Introduction

- present work is devoted to a differential-geometric study of rather clas-
| objects in analysis namely inner matrix—valued functions. More pre-
ly, we prove that the collection of such matrices with prescribed size
Mc-Millan degree is an embedded submanifold in the Hardy space, two
ymetrizations of which are derived. We do this with an eye on linear
;rol systems not only because several methods from system-theory are
vant to such a study but also because the geometry of inner matrix—
led functions in itself impinges on the parametrization of systems via

Douglas—Shapiro—Shields factorization of transfer-functions introduced
29].

t recall what Schur and inner functions of the disk are. A complex—
led function is called a Schur function if it is analytic in the open unit
:ID and bounded by one in modulus there. Now, it is a theorem of Fatou
» such a function has non-tangential boundary values almost everywhere
he unit circle T; a Schur function is then called inner if these boundary
ies are of modulus one almost everywhere on T. The multiplicative
cture of Schur and inner functions is well-known (see e.g. [30] [25], [40]);
articular, rational inner functions, also called finite Blaschke products,
of the form:

) b(z) = cﬁ il
=1

1— 2w;

re the w; are in ID and c is a complex number of modulus one. The
\ber n is the degree of b, and we will denote by I} the set of Blaschke
tucts of degree n. Considering I} as a subset of some Hardy space H,
re 1 < g < oo (the actual value of g turns out to be irrelevant), we want
nalyse the smoothness of this object. Expression (1.1), however explicit
ay be, is not adequate for this purpose because the functions b — w;
not differentiable at branching points. Of course, it is obvious how to
edy this: we simply set

) p(z) = [](z - ws)

=1



and define the reciprocal polynomial of p by

13) ) = [11 - 20 = 8(2)
=1
so that @)
0
(1.4) be) = o2

Since p and j are coprime, (1.4) defines a one-to-one correspondance between
I! and pairs (¢, p), so we can choose ¢ (ranging over T') and the coefficients
of p except for the leading one (ranging over some open subset of C*) as
coordinates.

There is, however, a more subtle way of describing I} which was introduced
by Schur in his celebrated paper [49): starting from a Schur function f, one
defines recursively a sequence (fx) of Schur functions by setting fo = f and

)= 10)
z(1 — f&(0) fr(2))

The process stops if, at some stage, fr(0) has modulus one. The sequence

of numbers p def f1(0) are called the Schur coefficients of f, and they com-
pletely characterize the function. Moreover, f belongs to I} if and only if
[pk| < 1 for k < n and |p,| = 1. This leads to another proof of the smooth-
ness of I} [12] by showing that it is diffeomorphic to the product of n copies
of the open unit disk and of a copy of the unit circle. It should also be clear
that everything in what precedes can be specialized to the subset RI} of
I} consisting of real Blaschke products of degree n, namely those satisfying
b(Z) = b(z). In this case, parameters ¢ and p as above are real and so are the
Schur coefficients. For more information on the Schur algorithm and some
of its applications to signal processing, we refer to [32].

(1.5) frr(2) =

In this paper, our interest lies in matrix-valued functions rather than just
scalar ones. A CP*P-valued rational function @ is called inner if it is analytic
in ID and takes unitary values on the unit circle T. The set of CP*P-valued
rational inner functions of degree n will be denoted by IZ, where the degree
is now meant to be the McMillan degree. Our objective is to study the
differential structure of I¥ and also of RI? which is the subset of IZ con-
sisting of real functions (i.e. satisfying Q(Z) = Q(z)). As we shall see, it is



again true that IZ and RI? are smooth, but it is more demanding to obtain
effective parametrizations. A multiplicative decomposition into elementary
factors still exists as was shown by Potapov [47], but again runs short of
smoothness at branching points. Also, a direct analysis based on some ex-
plicit description of the matrix analogous to (1.4) is still possible when p = 2
[21] but runs into difficulties for p > 2. In contrast, the seemingly more in-
volved approach using Schur parameters does carry over to the matrix case.

To state this more precisely, let us introduce the set Uy, (resp. Op) of uni-
tary (resp. orthogonal) p x p matrices and recall that Up (resp. Op) is a
manifold of dimension p? (resp. p(p — 1)/2) (see e.g. [34]). Now, it will
follow from the matrix version of the Schur algorithm that I2, considered as
a subset of some H, with 1 < ¢ < o0, is locally diffeomorphic to the product
of n copies of the open unit ball in CP and a copy of Up. Similarly, RIZ is
locally diffeomorphic to the product of n copies of the open unit ball in IR?
and a copy of Op. Hence the spaces I? and RIE are smooth (and even real
analytic) manifolds of dimension 2np + p? and np + p(p — 1)/2 respectively.
We shall say further that two members @1 and @, of IZ are equivalent if
there exists a unitary matrix U such that @, = Q2U. A similar equivalence
is defined in RIE, U now being orthogonal. We will denote by I2/U, and
RIE/O, respectively the associated quotient spaces, and we shall see that
these spaces of “normalized” inner functions are also smooth manifolds.

Yet another way to proceed is to consider inverses of inner matrices rather
than IF itself. Indeed, the inverse of @ € IP is a proper transfer function of
McMillan degree n and we may resort to classical tools from system-theory
like realizations and coprime factorizations. This time, however, charts will
be obtained in terms of realizations showing in particular that I2/U, (resp.
RIE/O,) is diffeomorphic to the manifold of observable pairs (C, A) where
C € CP*™ (resp. RP*") and A € C™*" (resp. IR™*™). This, in some sense,
can be expected from the Beurling-Lax theorem because members of I2 /U,
are in one-to-one correspondance with shift invariant subspaces of Hj of
codimension n and the orthogonal complement of such a subspace, being
n-dimensional and invariant under the left shift, is therefore the span of
the columns of some C(I,, — zA)~!. This system theoretic approach will be
taken in section 2 and the Schur algorithm applied in section 3. We discuss
in the final section a specific link to rational approximation in Hardy spaces
and identification which is stressed in [12], [21] and [13].




1.2 Some preliminaries and notations

In this subsection, we fix notations and review a number of facts on matrix-
valued functions which will be needed throughout the paper. Recall that the
open unit disk and the unit circle are denoted by ID and T respectively. The
symbol C™*™ stands for the space of n X m matrices with complex entries.
When m is equal to 1, we will write C" for short. We let GL(n) denote the
group of square n X n complex matrices with non zero determinant. We set
Hp (resp. Sp) to be the set of hermitian (resp. skew-hermitian) matrices
of size p. The identity matrix of C"*™ will be denoted by I, or I if n is
understood from the context. The symbol A* will designate the transposed
conjugate of the matrix A as well as the adjoint of an operator between
Hilbert spaces. In particular, when z € C, z* is the conjugate of z. The
transpose of the matrix A will be denoted by A’. If H is a Hilbert space
and M is a closed subspace of H, the orthogonal complement of M in H
will be denoted by H © M. The abbreviation l.s.{v;} is used to mean the
linear span of the vectors v;.

A complex scalar or matrix-valued function F, defined over a subset of C
which is stable under conjugation, is said to be real if

F(z*) = F(2)".

We let Ly(T) stand for the usual Lebesgue space of the circle and ||f|l,
means the norm of f in L,(T). The Hardy space with exponent ¢ of the
open unit disk will be denoted by Hg; recall that Hy is the space of functions
f holomorphic in ID and such that

(1.6) sup || £ (re®)|| 1, (my < oo.
r<1

Such a f has a nontangential limit at almost every point of T and defines in
this way a function belonging to L,(T') whose Fourier coefficients of negative
index do vanish. Conversely, any such function in Ly(T) is the nontangential
limit of some uniquely defined f € Hy. It is then customary to consider H,
as a closed subspace of Ly(T') by identifying f and its boundary function.
The norm of the boundary function in Lg(T) is, by definition, the norm of
[ in Hy and turns out to be equal to the sup in (1.6) (see e.g. [30], [25] or
[40]). In particular, it follows from Parseval’s theorem that

Hy={f(z)= Zakzk , ax € Cand ||f]I2 = Zlak]2 < 00}
0 0
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Also, Hy, is the space of bounded holomorphic functions on ID endowed
with the sup norm. We designate by A the disk algebra which is the closed
subalgebra of H,, comprising functions that are continuous on ID. The
symbol RH, will denote the real Hardy space of functions in H, which
are real or, equlvalently, whose Fourier coefficients in Lq(T') are real The
symbol H, stands for the conjugate Hardy space of functions f analytic
outside ]D (including at infinity) and such that f(1/2) € H,. We define
RH, accordingly. Just like before, A, identifies to a subspace of Lg(T) but
the Fourler coefficients vanish this time on positive indices.
When 1 < ¢ < oo, the space LE*™(T) of p x m matrices with entries in
Lg(T) will be endowed with the followmg norm: if M is such a matrix with

entries m; ;, we set
1

Il = (z umz-,jnz>

When ¢ = 00, we define

[M]joo = ess. sup [[M(e?)]),
T

where || A|| denotes the operator norm €™ — CP of the complex p x m matrix
A. Of course, we may work with many other equivalent norms in Lp*™(T)
and the above choice is mainly for definiteness. When g = oo, for instance,
we may also take the sup of the ||m; j||oo’s. The present definition, however,
has the advantage of making L2XP(T) into a Banach algebra and is the
one usually adopted in control theory. The subspaces HP*™ and H pxXm of

LEX™(T) are equipped with the induced norm and so are the real subspaces
Rprm and RHPX"‘

For the convenience of the reader, we recall some basic facts from matrix-
valued rational functions. If such a function W is analytic at infinity, it can
be written as:

(1.7) W(z) =D+ C(zI,— A)~'B

where (A, B, C, D) are matrices of adequate sizes, D being merely the value
at infinity. The expression (1.7) is called a realization of W. If the size n of A
is minimal, the realization is said to be minimal. Two minimal realizations
of a given function W are always similar, namely if

W(z) = D+ Ci(zl, — A;)"'B;, for i = 1,2



are two minimal realizations, then there exists a unique invertible matrix S
such that:

Ay By _ S 0 Ay B sl 0
Cy, D) \o0o I Ci D 0o I/
Recall a pair (C, A) of matrices in CP*"™ x C™*™ is said to be observable if

k=00

ﬂ Ker{CA*} = {0}

k=0

and that a pair (4, B) is said to be reachable is (B*, A*) is observable, It is
actually well-known that a realization (4, B, C, D) is minimal if and only if
(C, A) is observable and (4, B) is reachable [42]. In this case, the poles of
the rational function W(z) are the eigenvalues of A.

Essentially equivalent to the above is the fact that any complex vector
space M of germs of CP-valued analytic functions at 0 which is both finite-
dimensional and invariant under Ry, the left shift at 0 defined by

f fz) - 10

z

Rof(z) =

is in fact made of rational functions and can be described as the span of the
columns of some matrix

(1.8) C(I, — zA)™?

where (C, A) is observable and 7 is the dimension of M. Suppose now that
W is real or equivalently that the rational matrix W (z) has real coefficients.
Since realization theory is valid over any field, the matrices A, B, C and D
in (1.7) may be chosen so as to be real. Accordingly, we say that a space
M of analytic germs as above is real if

Zakzk EM= Zt‘zkzk € M.
In this case, the matrices A and C in (1.8) may also be chosen so as to be real.

The minimal feasible n in (1.7) is called the McMillan degree of W. It is in-
variant under Moebius tansfomations of the argument and, since any W can
be construed to be analytic at infinity by performing such a transformation,
this provides a definition of the McMillan degree for general rational matrix
functions. Also, if W is square and det W does not vanish identically, then
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W and W~! have same McMillan degree. We refer to the monographs [42],
[16], [7], [29] and [33] for more details.

In the sequel, £y »(n) denotes the set of px m rational matrices of McMillan
degree n that are analytic at infinity. We single out the subset X7 ,,(n) of
Xpm(n) made of matrices having no poles outside ID. It is obvious that for
any ¢ > 1

Zpim() = Zpm(m) 0 HP™

The subset RY,,(n) of real elements in X, »(n) is just the collection of
transfer-functions of causal discrete-time linear dynamical systems with m
inputs, p outputs and n-dimensional minimal state. The corresponding sub-
set RY., . (n) of X .(n) consists of stable transfer-functions.

Any W € ¥ ,,(n) can be factorized as
(1.9) W=@Q 'R

where ) belongs to IF while R is a rational matrix which is analytic in the
closed disk. Moreover, such a pair (@, R) is unique up to left multiplication
by some unitary matrix. If, furthermore, W happens to be real, the pair
(@, R) can also be chosen so as to be real.

Expression (1.9) will be referred to as the left Douglas-Shapiro-Shields fac-
torization of W and holds more generally for strictly noncyclic functions [24]
[29]. An elementary account of the rational version above, which is all we
shall need, and of the real case can be found in [13]. The fact that Q is,
up to a unitary factor, uniquely determined by the property of having the
same McMillan degree as W can be viewed as a consequence of Fuhrmann’s
realization theory. Working with the transpose allows one to define similarly
a right Douglas—Shapiro—Shields factorization W = R; Ql_l, where this time
QeI

For z and w two complex numbers, we set

(1.10) puw(z) = 1-—zw*
(1.11) bw(z) = (z—w)/(1-2zuw").

Given a matrix valued function A(z), the function A¥(z) is defined to be

(A=)



Throughout, the terms smooth and C* are used interchangeably. If M is a
manifold, modelled on some Banach space, the tangent space to M at z will
be denoted by 7,(M) or simply by T, if M is understood from the context.
If f : M1 — M, is a smooth map between two manifolds, the symbol D f(z)
is intended to mean the derivative of f at the point € M; which is a linear
map 7;(M1) — Tj(z)(M2). The effect of Df(z) on the vector v will be de-
noted by Df(z).v. If f(z1,2,...,2x) is a function of k arguments, D; f(z)
designates partial derivative with respect to z;. For these and other basic
notions in differential geometry (such as charts, submanifolds, embeddings
and the like), we refer to [44], [1] and [34].

The symbol m will mark the end of a proof.

2 The differential structure of I?

Let us define

(D)} ={Q% Qe 1%},
and observe that Q! is then also Q= by definition of I?. It is clear that (Ip)
is the subset of ¥ ,(n) consisting of those matrices M satisfying MM! = I.

In this section, we study IZ by applying to (I2)! some standard devices from

system—theory. We first proceed with some preliminaries on the geometry
of ¥, .(n).

2.1 Embedding X%, (n) in HP*™

We denote by Q2 the open subset of C™*™ x C™*™ x CP*™ x CPX™ consisting
of all minimal 4-tuples (4, B, C, D). Let

II:Q— %, .(n)
be given by
(2.1) (A,B,C,D) — D+ C(zI, - A)'B.

We obtain a topology on X, ,(n) by requiring II to be a quotient map for
the similarity relation. It is by now a standard procedure, originally due to
Hazewinkel and Kalman, to make %, ,,(n) into an abstract smooth manifold
by constructing local sections of the map II. More precisely, Y, m(n) can



be covered by a finite collection of open sets (Vi) such that each Vi is the
domain of a map ¢ : Vi — §2 with the property that

Hog¢y=id

where id denotes the identity map. For W € Vi, a certain subcollection of
the entries of ¢(W) will serve as coordinates on X, m(n) which is endowed
in that way with a complex structure of dimension mp + n(m + p), see for
instance [41], [37], [22], [36]. With this definition IT becomes a smooth map.
This complex structure in itself plays here no role since it does not carry
over to (IP)}. For this reason, we shall deal only with the underlying real
structure of dimension 2mp+2n(m+p). However, many subsequent compu-
tations look more natural over € and we shall often find it convenient to use
complex dimensions rather than real ones. In the sequel, dimension means
real dimension unless the contrary is explicitely stated. Restricting ourselves
to real-valued coordinates in the above process, we get a parametrization of
RY, m(n) which is thus a submanifold of ¥, m(n) of dimension mp+n(m+p).

Now, let Q™ denote the open subset of 2 consisting of 4-tuples (4, B, C, D)
such that the eigenvalues of A all belong to ID. It is easy to check that II is
an open map (see e.g. [10]), so that X7, (n) = II(Q27) is an open subset of
¥pm(n) hence a submanifold of the same dimension, charts being obtained
by restriction. Let

fo: Spm(n) — HP*™

be the natural inclusion. It is proved in [11], using results from [22], that
Jo restricted to RX,,(n) is an embedding, that is by definition a smooth
immersion which is a homeomorphism onto its image. This we strengthen
as follows.

Theorem 1 For 1 < g < oo, the map j, is an embedding. By restriction,
Jq also induces an embedding R, (n) — RHE*™.

Proof: we show smoothness first. Since the natural inclusion Hy, — Hy is
continuous, we may restrict ourselves to ¢ = co. Because j; can be locally
expressed as j; o Il o ¢ and ¢y, is smooth by definition, we need only show
that joo o Il : @~ — Hy,, which is given by (2.1) is smooth. Being linear
and continuous, the natural inclusions

CpXm__)Hg;(m (Dpxn__)Hgoxn and (anm__)ﬁg,oxm
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are smooth and so is the affine map
A= (zI-A)

from C™*" to L™(T). Taking the inverse being a smooth operation on
the set of invertible elements in any Banach algebra, we have that

A— (2 - A)71

is also smooth and it assumes values in HZX™. Finally, since multiplication
is a continuous 3-linear map

Hgoxn % f{':oxn % E&Xm N Hg:m,
we get smoothness of (2.1) as desired.

For j, to be an immersion, we still have to show that the derivative Dy, (W)
is injective at every W € ¥ ,,(n) and that its image splits. This last con-
dition arises because we are embedding ¥, (n) in an infinite-dimensional
space [44] but is automatically satisfied here since Im Dj, (W) is finite dimen-
sional hence splits in the Banach space HEX™ (see e.g. [48], [51]). Letting
(4, B, C, D) be a minimal realization of W, the image of Dj,(W) obviously
contains the image of the derivative of j, o Il at (4, B,C,D). If we dif-
ferentiate this map, which is formally given by (2.1), with respect to the
arguments, we find that

(2.2) Dy(jgoIl) :CP*™ — HEX™ isgivenby U — U
(2.3) D3(jgoIl) :CP*™ — HEX™ isgivenby V — V(21 — A)"'B
(2.4) Da(jgoIl) :Q™P — HEX™ isgiven by W — C(zI — A)"'W

and, using the standard rule to compute the derivative of the inverse in a
Banach algebra, we see that

(2.5) Di(jgo II) : C™*™ — HEX™

is given by
X — ~C(2I = A)7'X(2I - A)7'B.

Define M4 g ¢ to be the subspace of HEX™ spanned by the images of the
derivatives (2.3), (2.4) and (2.5) so that

Im D[j; o II}(4, B,C, D) = ImDy(jgo ) + My g c.

11



erve the sum is direct since the first term is the space of constant matrix
tions while each member of M4 g vanishes at infinity. Therefore,
ating complex dimensions leads to

img (ImD[j, o I1}(4, B,C,D)) = mp+dimgMypc
< dimg (Im Djg(W))
< dimg X, ,,(n) = mp+ n(m + p).

sstablish injectivity, we will prove that
) dimg M4,Bc = n(m + p)

1sing nice selections, a tool originally due to Brunovsky and Kalman
*h is also instrumental in defining the manifold structure of X, n,(n).
sifically, we choose k column vectors b;,,b;,,...,b;, of B such that

by, Abiyy oy A"y, by, Abiy, ooy A™ by, 0 by, Absy e, A"kb;,

basis of C™ and it is easy to see that controllability implies the existence
1ch vectors. This entails of course that }°; k; = n — k. Define W (resp.
;0 be the subspace of C"*™ (resp. C™*™) consisting of complex matrices
se kernel contains the elements e;;’s of the canonical basis of C™ (resp.
ains the A®b;;’s whenever k < k;). The complex dimensions of W and
re thus n(m — k) and nk respectively.

erve now that My g ¢ is the collection of rational matrix functions of
form

) V(2I—A)™'B~C(2I — A)7 X (2I — A)'B+ C(zI — A)™'W

re V, W and X range over CP*", C"*™ and C™" respectively. If we
sict W to W and X to X, we claim that (2.7) cannot be zero unless V,
nd X are all zero. This will show that M4 p ¢ contains at least

dimg CP*" + dimg W + dimg X = n(m + p)

pendent vectors over C so that (2.6) will hold.
stablish the claim, we assume that (2.7) is identically zero and we eval-
+at e;; for some j € {1,...,k}. We get from the definition of W

) V(I — A) by, = C(al — A)™ X (21 — A) by,

12



The Taylor expansion of X (zI — A)‘lbij at infinity is
oo
D XA, 2
=1

and has a zero of order at least x; + 1 by definition of X.
Because C(zI — A)~! vanishes at infinity, the right hand-side of (2.8) has a-
zero at infinity of order x; 4+ 2 at least. But then, this must hold for the left
hand-side as well. Computing the Taylor expansion yields

VA'b; =0for 0 <1< kj.

Since j € {1, ..., k} was arbitrary, we get from the definition of the b; ;’s that
V =0 and (2.8) implies

(2.9) ClzI — A)' X (2I — A)™'b;; =0 for 1< j< k.
Now, the identity

X(al — A7 Alby; = —X A7 by, + 2X (2] — A)T A,
and the definition of X’ shows that

Ozl = A7 X (2D — A) M Alby, = 2C (2l — A)7 X (2] — A)71 Ay,
provided 1< 1< k;;. jFrom (2.9), we thergfore get by induction
C(zl ~ A) ' X (21 - A) 7' Alby; =0 for 1< j < kand 0 <1 < &y,
The fact that the A sz 's form a basis of C™ implies now
C(zl — A)™*X(2I — A)"' =0 hence C(zI - A)"1X =0.

Computing the Taylor expansion at infinity and using observability yields
X = 0. Since we assumed that (2.7) is zero, we finally conclude in the same
manner that W = 0 thereby achieving the proof of the claim.

To see that j; is an embedding, there remains for us to show that it is a
homeomorphism onto its image, in other words that it has a continuous in-
verse. Let Wy be a sequence of rational matrix functions of McMillan degree
n converging in gng to some W which is also of degree n. The Cauchy
formula implies that the convergence is uniform over any compact subset of

13



{lz| > 1}, so that Wy(co) — W(c0) and, say, the first 2n — 1 derivatives at
infinity of W}, also converge to those of W. From this collection of deriva-
tives, one can construct the associated np x nm block-Hankel matrices Hay,
and Ha of W}, and W and from them, knowing that degree of all the rational
matrices involved is n, one can derive realizations (Ag, Bg, Ck, Wi(00)) of
Wy and (A, B,C,W(00)) of W using for instance Ho’s algorithm [42] which
yields rational formulae for the coefficients of the realization in terms of the
entries of Ha;, and Ha. The only arbitrary choice in the algorithm is that
of a nonsingular submatrix of the Hankel matrix but, if such a choice is
made on Ha, the corresponding submatrix of Hay will be nonsingular too
when k is large enough since Hay — Ha. In this manner, we may arrange
things so that (Ag, Bk, Ck, Wi(00)) converges to (A4, B,C,W(c0)) in Q™.
Since II is continuous, we get that Wy = II(Ag, Bk, Ck, Wi(c0)) converges
to W =II(A, B,C, W(c0)) in % ,,(n) as desired.

Since RY,,,(n) is a submanifold of ¥ ,,,(n), the assertion on the restriction
of j, to real matrix functions is obvious. ]

Theorem 1 makes it possible to identify the tangent space Tw of ¥ ,,(n) at
the point W with

ImDj,(W) =ImDII(A4, B, C, D))

which is a subspace of Flg‘x"‘ of complex dimension mp + n(m + p). This
subspace we shall now describe in more details. To this effect, we need some
pieces of notation.

If @ € If and Q1 € I}, we denote by Lo (resp. Rq,) the space of rational
p X m matrix functions M such that M has no pole in the closed unit disk
and Q™1 M (resp. MQ7') has no pole in {|2| > 1} and vanishes at infinity
(resp. has no pole in {|z] > 1} U 0o). Note that Lo may alternatively be
defined as the space of matrices whose columns belong to Hf © QH¥ which
is the prototype of the left shift—invariant subspace of complex dimension n
that will appear in section 3. Consequently, Lg has complex dimension nm.
Similarly, we observe that M belongs to Rg, if and only if M? belongs to
[,thl . Since the McMillan degree of z@Q% is m + n, the complex dimension
of Rg, is p(m + n).

We now define W(Q, @;) to be the space of rational matrix functions M
analytic in {|z| < 1} such that Q' M Q7 has no poles in {|z| > 1} including
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at infinity. It is plain that

Lq CW(Q,Q1) and QRq, CW(Q,Q1).

Therefore,
(2.10) Lq +QRq, CW(Q,Q1)

and the sum is direct since any member M in the intersection must satisfy
QM € "\ BE*™ A HE™ = 0.

Conversely, let M be an element of W(Q,Q1). Then @~ *M belongs to
LE*™(T) and can be written as

(2.11) Q@ 'M =hy+h_ where hy € HY*™ and h_ € HY*™.
Multiplying (2.11) on the right by @7, we find that
h+Q7' = QMO —h-Q7" € AP,
so that hy € Rg,. Multiplying now (2.11) to the left by @Q, we obtain
Qh- = M — Qhy € HI™,
Hence Qh_ € Lg and (2.10) is in fact an equality:
(2.12) Lo ® QRg, = W(Q, @1).
In particular, we see that
(2.13) dimeW(Q, Q1) = dimgLg + dimgRg, = n(m + p) + pm.
We may now identify our tangent space as follows.

Proposition 1 Let g satisfy 1 < ¢ < oo. Let W belong to X ,.(n) and
W=Q R= RlQl_l be left and right Douglas—Shapiro-Shields factoriza-
tions. Then, at W, the tangent space to X7 ,.(n) viewed as an embedded
submanifold in HP*™ is given by

(2.14) Tw = Q7'W(Q,Q1)Q7 ™.

At W € RX;,.(n), the tangent space to RY . (n) is still given by (2.14)
provided @ and Q1 are chosen real and we limit ourselves to real members

Of W(Q: Ql) .
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Proof: let (A, B,C, D) be a minimal realization of W. From Theorem 1, the
space Ty is made of matrix—valued functions of the form

U+V(eI-A)"'B
(2.15) —C(zI — A) ' X (2] — A)7IB + Ozl — AW

where U, V, W and X range over CP*™, CPX", C"*™ and C™*™ respectively.
Let

C(zI — A)7' =E71A and (2 - A)"'B=A,E]!

be Douglas—Shapiro-Shields factorizations. It is obvious that (2.15) can be

written as
(2.16) ETIAEY

—1

for some A which is rational and analytic in the closed disk. We claim
that E = UQ where U is a unitary matrix. Indeed, since C(2I — A)~! has
McMillan degree n,

W=E2"AB+ED) and W=Q 'R

are two left Douglas—Shapiro-Shields factorizations of W. Since such a fac-
torization is unique up to left multiplication by a unitary factor, we are
done. A similar argument on the right shows that =; = Q,U; where Uj is
again unitary.

Therefore, functions of the form (2.16) are in @~ W(Q, Q1)Q7 " so that Ty
is included in the right hand-side of (2.14). But we must then have equality
since complex dimensions coincide as follows from 2.13. The proof of the
real case is mutatis mutandis the same. n

2.2 The differential structure of I?

In this section, we prove that IZ, IZ /U, and their real analogues are smooth
manifolds. Since we now deal with square matrices, m is to be set equal to
p in the preceding results.

Proposﬂ:lon 2 The set (IE)! is an embedded submanifold in = ,(n) of di-
mension p® + 2np. When embedded in H-”x” with 1 < ¢ < o0, the tangent
space to (IE) at QF is given by

(2.17) Tu(E) ={(S+F-FHQ™'},
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where S € Sp and F € Q 'Lg. The subset (RIE) is also an embedded
submanifold of dimension p(p—1)/2+np. Its tangent space is still given by
(2.17) provided S is restricted to range over skew-symmetric matrices and
F over real elements of Lg.

Proof: embed X (n) into HEXP and define a map
T: X ,(n) — LEXP(T)
by the formula
T(W)=WWwt,

Since W — W1 is a linear continuous map HEX? — HPXP and multiplication
is bilinear and continuous in LEXP(T), it is obvious that T is smooth, and
its derivative at W

DY(W): Tw — LEXP(T)
is given by
(2.18) M — MW+ WMt

Let W =Q 'R = RlQl“1 be right and left Douglas—Shapiro—Shields factor-
izations of W. By Proposition 1, we have that

Tw = Q~'W(Q,Q1)Qr"

and from (2.12) we can write every M € Ty as

(2.19) M =Q (g + Qrg,)Q7"

for some £g € Lq and some rg, € Rg,. Plugging this into (2.18) and taking
into account that Q! = @ and Q7! = Q!, we get

(2.20) DY(W).M = Q*qR! + g, R} + RithQ + Rurh..

Note that Q'gR! belongs to z=1HE*?, so the Fourier coefficient of in-
dex 0 in (2.20) is Fp + F§ where Fp is the zero-th Fourier coefficient of
rQlRi{. If we choose rg, = KQ; where K is a constant matrix, we get
Fo = KWH%0) = KW(oo)*. Let us first assume that W(oo) is invertible
so that the linear map a : Rg, — CP*P defined by rq, — Fj is surjective.
Then, the subspace ’R’Q L= a~1(8,) has codimension p? in Rq, hence di-
mension p? + 2np.
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»ose now that M € ker DY(W) so that (2.20) is zero. Then ro, € Ry,
{q is completely determined by rg,. Indeed, R; is invertible in LEXP(T)
ur assumption on W{oo), and if we denote by P; the orthogonal pro-
on onto H P, we have

t = —R* [Py (rq,RY + Rurhy)| Q.

refore,
1) dimker DY (W) < dimRg, = p? + 2np.

a2 € ID, the map ¢, : H — H ob, (where b, is defined by 1.11) is a linear
letry of LEXP preserving % ,(n) and it is immediately checked that ¢,
mutes with Y. Applying the chain rule, we get

DT(‘pa(W)) O Qg = Pa © DT(W)

1at
2) dimker DY(W) = dimker DY (@, (W)).

, if we merely assume that W is invertible in LEXP(T), it is possible to
st a so that W,(0o) is invertible. In view of (2.22), we conclude that
1) still holds in this case.

claim that (2.21) is an equality whenever W € (IE)!. Since the rank
10t decrease locally, we will then conclude that the kernel of DY has
ansion p? + 2np on a neighborhood of (I2)! and the infinite-dimensional
ion of the constant rank theorem (see e.g. [17] 5.10.5-6) will imply

(Ie)} = Y~I(I,) is a smooth manifold whose tangent space at W is
IT(W).

»rove the claim, set W = Q. Plugging R; = I, and Q; = Q in (2.20)
Is
3) DY(W).M = [rq + £5Q] + [rq + Q.

first bracket in the right hand-side of (2.23) is analytic in the closed
disk by the definition of g and rg so that (2.23) is zero if and only if

1) rq+hQ=25

re S is a skew—Hermitian constant. Now, for any {g € Lg and any
Sp, (2.24) determines a unique rg which is readily checked to belong
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.. Moreover, rg can be zero only if £g and S are both zero since EﬁQQ

1es at zero. The kernel of DY(W) is thus of dimension p* + 2np and
as the claim.

ablish (2.17), observe that ker DY(W) at W = Q* is the set of matrix-
1functions of the form (2.19) where @1 = @ and such that (2.24) holds.
ple computation shows that this set is just the collection

(S+(Qg) - @ )HQ™,

8§ € Sy and £y € Lg. But it is easily checked from the definitions
20 = QP_(Q 'HE*P) and this implies (2.17).

: real case, the proof is identical provided a is chosen real. Note also
kew-hermitian has to be replaced by skew—symmetric so that R’R,b s

»dimension p? — p(p— 1)/2 in RRg, hence dimension p(p —1)/2 + np.

ow introduce the set NI C IE of functions @ normalized by the
sion Q(1) = I, and its real counterpart RNIE. These functions will
as representatives in I2/U, and we will study (NIE)H.

osition 3 The set (NIE)} is a smooth submanifold of (IE)! of dimen-
'np and the product map

(NIE)Y x Up — (IE)?

iffeomorphism. A similar statement holds in the real case replacing Uy
, the dimension of (RNIE)! being np.

: let E be the evaluation map at 1. It is linear and continuous AP*P —
(recall A is the disk algebra). Since (IE)* C AP*P, the restriction

E: (1)} U,

»oth and its derivative at any @Q¥, which is defined from Ton (IP)* into
U, is again evaluation at 1. Since the tangent space to Uy at I, is Sp, it

s from (2.17) that E is submersive at every point of E~1(I,) = (NIE)!
_is thus a submanifold of codimension p? hence of dimension 2np.
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Consider now. the map (2.25). It is obviously smooth together with its
inverse

Qf — (Q'Q(1), Q¥ (1)).

The proof in the real case is similar. u

Recall that two members of (IE) (resp. (RIE)!) are equivalent if they
are equal up to right multiplication by a unitary (resp. orthogonal) fac-
tor and that that the sets of equivalence classes are denoted by (IE)*/l,
and (RIP)*/O, respectively. We endow them with the quotient topology
and it is an immediate consequence of proposition 3 that the natural map
(NIE) — (IP)* /Uy is a homeomorphism allowing us to carry over to (I2) /U,
the manifold structure of (NIE)}. We proceed similarly in the real case.

Changing z into 1/z, we are now able to restate the results of this section
in terms of IZ:

Theorem 2 The set IP is a smooth manifold of dimension p® + 2np em-
bedded in HE*P for 1 < g < co. The set NIE is a smooth submanifold of
dimension 2np homeomorphic to IE/U,. As well, the subset RI? is a smooth
manifold of dimension p(p—1)/2+np embedded in RH}*?, and the set RN I}
is a smooth submanifold of dimension np homeomorphic to RIE /Uy,

We were able so far to establish the smoothness of IZ and to identify its
tangent space in HF*P. However, the above approach does not provide us
with explicit charts since we did rely on the constant rank theorem. It is
the purpose of the next subsection to fill this gap by making contact with
the classical manifold of observable pairs.

2.3 Constructing charts from realizations

We need to introduce the set of observable pairs. Let , denote the open
subset of CP*™ x C™*™ consisting of all observable pairs (C, A). Two pairs
(C1, A1) and (Cy, Ag) will be said to be equivalent if there exists T' € GL(n)
such that

Ci = CT
A, = T_1A2T.

Let Obs,(n) be the set of equivalence classes for the above relation and

I, : , — Obsy(n)
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be the natural map. When Obs,(n) is equipped with the quotient topology,
the Hazewinkel-Kalman method already mentioned in section 2.1 (see [37],
[38], [10]) allows one to construct local sections of II, endowing Obsy(n)
with a complex structure of complex dimension np. With this definition,
I, is smooth. Again, we shall only work with the underlying real structure
of dimension 2np. The set RObsy(n) of equivalence classes of real pairs is
in turn a submanifold of dimension np. We single out the subset € of
€, consisting of pairs (C, A) for which the spectrum of 4 is in ID. Being
open in Obs,(n), the set Obs, (n) = I1,(€;) is naturally a smooth manifold.

We first characterize realizations of members of (I2)!. Representations sim-
ilar to the one below can be found in [31], [5], [7] or [28] in the case of the
half-plane. We give a simple proof for sake of completeness.

Proposition 4 Let W be a rational CP*P~valued function analytic at in-
finity and let W(z) = D + C(2I, — A)™'B be a minimal realization of W.
Then, the following statements are equivalent:

(i) The function W belongs to (IE)H.

(ii) There exists a positive definite matriz P such that:

(2.26) A*PA+C*C =P
(2.27) A*PB+C*D =0
(2.28) B*PB+D*D=1

Proof: let us prove that (i) implies (ii). Since the given realization is minimal
the spectrum of A is contained in a closed disk

Ea={z€C;lz] <a<1}.

Therefore the function W (2)W (2)* is in LE*P(Tr) and, for |2] = 1 we can
write the power series expansions:

WH2)W(z) = (D*+ B*(z"'I, — A*)"1C*)(D + C(zI, — A)~'B)

= D*D+ D*C (z“l fj(z-lA)f) B+ B* (z i(zA*)j) C*D

+B* (z f:(zA*)j) c*c (z“l i(z‘lA)J) B.
7=0

§=0
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ating Fourier coefficients in the equation W*W = I, we get

1 BN F = [ a%i o A7) B =
2i7r/TW(z) W(:)Z = D'D+B J;(A c'cA)B=1,

for k>0
1 —k * dz _
5 /T 2T W (2)*W (z) =
0) B*(A"*'C*D + B*A™ Y (avicrcAl) B=0.
J=0

ine

1) P=Y ((aycrcal).

=0
servability of the pair (4, C) implies that P is positive definite. ;jFrom
definition of P, (2.26) holds and (2.28) follows from (2.29). Rewrite
)0) as
B*A*k-1)(C*D + A*PB) =0

onclude that (2.27) holds, thanks to the controllability of the pair (4, B).
prove that (ii) implies (i), observe that the unique solution to (2.26) is
:n by (2.31) and reverse the above arguments. =

;e that equations (2.26)—(2.28) may be capsulized as

o (55 5) (& 3)-(5 1)
P

now state the main result of this section.

sposition 5 Let v: Q- — Qg be the natural projection

(A, B,C, D) — (C, A).

e map I, 0 v o II™1 is a diffeomorphism from (NIE)} onto Obs, (n). By
triction, v induces a diffeomorphism between (RNIE)! and RObs (n).

of: set &€ = I, ovoII7L. This application is clearly well-defined and
tinuous thanks to the smoothness of the local sections ¢, of II. To

22



ruct a set—theoretic inverse, we first need to show that any pair (C, A) €
in be completed into a minimal 4-uple (4, B, C, D) satisfying (2.26)—
) fo some strictly positive matrix P (which is then given by (2.31). If A
ertible, this is done in [5, Theorem 3.10]. When A is not invertible, we
ximate A by a sequence of invertible A such that (C, Ax) € Q, and
' By, and Dy, denote completions of (C, A;) satisfying (2.26)—(2.28). The
sponding matrices P, are bounded thanks to equation (2.31) and have
vergent subsequence with limit, say, P. By a classical inertia theorem
».g. [5, Theorem 3.15]), P is invertible. Therefore, formula (2.28)
38 that By and Dy, are uniformly bounded and thus have convergent
quences, with limit, say, B and D respectively, which realize the desired
letion. Next, we claim that such a completion is unique up to right
plication of B and D by the same unitary constant. Assume indeed
B; and D; is another one. Since P is uniquely determined by A and
.32) shows that (B*P, D*) and (B} P, D) have the same span of their
Thus there exists P, € GL(n) such that Bf = P,B* and D} = P, D*.
L from (2.32), P; is unitary.

let W be defined by W(z) = D + C(zI, — A)~!B. The set-theoretic
e to £ is given by WW (1)

mplete the proof, it is enough to show that the above completion
ss 2 — O~ may be performed locally by a smooth function.

7, A) €95, let P= P(A,C) be the smooth function of (C, A) defined
31). Consider the map

X: 0 = CVP xH,

' _ A*P(A,C)B+C*D
x(4,B,6,D) = { B*P(A,C)B+D*D—1I }
ows from Proposition 4 that TI~1(I2)} = x~1(0).
x is obviously smooth and we claim that the partial derivative with
't to (B, D) is surjective at every point of x~1(0). To this effect we

ute

A*PV

c*X
Dyx(A,B,C,D): X [ X*D+ D*X ]
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[ g: ] belong to C**P X ‘H,,. Since P is invertible, (2.26) implies that

ACV1+C* X1 =5
slvable. Define Vo = BS5/2 and X3 = DSy/2. Then we get:

B A*PVy 4+ C* X,
Xx-Va +Dax.Xo] = | V#PB + B*PVy + X5D + D*X; }
T (A*PB + C*D)S,/2

| S2/2(B*PB + D*D) + (B*PB + D*D)S,/2
_To
= |5 |

ting X = X7 + X and Y =Y + Vs, we obtain

S
15) [Dox.Va + Dyx.Xa] = [ S; ] ,
reby proving our claim.

s now easy to construct a smooth local section of v: start from (C, A)
| take a completion (4, B,C, D). Extract from (B, D) a set of variables
h respect to which the partial derivative is an isomorphism and apply
implicit function theorem. The proof in the real case is similar. n

anging z into 2!, we obtain at once

rollary 1 The space I? is diffeomorphic to IE /U, x Uy, and IE /U, is dif-
morphic to Obs (n). Similar statements hold for RIE, Op and RObs, (n).

ide the fact that it expresses our spaces of inner matrix-valued functions
erms of familiar objects, this corollary has some topological consequences.
- E a topological space, let us denote by Hy(E,G) the n-th homology
up of E with coefficients in G. We further set Gx; and RG; to be the
aplex and real Grassmann manifolds of k—subspaces of an [-space.

rollary 2 IZ /Uy, RIZ/O,, and IE are connected while RIE has two con-
ited components. For k > 0, there are isomorphisms

36) Hk(Iﬁ/Z/{p, Z) = Hk(gn,n+p—1’ Z))
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) Hy(I7,Q) = Z Hl1(gn,n+p-1’Q) ® Hy, Uy, Q),

li+a=k
) Hk(RI,{:/Op, Z/ZZ) = Hk(Rgn,ner_l, Z/QZ),

W(RINZ/2Z) = )" Hy,(ROnnip-1,Z/2Z) @ H,,(0,, Z/22Z).
Li+lo=k

: we may replace Obs; (n) by Obs,(n) and RObs; (n) by RObsy(n) in
ary 1 because it is shown in [35] that these two spaces are diffeomorphic
heorem in [35] is for 3p ;m(n) and X, (n) but its proof would yield the
conclusion for observable pairs). Then (2.36) and (2.37) are implied
e fact that Obsp(n) and Gpnip-1 (resp. RObsy(n) and RG, nip-1)
the same integral (resp. mod 2) homology by the results of [38] also
ted in [39]. Now, the Kiinneth theorem (see e.g. [46]) implies (2.37)
2.39). Since Ho(E,G) is a direct sum on the number of connected
onents, the first statement follows from the connectivity properties of
p, and the Grassmann manifolds. [ |

:onnectivity statement can of course be proved without resorting to
logy from known properties of minimal pairs. For the computation of
mology of Gy1, Uy, and O, we refer the reader to [43].

Charts using the Schur algorithm

s section, we study I% and related manifolds using Schur analysis. We
with a review of finite-dimensional reproducing kernel spaces, focusing
> special cases, namely H(Q) and H(©) spaces. Relationships between
spaces lead to the tangential Schur algorithm (theorem 6). Spaces
are the orthogonals of Beurling-Lax invariant spaces (see e.g. [29])
H(©) spaces were first introduced and studied by L. de Branges in
Analogues of H(Q) spaces for general Schur functions B were defined
tudied by L. de Branges and J. Rovnyak in [19], [20]. Some of the
ial appears in a more general context in [4].

Preliminaries and H(Q) spaces

bert space H of CP-valued functions defined on some set £ is called
oducing kernel Hilbert space if there exists a CP*P—valued function
v) such that:
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For every choice of ¢ € CP and w € € , the function z — K(z,w)c

ngs to H
For every f € H and w, ¢ as above,
) <f, K(., we >=c"f(w)

re < , > denotes the inner product in H.

e that, by the Riesz representation theorem, it is equivalent to assume
; the functionals
f—cf(w)

all continuous. The function K(z,w) is uniquely defined and called
reproducing kernel of H. It is positive in the sense that for every
IN, every wy,...,w, € £ and ¢y, ...,¢, € CP, the r x r matrix with ij
'y ¢; K (wj, w;)c; is nonnegative. Moreover, there is a one-to—one corre-
ndence between positive functions and reproducing kernel Hilbert spaces:
mever K (z,w) is positive for z,w in £, the completion of the linear space
erated by the functions z — K(z,w)c with w € £ and ¢ € C? endowed
1 the scalar product

) < K(.,w)e, K(.,v)d >= d"K(v,w)c

he reproducing kernel space with kernel K (z, w); see [6], [50].

lassical example is the Hardy space HE. Its reproducing kernel is I,/ pu(2)
h z and w in ID and p,, is defined in (1.10). In this case, equation (3.1)
1st the Cauchy formula.

en H is finite dimensional, the kernel can be expressed explicitly as
ows: let fi,..., fv be a basis of H over € and P be the matrix with i —j
ry < fj , fi >; then

}) K(z,w) = [f1(2), s IN(IP T 1), oo i (w)]".

now Q be an element of I2. Left multiplication by @ is an isometry Mg
n HY into itself and for w € ID and c € €7

M(e/pw) = Q)c/pu.
ollows that the function
) Kq(z,w) = (I, — Q@)Qw)")/ pul2)
yositive for z,w € ID. The main properties of the associated reproducing

nel space, denoted by H(Q), are gathered in the next theorem.
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Theorem 3 Let Q be in If. Then H(Q) = HE © QH? and its complex
dimension is equal to the McMillan degree n of Q. Furthermore, H (Q) is
Ry~invariant so that there exists an observable pair of matrices C € CPX™
and A € C™" with its spectrum in D such that H(Q) is spanned by the
columns of

(3.5) C(I, — zA)™L.

The space H(Q) determines Q uniquely up to right multiplication by some
unitary factor. A possible choice for Q is

(3.6) Q(z) = I, — (1 - 2)C(I, — 2A) ' P~Y(I, — A)~*C*,
where P is the solution to the Stein equation:
(3.7) P - A*PA =C*C.

The space H(Q) is real if and only if there exists a unitary matriz U such
that QU is real. In this case, C and A in (3.5) may also be chosen real.

All the assertions in the theorem are widely known, at least in the complex
case, and we refer the reader to [4] or [26] for a proof. Formula (3.6) deserves
perhaps a word of explanation: if we take as a basis of H (@) the columns of
(3.5), the corresponding Gram matrix in the HY inner product is precisely
the solution P of (3.7). Equating (3.4) and (3.3) yields then

(Ip — Q(2)Q(w)*)/ puw(z) = C(I, — 2A) " P~Y(I,, — wA)~*C*.

Specializing to w = 1 and normalizing Q so that @ € NIZ, we obtain (3.6).
From this, the real case is easy, because A and C can be chosen real as
mentionned in section 1.2 and P is also real.

3.2 H(O) spaces and the tangential Schur algorithm

We shall deal in the sequel with a special instance of what is called the class
of J-contractive functions which were first studied by Potapov in [47]). We
content ourselves with defining rational J-inner functions as follows. Put

(L o (L o (o0 o0
=(55) »=(52) ==(33)
A C?P*?P_yalued rational function © will be called J-inner if at every point

of analyticity of © in ID,
O(2)JO(2)* < J
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equality holds for z point of analyticity on .
‘is a rational J-inner function, the function

2(2) = (J4 — ©(2)J-)"H(O(2) I+ — J-)
ner and the function
) Ke(z,w) = (J — ©(2)J0(w)*)/ pu(2)

ositive for z and w varying in the domain of analyticity of ©, as follows
1 the equality
I — S(2)S(w)") _

oul2) (J+ — ©(2)J-) " Ke(z,w) (J4 — O(w)J-)™".

will denote by H(©) the associated reproducing kernel Hilbert space of
valued functions. The space H(©) has properties similar to that of H(Q)

[4] and [26]). In particular, it is finite-dimensional, and the complex
ension is still the McMillan degree of ©. A noteworthy difference with
2) is that functions in H(®) need not lie in HE, but here we shall only
concerned with the case where H(©) C HE. Then, 0 belongs to the
1ain of analyticity of ©, and H(O©) is again Rp-invariant. It can thus
represented as the span of the columns of a matrix of the form (3.5).
wversely we have:

eorem 4 Let (C,A) be an observable pair in C € C*F*™ x C™*™ such
t the spectrum of A lies in ID. Let f1,..., fn be the vector-valued functions
ned by

[f1sees Ful(2) = C(I, = 2A) 72,
' M = L.s{f;} be endowed with the inner product

< f])f'l. >m=< f]’sz >H§p .

his inner product is positive definite, then M is a reproducing kernel
hert space with reproducing kernel of the form (3.8). In this case the func-
1 © is unique up to a J-unitary right multiplicative factor and, defining
matriz P by P;; =< f;, fi >m, a possible choice for © is given by

) O(2) = Ly — (1 — 2(8)C(In — zA) 1 P~Y(I, — (A)*C*J

:re (g 8 arbitrary in .
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result is essentially the finite-dimensional version of the Beurling-Lax
»m in HY endowed with the above metric, see [8]. For a proof in the
g of reproducing kernel spaces see e.g. [26] and [5]. A direct way of
; it is to start from (3.9) and to plug it in (3.8). Then it is easy to check
his expression for Kg satisfies (3.3) using the fact that P satisfies the
ion:

P—-A*PA=C*JC.

llary 3 Let wo,...wm—1 be m points in ID and =z, ..., Tm—1 be m ele-
z;Jz;

) 2 . . . . —
- of C°P. Suppose that the m X m matriz P with ij entry P;; = m
ctly positive. Then the space

M= l.S.{mo/pr, ""mm—l/pwm-—l}

red with the inner product defined by P is a finite dimensional H(©)

inction © can be chosen real when the w;’s are real and the x;’s are in

ext theorem describes the deep link between the spaces H(©) and
on which the tangential Schur algorithm ultimately rests. It is a
juence of a general result due to de Branges and Rovnyak (see [19]

€ H3? and Q € I? define 7f € HY as
Tf= [IP’ -Qlf.

rem 5 Let Q be in I} and let © be a J-inner 2p x 2p rational function

Millan degree d.
O O, L, , pXp

be the decomposition of © into four CP*P valued blocks.
O21 O

r defines an isometry from H(©) into H(Q) if and only if there exists
er function Q) € IP_, such that

Q =To(@Y) = (©0119W + 015)(02:QW + ©49)~1.
y, if @ and © are real, so is Q.
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Proof: let us suppose that 7 is an isometry; in particular, it is a contraction
and, by the result of de Branges and Rovnyak, we can write Q as in (3.12)
for some function Q) analytic and contractive in ID. The inverse of the
linear fractional transformation Ty is Tg-1, so that QW is rational. By the
maximum modulus principle, Q) is in fact unitary on T. We now show
that Q) e If .

The operators 77* and I — 77* are orthogonal projections and thus
H(Q) = Im(I — 77*) & Im(77%).

For u € C? and w € D it is easily verified (see e.g. [19] or [3]) that

(3.13) ™(Ko(, w)u) = Ko(.,w) ( _ qu Y ) .
Thus,
(3.14) (I =) (Kq(, w)u)(z) =

(©11 — @O21)(2) Ko (2, w)((O11 — QO21)(w)) v,

and since the reproducing kernel of the projection is the projection of the
reproducing kernel we find that

(©11 ~ QO12)(2) Ko (2, w)((O11 — @O12)(w))"

is the reproducing kernel of Im(I — 77*). Because 7 is an isometry, this
space has complex dimension n —d. Moreover, the function ©11 — @012 has
nonzero determinant, so that the above complex dimension is also equal to
the complex dimension of H(Q). Thus the McMillan degree of Q) is n—d.

Conversely, suppose that @ = To(Q)) where Q1) has degree n — d; using
again the theorem of de Branges and Rovnyak, we can assert that the map
T is a contraction. Now, a general theorem [27] states that, if I'; and I'y are
two positive operators in a Hilbert space, then

(3.15) Im(T; + Iy)Y/2 = ImI'Y/? + ImI'y/?

and this decomposition is orthogonal if and only if it is direct. Since our
spaces are finite-dimensional, we can dispense with the square roots:
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(3.16) H(Q) =Im(I — 77%) 4+ Im(77%).

The space Im(7) has complex dimension at most d and by (3.14) Im(I—77*)
has complex dimension n — d. It follows that the decomposition (3.16) is
direct hence orthogonal by the above mentioned theorem, and that 7 is in-
jective. Consequently, 7 is an isometry.

We shall draw two consequences of Theorem 5 and Corollary 3. The first
one describes the solution to the Nevanlinna-Pick problem.

Proposition 6 Let n and m be integers with n > 0 and 0 < m < n. For
Q € IE, there exists unit vectors ug, ..., um—1 in CP and points Woy e v vy Wri—1
in ID such that the m x m matriz P with ij entry

(3.17) Pi; = ui Kg(wi, wj)u;

is strictly positive. The space M defined in Corollary 3 with

e Ui
Ty = Q(wz)*uz )

endowed with the inner product P, is then a H(©) space for some J-inner
rational function © of degree m. There exists an element ¥ € IE__ such
that Q@ = Te(X). Finally, when Q is real, the w; can be chosen real and the
u; in IRP,

Proof: we first prove by induction on m that one can find vectors u; as
prescribed. The claim is true for m = 1; in fact, even more is true in this
case since wo can be assigned arbitrarily in ID. Suppose indeed that Q(w)*u
is of unit norm for all unit vectors u € CP. Then,

w Ko (w, w)u =< Kq(., w)u, Kg(.,w)u >p(g)

is zero for all u € CP, so that K(.,w) is zero. But this is impossible for (3.4)
would imply that @ is a constant.

Suppose now that the claim holds for some m < n and let UGy -+« Uy and
wo, . . ., Wr, satisfy our requirements. If the claim does not hold for m + 1,
then every unit vector u € CP and every w € ID, is such that the space
spanned by the Kq(.,w;)u;’s and Kg(.,w)u is degenerate in H(Q). Since
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Kg(.,w;)u;’s are linearly independent, this forces dim¢ H(Q) =m < n
tradicting the assumption..

corollary 3, M is a H(®) space and the map 7 defined in (3.11) an isom-
r from H(©) onto H(Q). By theorem 5, Q@ = To(X) for some X € I5_, ..
2 case where @) is real is similar. |

2 special case where m = p, all the w; are equal, and the u; form a basis
2P correspond to the Schur algorithm of [23]. The case where m = 1 will
of special interest to us and is singled out in the next corollary.

rollary 4 Let Q be in IZ ,n > 0, and let w € ID. Then, there exists
CP of unit norm such that ||Q(w)*ul| < 1. The complex one-dimensional
ce spanned by

lowed with the inner product

< fr f >=u* (I — Q)Q(w)")u/(1 — [wf*),
1 H(©) space where © is given by formula (3.9) with (o =1, A= w, and

G=(mwm>'

wen @ is in RIE, w and u may be chosen real. The function © is then
L

mbining Theorem 5 and Corollary 4, we obtain the tangential version of
» Schur algorithm. The latter will be a tool to obtain charts of I%, as
>lained in the next section. We first need to mention some relationships
;-ween H(O) spaces and interpolation (see [26],[2]).

oposition 7 Letw;,i =0,...,m—1 bem points inID, u;,s=0,...,m—1
dv;,2=0,...,m—1 be vectors in CP. Let
Us
19 o
) fi(z) = 1wtz
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it M denote the linear span of the functions f;. Let us suppose that

*or ¥y,

< fifi>m= = ——
Lt}

s a positive quadratic form. Then, there exists a rational J—inner
on © such that M = H(®) and there is a one-to-one correspondance
'n elements Q in IP such that

Q(wi) u; = v; i=1,...,m

e set of Te(X), where X € I

n—m:*

let ¥ range over the set of p x p Schur functions. ;From [26], it follows
he set of @ = T(X) describes all Schur functions which satisfy the
olation condition (i). On another hand, the interpolation conditions
are to the effect that the map 7 (defined in (3.11) is an isometry from
onto H(Q).The conclusion now follows from theorem 5. ]

rem 6 (The tangential Schur algorithm) Let Q € IP and let wy, ..., Wp—1
possibly non distinct points) in the open unit disk. Then, for 0 < i <
there exist B® ¢ IP_., unit vectors u;, and J-inner rational functions
ree one ©; given by formula (3.9) where & =1, A = w}, and

Ui
¢= ( Q(w;) Dy, ) ’
hat Q© = Q and
QY =Te,, (@YY i=0,.n—1.

ticular, setting © = ©y....0,,_1, we get Q@ = To(U) where U = Q™) =
s a constant unitary matriz.

y, when Q is real, tif,e u;’s and the w;’s can also be chosen real, and
the ©;’s and the QM s, :

the theorem is a recursive application of Theorem 5 and Corollary

; wo be in ID. Applying Corollary 4, we build ©¢ which takes the
lp at z = 1 and is such that the map 7 is an isometry from H (©9)
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) H(Q). From Theorem 5, we obtain a linear fractional transformation
= To, (QW) where Q) is in IP_,. Iterating this procedure n — 2 times,
obtain a constant Q™ € Uy,. Since all the functions ©; take the value
at z = 1, we have that Q™ = Q(1). One proceeds similarly in the real
3. ]

axplained in [4], Theorem 6 reduces to the classical Schur algorithm when
1 and at each stage the point w is taken to be the origin. It is recursive:
sach step, one chooses a point w and a direction u, in order to compute
Blaschke factor. Alternatively, one may proceed in one shot from n
nts and n directions using Proposition 7.

. Constructing the charts

shis section, we construct new charts on IP in terms of transfer functions
her than realizations. We develop two (equivalent) atlases, one based on
yposition 7 and another one on the tangential Schur algorithm.

CUQ, ony , Un—1 € € of unit length, wo, ..., wn—1 in the open unit disk and
9) a chart on Uy, we define a chart (W, %) by its domain:

W(uﬂv cory Up—1, WQ5 -2y Wn—1, V)
={Qe Iz P>0,Q(1) eV}

ere P is the matrix defined in proposition 6, and its coordinate map

24) $(Q) = (Q(wo)*u, -+ Q(wn—1) "un-1, HQ(1)))-

eorem 7 The family (W, 1) defines a C* atlas on IE, which is compatible
h its natural structure of embedded submanifold of Hé”‘p foany1 < g <

If we choose real w;’s and and u;’s and if we restict ourselves to real
wrdinates and orthogonal matrices, we obtain an atlas for RI.

23)

20f: that W (ug, ..., Un—1,W0, -, Wn—1, V) is open in IE is easily checked
m the definition. It is equally clear that 1 is defined and smooth on some
2n subset of HY*P. Thanks to Proposition 7, the range of 9 is B x %(V)
ere B denotes the set of (vp,...,Un—1) such that the matrix defined in
20) is strictly positive, and is therefore open in R2rPH7°, Finally, 9! is
en by Q = Te(Q(1)), where © is rationally computed from Q(w;)*u; and
1), hence is smooth. The real case is obvious. ]
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The preceding theorem gives explicit charts, one drawback being that the
ranges of the charts are rather involved. One may alternatively use the tan-
gential Schur algorithm to obtain charts whose range is the product of n
copies of the unit ball in C* with an open subset of Up—but the coordinate
functions, this time, are more involved. This is our last result.

We define this new atlas as follows: the chart (V, ¢) will have domain

(3 25) ‘ V(”Oy e Up—15 WO, «oey Wn—1, V)
T ={Qe Q) ull <1, i=0,..,n—1,Q(1) € V}

and the coordinate map will be given by

(3.26) $(Q) = (@O (wo)ug, ..., Q" V* (w1 )un—1, Q(1)),

where the functions Q) are defined recursively as in theorem 6. Namely,

Uug .
Q(wo)*ug | ™
formula (3.9). Then, we define Q) by inverting the formula @ = Te, (Q®)
and iterate the same procedure on Q). The function @ is uniquely deter-
mined by ¢(@) and if :

we first construct © by setting £y =1, A = wg, and C = (

§= (€0a wbn-1, U)

where U € V and each &; € CP is of norm strictly less than one, we have
from Proposition 7 that

(3'27) ¢_1(£) = T90...9n—1(U)

where ©; is given by (3.9) with A=w}, (=1, and C = z’ )

Hence, the range of ¢ consists of the announced product.
Theorem 8 The family (V, ) defines a C* atlas on I? which is compatible
with that of Theorem 7. Restricting to real parameters in the charts as in

the cited theorem, we get an atlas on RIP.

The proof of theorem 8 is analogous to the proof of theorem 7 and will be
omitted.

35



4 Conclusion

Having shown that the set of p x p inner functions of degree n is a sub-
manifold of HE*? in the real and complex case, we produced two different
parametrization for it, one based on the set of observable pairs, and the
other on Schur coefficients. Both are well-known tools in system-theory
and interpolation theory respectively, stressing here a link of a topological
nature between two domains which are already known to interfere strongly
from the analytic viewpoint. Along the same lines, further extensions to
J — inner and J — unitary functions are to be expected.

Perhaps the main practical contribution of the paper is to provide a mean of
applying differential calculus to the set IZ. Such a need arises, for instance,
in rational approximation and this was part of the author’s motivation for
studying these questions: in fact, it is easily shown (see [13], [21]) that
obtaining the best L? approximant of degree n of a function in ngm is
equivalent to minimize a nonlinear function on the set IE. To justify a
differential approach and to use gradient algorithms for the minimization,
a differential structure together with an explicit parametrization are needed.

In the scalar case where m = p = 1, a numerical algorithm has been derived
in [14] to generate local minima of the criterion, and a uniqueness theo-
rem has been obtained in [15] for sufficiently stable Stieltjes functions (i.e.
transfer-functions of relaxation systems). Both references use in an essen-
tial way the topological structure of the closure of RI1/O; in Hp (which is
completely different from its closure in Hy, so that here the exponent does
matter). This closure turns out to be a projective space and the global step
of the uniqueness proof in {15] drops out from the corresponding Morse in-
equalities [12].

In the case where p = 2, this problem was considered in [21] and our results
allow for such a study when p is arbitrary. A full generalization, however,

would again require a detailed knowledge of the closure of RIE/O, in H5?.
For p > 1, this is by no means well-understood.
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