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Abstract. The application of an adaptive grid method is discussed for a mathematical model for unsteady
flow, coupled with transport of brine in porous media with inhomogeneities in two space dimensions.
When the concentration of salt is large, the salt concentration profile in brine transport problems can show
locally large gradients in space and in time. For this reason we have chosen an adaptive grid method to
solve these problems. We consider a method based on local uniform grid refinement, where integration
takes place on a series of nested, local uniform finer and finer subgrids. These subgrids are created up to
a level of refinement where sufficient spatial accuracy is reached and their location and shape is adjusted
after each time step. The space domain is considered to be a rectangle and all grids in use are uniform
and cartesian. The interfaces, caused by the inhomogeneities, are assumed to coincide with cell edges in
the numerical approximation. Special conditions are applied here, connecting the solutions on both sides
of the interface. These interface conditions involve continuity of fluxes across the interfaces. The mesh
refinement process and the variable time stepsizes are controlled by heuristic error monitors. The perfor-
mance of the method is illustrated by two example problems.
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1. INTRODUCTION

An adaptive grid finite difference method is applied to a model for unsteady, isothermal flow coupled with
transport of brine in porous media with inhomogeneities. The origin of this work lies in a safety assessment
study on disposal of high-level radioactive wastes in rock salt formations, like salt domes. The concentration
of salt in the proximity of salt formations is known to be large and also in aquifers overlying these salt for-
mations the salt content varies from fresh water to that of saturated brine [4].

The numerical simulations of groundwater flow near these salt formations may provide insight in what
might happen in the event of contaminants escaping from such a repository. Also with respect to the
mathematical modeling itself, numerical simulations can be useful. Since recent studies indicate that the
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basic mathematical model, designed for low salt concentration cases, need to be re-examined when the salt
concentration becomes large [3,4]. Numerical simulations together with laboratory experiments can then be
used to validate a new modified mathematical model.

It should be noted that the presence of a high concentration of salt in these natural situations gives rise to
large concentration gradients as well. A typical situation one encounters is that of a sharp fresh-salt water
interface that moves in time. For such problems, a single uniform space grid held fixed throughout the entire
time evolution can be computationally very inefficient, since, to afford an accurate approximation, such a
grid has to be very fine over the whole domain while a fine grid is only needed there where the sharp front is
located. Adaptive grid methods prove to be very useful here, since these methods refine the space grid only
there where it is really needed, hence, reducing the memory use and CPU time.

The applied adaptive grid method is based on local uniform grid refinement and is also discussed in our
previous work [ 7-13]. The main feature of local uniform grid refinement is that integration takes place on a
series of nested, local uniform finer and finer subgrids which are automatically adjusted at discrete times in
order to follow the movement of rapid spatial transitions. The generation of these subgrids is continued until
the spatial phenomena are described with sufficient accuracy.

This work can be regarded as a sequel to the work reported in [11], in which an adaptive grid code was
discussed for computing brine transport problems in homogeneous porous media. Since in natural situations,
soil parameters such as the permeability, the transversal and longitudinal dispersivity etc. can change
abruptly from one region to another, this adaptive grid code has now been adapted so that it can handle brine
transport in porous media with such inhomogeneities. In order to get consistent numerical approximations,
interface conditions are applied at grid nodes in the vicinity of these abrupt changes. These conditions con-
nect the numerical solution on both sides. of the interface and are based on continuity of fluxes across these
interfaces. The space domain is considered to be a rectangle and all grids in use are uniform and cartesian.
Numerically, the interfaces are assumed to coincide with the cell edges.

The adaptive grid code can handle systems of PDEs of the following type, defined on a rectangular domain
€ with boundary 99,

G (6, LUy ly,y Uy Uy, U, Uy, Uy) = 0, (1,y) € Q, 1 > 1o,
Hxy tuu,u,uy) =0, (xy) € 9Q, ¢ > i, (1.1)
u(x,y,tg) = uglxy), (xny) € QU IQ,

where the exact solution « may be vector valued.

For time integration we use implicit Euler for the first time step and the second order two-step implicit
BDF method with variable coefficients for the following time steps where variable time stepsizes are taken.
Standard second order finite differences are used for space discretization and the interpolation is linear. The
discretization of the boundary conditions and the interface conditions are of first order. The resulting sys-
tems of equations are solved by modified Newton’s method in combination with ILU preconditioned Bi-
CGSTAB [15].

In Section 2, we discuss the mathematical model of brine transport in porous media we have used in this
paper. An outline of the local uniform mesh refinement method is given in Section 3. The interface condi-
tions are considered in Section 4 and the strategies concerning grid refinement, time stepping, and the New-
ton iteration process are given in Section 5. Two specific example problems are used to illustrate the perfor-
mance of our research code. This is described in Section 6 and finally, a summary and concluding remarks
are given in Section 7.



2. MODEL OF BRINE TRANSPORT IN POROUS MEDIA

In this section, we are going to describe the mathematical model we have used to solve the two example
problems (cf. Section 6). Following [11] we consider a model for unsteady, isothermal, single-phase, two-
component saturated flow in a porous medium in two space dimensions. This model contains two conserva-
tion laws, namely one for the mass of the total fluid, i.e. water and salt and one for the mass of salt only. The
mass conservation of the total fluid supplemented with Darcy’s law for the velocity field is given by

09) + V.(pa) = 0, = = (VP - po) @1

where 7 is the porosity of the porous medium, p is the mass density and q the velocity vector of the total
fluid. The permeability of the porous medium is denoted by k, u is the dynamic viscosity, p the pressure and
g the acceleration of gravity vector. The mass conservation law of salt and Fick’s law for the dispersive
mass fluxes are given by

g;(npu)) + V.(poq + pJ) =0, J = -nDVo, 2.2

respectively, where o is the concentration of salt and J the dispersive mass flux vector. D is the 2 x 2 disper-
sion tensor defined by

T

nD = (ndy + afaDl + (- Tl ol = @9, 23)
where a; denotes the longitudinal and o, the transversal dispersivity and d,, the molecular diffusion. Lis the
2 x 2 identity matrix. The soil parameters in this model are n, d,,, o, o, and k. They can assume different
values in different porous media. Temperature and compressibility effects are neglected in this model, as
well as sources, sinks and deformation of the porous medium. To complete the model we have an equation

of state for the fluid mass density p and a polynomial expression for the dynamic viscosity u which depends
on the concentration of salt:

Po exp (Yw), (2.4)
no(1 + 1.850 - 4.100? + 44.500%), (2.5)

n

where pg and g are the reference density and dynamic viscosity and vy is a coefficient obtained from labora-
tory experiments.

In cases of a low salt concentration (2.1) and (2.2) are only weakly coupled and can be solved indepen-
dently. The flow can then be regarded as independent from the density gradients caused by differences in the
salt concentration since these gradients prove to be negligible. However, we consider cases of high salt con-
centration, in which case the flow is no longer independent from the density gradients, so these equations
should be solved simultaneously. With this model we have followed [4] in the description of brine transport,
except for Darcy’s law and Fick’s law. In this paper these laws are used in their classical formulation, valid
for low concentration cases.

Using p and w as independent variables, we have discretized the equations (2.1), (2.2) in the form

-yV.J-y*J.Vo + V.q = 0, (2.6)



n%—(:) +q.Vo +yJ.Vo + V.J =0,

which is obtained after some elementary calculations. At this stage we note that this model fits into format
(1.1) and can, within the limits of (1.1), be modified by the user of the code, like, for example, by adding a

temperature equation or by using different formulations for Darcy’s law and Fick’s law or by adding
compressibility effects, etcetera.

3. OUTLINE OF THE ADAPTIVE-GRID METHOD

Although its elaboration readily becomes complicated, the idea behind local uniform grid refinement is
simple. Starting from a coarse base grid, covering the whole domain, finer and finer uniform subgrids are
created locally in a nested manner in regions of high spatial activity. Here, a set of interconnected grid cells,
all having the same sizes, is called a subgrid. A set of subgrids having the same cell sizes is called a grid
level or just grid. Hence, a grid level consists of a single subgrid or several disjunct non-overlapping
subgrids. A new initial-boundary value problem is solved at each grid level and the integration takes place in
a consecutive order, from coarse to fine. Each of these integrations spans the same time interval. Required
initial values are defined by interpolation from the next coarser grid level or taken from a grid level from the
previous time step when available. Internal boundaries, i.e. subgrid boundaries lying in the interior of the
domain, are treated as Dirichlet boundaries and values are also interpolated from the next coarser grid level.
Where the boundary of a fine subgrid coincides with the boundary of the domain, the given boundary condi-
tions are used. The generation of grid levels is determined by the local refinement strategy and is continued
until the spatial phenomena are described well enough by the finest grid. The fine grid cells are created by
bisecting the sides of the cells of the next coarser grid. Note that the subgrids created this way need not be
rectangles.

During each time step the following operations are performed:

Solve PDEs on the coarse grid.

If the desired accuracy in space or the maximum number of grid levels is reached then go to 8.
Determine new finer grid level at forward time.

Interpolate internal boundary values at forward time.

Provide new initial values at backward time.

Solve PDEs on new grid level, using the same steplength.

goto 2.

Inject fine grid values in coinciding coarser grid points.

© NN A LN =

Thus, for each time step the computation starts at the coarse base grid using the most accurate solution avail-

able, since fine grid solution values are always injected in coinciding coarse grid points and all grid levels are
kept in storage for step continuation.

4. INTERFACE CONDITIONS

The soil parameters in porous media can show abrupt changes from one region to another. Moreover,
across these interfaces, i.e. there where the sudden changes occur, p and w are continuous but their profiles
may be kinked. We will assume that, mathematically, the soil parameters are piecewise constant functions
and that p and w are both continuous functions, not differentiable in space, at an interface. This means that
in order to get consistent numerical approximations, we have to take care that numerical differentiation does
not take place across such an interface. Therefore, the numerical solution at an interface is obtained by
fulfilling interface conditions which connect the solution on both sides of the interface and involve only one-
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sided difference schemes. Since (2.1) and (2.2) represent two conservation laws, it is natural impose con-
tinuity of the spatial fluxes pq. n and (pwq + pJ). n at interfaces as interface conditions, where n is a vec-
tor locally perpendicular to the interface. It suffices to impose continuity of q.n and J. n, since p and o
are both continuous functions.

—O

7 @
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X
FIGURE 4.1 Four arbitrary grid cells with cell edges, parallel to the co-ordinate axes.

Consider the four grid cells shown in Figure. 4.1, numbered I till IV, possessing cell edges, parallel to the
co-ordinate axes. First, the soil parameters are evaluated in all cell centers and are supposed to be constant
over each cell. Hence, the interfaces are assumed to coincide with cell edges in the numerical approxima-
tion. When the soil parameters are constant over these four cells then none of these cells are intersected by
an interface and (2.6) is discretized at grid node C using the standard second order finite differences in space.
Now suppose that, for example, the soil parameters in CI are different from those in CII. Then the com-
ponent of q and J in x-direction which is perpendicular to the cell edge, separating the upper left cell I from
the upper right cell II, must be continuous. This cell edge is denoted as CN. Due to (2.1)-(2.3) we have,

k
q1 = —E(Px—ng)’
k
q2 = _;(py—ng)’
J] = "nD“(Dx"ﬂDlz(Dy, (4‘])
2
q1
nDyy = ndy, + o|q| + (o4 -0)—,
lql
9192
nD, = (o4 - ) ,
12 ! 1 |q|

where g, J, and g, are the components in x-direction of q, J and g, respectively and nD,, and nD ,, are
elements of the first row of the dispersion tensor nD; g, and g, are the components in y-direction of q and
g. The derivatives of (4.1) are discretized using the grid nodes N, S, E, W and C, which yields a first order
accurate discretization. The fluxes g, and J; on the left and righthand side of CN are denoted as q, cw s,
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J1,cn and gy cn 1, J 1,cn i Tespectively. They are now approximated as

q _ ket ( Pc — Pw ocg:)
1L,CNJ _P~c A c&1)s
We — Oy Wy — O¢
Jienvg = -"Du,CN,IT -"DlzCN,I—A—y—s 4.2)
q kcu(PE-Pc ocg1)
weng = ——(———— - Pc&1)s
Ue Ax
Wg — O¢ Wy — ®Oc
JI,CN,II = ‘nDll,CN,II—-—Ax ‘"Dlz,CN,ll—_"‘Ay ,
where
Q% CN,I
nDyycng = Ndmcr + Ocr|Qens| + (e = Oer)———,
lqcn.r |
q1.cN1 92,CN.1
nDyyeng = (Qycr = Qe)———
IqCN,I|
LI% CN,I
nDyycng = Mdmcny + Ocn|Qovn| + (%o = % cn)——, 4.3)
lqcn.n |
q1.cN1 92.CN.I1
nD v = (e —en) 7
‘qCNJI]
q ke ( PN — Pc pcga)
weng = — —(———— - pc&2)h
we = Ay
q kCII(PN"PC 0cga)
2N = - —(———— - pc&:
Ue Ay ’
2 2 v 2 2 1%
lacni| = @ievi+a5en))”s  |Qevn| = @lova + d5.ovi)”

Here g, cn1s q2,cv.i Tepresent velocities parallel to CN and nD yy ¢y s, 7D 12.cn,05 "D 11,cn,15 PD 12,cv,r the
elements of the first row of the dispersion tensor, on each side of CN. Constants like k¢ and o, ¢y denote
the permeability and longitudinal dispersivity at cell II and entries like, for example, p- and p are the mass
density and the dynamic viscosity in C. Continuity of q. n and J. n across CN yields the following system of
flux continuity equations for p and w in C

qien: = 9ieva = 0, 4.4

Jl,CN,I - JI,CN,II = 0.

When not only CN is an interface but also CW, CE or CS then the flux continuity equations are generated for
each interface. The equations we then solve is the sum of these flux continuity equations.



5. STRATEGIES
5.1. REFINEMENT STRATEGY

The reason why the local uniform grid refinement method is an interesting method for solving PDEs with
steep solutions is that it can solve these PDEs just as accurately as on a very fine grid, but with considerably
less computational effort, since the involved fine subgrids cover only a part of the domain. Moreover, it
creates extra refinements when necessary and removes these when they are no longer needed. This
refinement process is controlled by a refinement strategy. In [7-9, 12, 13], the refinement strategy is based on
a comprehensive error analysis taking into account space discretization and interpolation error estimates.
The intention of this strategy is that the overall spatial accuracy is dominated by the spatial accuracy at the
finest grid level. When the number of grid levels is constant for all times, this strategy should lead to a spa-
tial accuracy which is comparable to the one achieved with a single uniform grid having cell sizes identical
to those of the finest grid level in use in the adaptive grid method. The success of this refinement strategy is
very much dependent on the accuracy of error estimates. It’s clear that these error estimates can only be
accurate when the solution is sufficiently smooth, i.e. it may be steep but it should be sufficiently differenti-
able in space. Since nonsmoothness in the boundary conditions, or even in the solution itself, is a well
known phenomenon in brine transport problems, the approach above was dropped and replaced by a more
heuristic approach. In [10, 11] the refinement strategy was based on a curvature monitor. This monitor is
also used here.

We are now going to introducc some notation. Let the vector U" denote the numerical approximation to
the solution u of (1.1) at time ¢, on a space grid. Suppose that (1.1) consists of npde PDEs, so the solution
vector u has length npde. In this case, u; represents the i"™ component of  and U? the numerical approxima-
tion to u; at time ¢, on a space grid. Let the component of U7} associated with the grid node (k,/) be written
as U} (k,I), where k and [ are indices related to the space co-ordinates x and y of this node. The curvature
monitor value corresponding with the i solution component in (k,/) is now defined as

1
scale(i)

ESTS;(k,1) = { | Uk +1,D)=2U%k, 1) + UZ(k=1,1)| + (5.1)

| U7k, [ +1)=2U7 (k1) + UF (k,L=1) | }.

The user defined array scale has length npde and holds characteristic values of each solution component. At
every grid node ESTS;(k,!) is computed for each solution component i. At boundary nodes, the difference
formulas in (5.1) are replaced by equivalent one-sided formulas.

Suppose we have just completed a time step on grid level m; grid level 1 is the coarsest grid level or the
base grid, grid level 2 is the next coarsest grid level and so on. After this time step the maximum values of
ESTS;(k,I) are computed over grid level m for each component ;. These maxima are denoted as ESTSmax;.
If for some i, ESTSmax; > TOLS, then a new grid level m+1 is created within the current time step, provided
m+1 does not exceed the user specified maximum number of grid levels. Here, TOLS is a user defined toler-
ance. Grid level m +1 is now determined as follows. For each i, for which ESTSmax; > TOLS holds, the cells
around the nodes of grid level m where ESTS;(k,l) > a2 x TOLS will be subdivided in four identical cells.
The set of these finer cells makes up grid level m +1, on which the current time step will now be repeated.

Finally, we have built in an extra condition to smoothen the behaviour of the code. Suppose that the max-
imum number of grid levels during the previous time step is levtop and that at grid level m <levtop,
ESTSmax; s TOLS. Although this means that a new finer grid level m +1 is actually not necessary, it will still
be created when ESTSmax; > 0.9 x TOLS. This way fluctuation of the maximum number of grid levels from
one time point to the next is likely to be avoided.
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5.2. TIME INTEGRATION ASPECTS

We have implemented the two-step BDF method of order two which we apply in the variable stepsize
mode. The time derivative in (1.1) is then:approximated as

U™ -a,U"" - a,U"?

U= 0,0 , (5.2)
where
(c+1)? -1 c+l
=T g, = , 5.3
c?+2 2T 242 27 2 ©-3)
Atn—l
C=T, At,=t,-t,_,.
n

Here, U, represents the pointwise restriction of u, to a space grid. We note that variable time stepping is a
prerequisite for brine transport problems in porous media, as they can exhibit a highly distinct behaviour in
time. As starting formula we employ the one-step BDF method of order one (implicit Euler).

The time stepsize is controlled by the time error monitor value

ESTT nU?_U’”-1 I =1 d 5.4
= scale(d) = i=1,...,npde, 54

which is computed only over the interior grid nodes of each grid level for reason of robustness of the code.
We will not elaborate this further here. After each time step on all grid levels, defined in Section 3, the max-
imum value of ESTT is computed over all grid levels. If this maximum exceeds a user specified tolerance
TOLT, then the time step is rejected, otherwise accepted. For each grid level a new time stepsize is predicted
such that the predicted value of ESTT for the new time step is equal to 0.5 x TOLT. The minimum of these
new time stepsize estimates is taken to be the time stepsize for the next time step. However, in case of a step
rejection, the new time stepsize will be taken as 0.8 x this estimated value. In all cases we require that the
new time stepsize is not smaller than 53 x and not larger than 2 x the old time stepsize to avoid too large
jumps in the stepsize selection. Finally, the new time stepsize is corrected with a small value to assure that
the next output point is reached exactly.

5.3. SOLUTION OF THE LINEAR AND NONLINEAR SYSTEMS

Because we use an implicit integration method and treat PDEs like (1.1) fully coupled, we are facing the
task of solving large coupled systems of nonlinear algebraic equations. In our code we use modified Newton
in combination with the preconditioned Bi-CGSTAB [15] for solving these equations. In the remainder of
this section we will explain the implemented solution procedure.

For any system of PDEs like (1.1), the required Jacobian matrix for the Newton process is computed in a
completely automatic manner. To illustrate this, consider the 1D form

G (ul’ Uy, uxx) = 0’ (55)

for which the Jacobian matrix is tridiagonal. Recall that we use central 3-point finite differencing on a
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uniform space grid with cell size Ax. The diagonal entries, corresponding with internal grid points, are then
easily seen to be defined by the functional

G 1 G 2
ou, 0,At Ouy (Ax)?’

(5.6)

where At is the time stepsize. Similar expressions are easily found for the nondiagonal entries and for grid
nodes whose finite difference expression depends on the boundary conditions. This way of constructing a
Jacobian was borrowed from [5]. In our code the partial derivatives are estimated by a simple first order
difference formula, so that the user does not need to specify these. The procedure we followed, described
below, was obtained from [1]. For example, we use the approximation

+

0G _ Gl thy iy +€) = Glupy uy, uu), (5.7

Oty €

€ = (uround)” max(|uy |, typ (u)) sign(uy).

Here uround is the machine roundoff error. The value "typ (4)" represents a characteristic value of u. In our
code we use the user defined array scale for these values. In (5.7) we use the recomputed value for ¢, given
by

€= (Upy +E) — Uy. (5.8)

This is a trick to enhance the accuracy of approximation (5.7).
Let the nonlinear system of equations to be solved be denoted as,

FWU) = 0. 5.9)
In the modified Newton approach, the linear system,

JUHS = - FWU*M), (5.10)
Uk - Uk—l + bk

is subsequently solved, starting with k=1, until a stopping criterion is fulfilled. Here, J is the Jacobian matrix,
U" is the initial guess, U* is the k" iterate. The stopping criterion in our code is a relative error test, based
on the correction 8. It reads

§k.
max,—{max,-{—lL|
ij

w;; = 107 min{TOLT?, TOLS} max{|U%;|,107? scale(i)}.

o<1, (5.11)

The lower index i refers to the i*" PDE solution component and j to the nodes of the current grid level. Since
the accuracy of computed solutions increase when TOLT or TOLS decrease, it is natural to let the stopping
criterion depend on these tolerances. We have used TOLT? here because the time error behaves like O(At?)
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while the time error monitor value ESTT from (5.4) only behaves like O(At) as the time stepsize At—0. For
this reason the stopping criterion should depend quadratically on TOLT. The order of convergence of the
space error monitor (5.1), however, is in agreement with the order of the space discretization so there is only
a linear dependence on TOLS. The linear system (5.10) is solved by ILU preconditioned Bi-CGSTAB. This
iterative solver was obtained by modifying the public domain CGS code from the SLAP library written by
Anne Greenbaum and Mark K. Seager which is available from netlib [2]. Also some alterations were made
to the stopping criterion of this code to better prepare it for solving subsequent iterations in a Newton process
[14]. For example, the stopping criterion in the netlib code is relative to the righthand side vector of (5.10)
which vanishes in a Newton iteration. After [ Bi-CGSTAB iterations we have

JUO! = —FWU* ) +r!, (5.12)

where 7' is the residue of the Bi-CGSTAB process and 8/, the approximation of & after / iterations. Fol-
lowing [14], the stopping criterion now reads

K—l Ii'
I( r),,I}}< 1

max;{max;{ - —
Wij 20 x maximum # Newton iterations

(5.13)

where K is the ILU decomposition of the Jacobian matrix.

Suppose we solve a system of time-dependent nonlinear PDEs on a single space grid. In this case, the
standard modified Newton procedure for solving a system of nonlinear algebraic equations stemming from
such a system of PDEs would be; first compute a Jacobian at the beginning of a time step, then iterate and
when the iteration fails to converge, start again with a smaller time stepsize. This is a good approach for the
problem above because when the time stepsize decreases, the solution of the nonlinear equations will be
closer to the solution at the beginning of the time step which is used as initial guess for the iteration process.
This procedure, however, doesn’t always work in case a system of PDEs is solved with the local uniform
grid refinement method. In this adaptive grid method, the local subgrids can move or grow in space or be
newly created. This means that it frequently happens that the initial values for an initial-boundary value
problem, defined on a subgrid, have to be interpolated from a next coarser subgrid. When the subgrid is
newly created, this interpolation takes place over the whole subgrid and when the subgrid moves or grows,
interpolation only takes place over the part of the subgrid which did not exist at the backward time point.
Although the refinement strategy attempts to create subgrids in such a way that interpolation only takes place
in regions where the solution is smooth, it can happen that the interpolated initial values are not accurate
enough. If this is the case, then it’s possible that the Newton iteration does not converge because of this,
since, these (partially) interpolated initial solution is used as initial guess for the iteration as well as for com-
puting the Jacobian. When solving brine transport problems in porous media with inhomogeneities one
encounters these problems. For example when a subgrid is newly created or moves in space from one time
point to the next, initial values for the new fine subgrid cells are interpolated from the next coarser subgrid
solution which may be kinked. This way initial data is obtained which doesn’t look like the fine grid solution
to the PDEs at the backward time point. To our experience, when the Newton iteration fails to converge,
time stepsize reduction works very poorly, or not at all, in such a case. For this reason the modified Newton
procedure has to be adapted. The adaptations we have made will now be elaborated.

The solution at the backward time point is taken as the initial guess for the finest grid level. With respect
to the initial guess for the coarser grid levels, we note that, in spite of the fact that injection of fine grid
values in coinciding nodes improves the accuracy of the solution at the coarser grid level (cf. Section 2, step
8), the updated coarser grid solution is usually not a very good initial guess for the solution at this grid at the
future time point. Therefore, we also keep the original, not-updated solution at the backward time point in
storage which is used as initial guess for the next time step. After this, the linear system (5.10) is generated
and iteratively solved. In case this iteration process terminates unsuccessfully, (5.10) is generated all over
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again, employing a smaller time stepsize. When (5.10) is solved at least twice (i.e. after two nonlinear itera-
tions), we check for convergence and convergence speed as follows. Let itmax be the specified maximum
number of nonlinear iterations, k the number of completed iterations and let errit, be defined as

§k.
errit, = max;{max ,{—l-ﬂ}}. (5.14)
Wi,j

The convergence rate is defined as errity/errit,_;. Assuming linear convergence of the iteration process, i.e.
the convergence rate does not tend to zero when k—co, the value of errit;,,,,, the value of errit after the max-
imum number of iterations have been performed, can then be approximated as

. . errity ok
errityma, = errity (————) . (5.15)
errit;_,

Our convergence/convergence speed criterion now reads errit;,,,, < 1. When this criterion is satisfied, (5.11)
is expected to be fulfilled after itmax iterations. Note that this criterion terminates a diverging as well as a
slowly converging iteration process. When the convergence/convergence speed criterion is fulfilled, we
check if the stopping criterion (5.11) is satisfied. If this is the case then we are finished, otherwise we
proceed with the next iteration. In case that the convergence/convergence speed criterion is not satisfied, a
new Jacobian is computed. There are two ways to compute a new Jacobian. First, the Jacobian can be com-
puted using the previous iterate U*~! as initial guess and employing the same time stepsize. Second, we can
compute the new Jacobian using the original initial guess U° with a reduced time stepsize, just like in the
standard modified Newton approach. How the Jacobian is going to be calculated depends on a number of
criteria. First, the number of new Jacobians with the same time stepsize during the whole iteration process is
limited to a user defined maximum. If this maximum is reached then the new Jacobian is computed with a
reduced time stepsize. When a new Jacobian with the same time stepsize was already obtained during the
previous iteration and the convergence/convergence speed criterion is still not satisfied, the new Jacobian is
also calculated with a smaller time stepsize. Suppose that the last iteration where a new Jacobian was com-
puted with the same time stepsize is denoted by j. We assume that when ||[F (U*™")||. < ||F (U/™)|, the
iterate U*~" is a "better" solution to (5.9) than U/~'. A new Jacobian is only computed with the same time
stepsize if this is the case, and computed with a reduced time stepsize, otherwise.

This algorithm is more complicated than standard modified Newton. It’s behaviour ranges from standard
modified Newton to a genuine Newton-Raphson process. The idea behind it is that when the convergence
criteria are not fulfilled, the iteration is not immediately repeated with a smaller time stepsize, like in the
standard modified Newton approach, but a new Jacobian is tried first, based on the last accepted iterate and
with the same time stepsize. Should this fail too, then the iteration is repeated with a smaller time stepsize.
The maximum number of Newton iterations and Jacobians with the same time stepsize in our code are

chosen to be 10 and 5 respectively. When the time stepsize needs to be decreased, we take the new stepsize
to be Y4 x the previous one.

6. NUMERICAL ILLUSTRATIONS

Two example problems are presented dealing with the displacement of fresh water by brine in a thin verti-
cal column, filled with a porous medium and measuring one by one meter. Here we assume that g = (0,-g)”.
The values of the parameters which are the same for both problems are chosen as

n =04, d,=0mks, p,=10kgm™>, o = 10° Nm™2, 6.1
p
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y = log(20), g =981ms2, py = 103kgms!.

6.1. PROBLEM 1
In this example problem, the vertical column is completely open at the top as well as at the bottom and

closed at its vertical sides. This configuration is shown in Figure 6.1. Inside this column, two elliptic shaped
regions, denoted by I, can be distinguished.

P
Lol
(=

FIGURE 6.1 The vertical column of problem 1.

The permeability and the longitudinal and transversal dispersivity in I are chosen to be different from those
in the remainder of the column, II. The initial values and boundary conditions are:

p(xy,0) = po+(1-y)pog, ©(xy,0) =0, Om<xy<lm,
g, =0ms™, o, =0m"', x=01mandOm<y<lim, (6.2)
g.=10"ms™, o =025x(1-exp(-10z)), Om<x<lmandy = Om,

P=Po Wy = O0m™, Om<x<lmandy = 1m.

The soil parameters are given by:
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I k=10"2m? o =0005m, a = 0.001m, (6.3)
I: &k =10"m? o =0010m, o, = 0.002m.
The ellipses are defined as:
x—0.32 2 y-—O.S 2
X222 YUy 6.4
o5 )t Coz V=0 (6.4)
x—0.72 2 y—0.4 2 _
Coos )V +Co3 ) -

respectively. At the bottom, saturated brine is injected into the column. As this happens, a steep front in the
salt concentration developes which starts to move slowly towards the top of the column. While moving, the
front tends to smooth out due to dispersion. When the salt front collides with the elliptic regions, the salt
moves around these regions, so the salt concentration in I remains virtually unchanged. When the salt front
reaches the top of the column, there is still almost no salt present in I. Only much later we see a noticable
penetration of salt in I. This continues until a steady state situation is reached and the salt concentration is at
its saturation level everywhere in the column.

We have computed the solution to this problem using two and three grid levels, of which the coarsest a
20 x 20 grid. For both cases we have chosen TOLT = 0.1 and TOLS = 0.25. The salt concentration at two
times is shown in Figure 6.2 together with the corresponding grid levels. We have also computed the solu-
tion on a single uniform 40 x 40 and 80 x 80 grid to compare those with the solution obtained with the two-
level and three-level computations, respectively. The salt concentration computed on these grids are shown
in Figure 6.3. Since the elliptic regions are rather thin, the space error monitor computed at the coarse
20 x 20 base grid experiences difficulties in seeing these regions in time, i.e. before the salt front gets there.
In order to get more accurate results in this example problem, refinements were created at the interfaces,
irrespective of the space error monitor values there. When we compare Figure 6.2 with Figure 6.3 we see
only minor differences, indicating that the adaptive grid computations produce results with a comparable
accuracy as the results on a single uniform grid.

6.2. PROBLEM 2

In the vertical column we use in this example problem, there are four different regions, indicated as 1 till
IV. This is shown in Figure 6.4. Each of these regions has its own permeability and longitudinal and
transversal dispersivity. These are given in (6.3). The column is completely open at the top and only half
open at the bottom. The vertical sides are just like in the previous example, closed. The initial values, boun-
dary conditions and soil parameters are:

p(xy,0) = po+(1-y)pog, ®(xy,0) =0, Om<xy<lm,

q1 = Om.s™!, u)x=0m‘1, x =01mandOm<y<1lm,
g, = 10%ms™, o =025x(1-exp(-10¢)), Om<x=<05mandy = Om, 6.5)
q2=0m.s'1, w=005m<x<lmandy = Om,

pP=PpPo W, = om™, Om<x<lmandy = 1m.

The soil parameters are given by:
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FIGURE 6.2 The salt concentration with two grid levels at £=2000.
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FIGURE 6.2 Continued. The salt concentration with two grid levels at ¢ =200000.
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FIGURE 6.2 Continued. The salt concentration with three grid levels at t=2000.



FIGURE 6.2 Continued. The salt concentration with three grid levels at t=200000.
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FIGURE 6.3 The salt concentration with 40 x 40 grid £=2000 and r=200000.



FIGURE 6.3 Continued. The salt concentration with 80 x 80 grid =2000 and ¢ =200000.
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II

©)]

11 m v

FIGURE 6.4 The vertical column of problem 2.

I k=10"m? o =0008m, a, =0.0016m,
I &k =10"m? o =0005m, o =0.0010m, (6.6)
H:  k =10""m? a =0010m, a, = 0.0020m,
IV:  k=10"m? o =0008m, a = 0.0016m.
The interfaces are defined as:
1: x=0.7m,
22 x=03m + 02xy, 6.7

3: y=0.6m + 0.1 xx.

Again, saturated brine is injected into the column at the opening in the bottom and a steep front in the salt
concentration will develop, moving slowly towards the top of the column. The front appears to move com-
pletely past the interface on its righthand side. So, there is almost no penetration of salt into region IV and a
very sharp transition arises at the interface between III from IV. Also in this case, the front smooths out
while moving. Later on the front will move from region III to I. As the salt moves from I to II, it also seems
to penetrate II from III. At the same time the salt enters IV, first at its top left corner and later at the entire
interface, seperating IV from III. Steady state is reached when eventually the saturated brine has spread out
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over the entire domain.

We have followed the same approach as in problem 1, that is, we computed the solution to this problem
with two and three grid levels, of which the coarsest a 20 x 20 grid. Again we have chosen TOLT = 0.1 and
TOLS = 0.25 for both cases. The salt concentration at two times is shown in Figure 6.5 together with the
associated grid levels. We have computed the solution on a single uniform 40 x 40 and 80 x 80 grid for
comparison. The salt concentration computed on these grids are shown in Figure 6.6. Just like in problem 1,
we see very little difference between the adaptive grid solution and the uniform grid solution. In Figure 6.7,
we shown 3D plots of the pressure and the salt concentration at t=4000 s, computed on the 40 x 40 grid. The
kinked solution profile at some interfaces are clearly visible here. Note that at the interface between III and
IV there is a sharp kink in the salt concentration and no visible kink in the pressure.

# grid levels | #acc. time steps | #rej. time steps | # Newton failures
2 290 2 1
3 318 3 1

TABLE 6.1. Example problem 2. # of accepted timesteps, rejected time steps and Newton failures
of the adaptive grid computations.

grid level | # Newton it. | # jacobians
1 973 294
2 1051 291

TABLE 6.2. Example problem 2. # of Newton iterations and jacobians, needed for the two grid computation.

grid level | # Newton it. | # jacobians
1 1074 322
2 1175 326
3 1189 318

TABLE 6.3. Example problem 2. # of Newton iterations and jacobians, needed for the three grid computation.

The Tables 6.1, 6.2 and 6.3 contain information about the time stepping and Newton iteration process of both
adaptive grid computations. When the time stepsize needs to be decreased for Newton-convergence reasons,
we call this a Newton failure. We can see that for both the two and the three grid level computation the
number of Jacobians is only moderately larger than the number of accepted time steps. So, we can draw the

conclusion that our Newton iteration strategy performs well in combination with the local uniform grid
refinement method.
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FIGURE 6.5 The salt concentration with two grid levels at £=4000.
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FIGURE 6.5 Continued. The salt concentration with two grid levels at t=60000.
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.

FIGURE 6.5 Continued. The salt concentration with three grid levels at £ =4000.



FIGURE 6.5 Continued. The salt concentration with three grid levels at 1 =60000.
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FIGURE 6.6 The salt concentration with 40 x 40 grid £ =4000 and ¢ =60000.



FIGURE 6.6 Continued. The salt concentration with 80 x 80 grid =4000 and ¢ =60000.
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FIGURE 6.7 The salt concentration and the pressure at 1 =4000 with a 40 x 40 grid.
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7. SUMMARY AND CONCLUDING REMARKS

In this paper we have discussed the application of an adaptive grid method, based on local uniform grid
refinement, to brine transport problems in porous media with inhomogeneities. For such problems, where
locally steep fronts in the salt concentration occur, adaptive grid methods are valuable, since they can com-
pute a solution to these problems with locally the same resolution as on a very fine uniform grid, but with
much less computational costs.

In natural circumstances, the soil parameters of the porous medium can change very suddenly from one
region to another. At these sudden changes the solution profile may be kinked. Consequently, interface con-
ditions, implying continuity of fluxes across these interfaces and involving only one-sided difference
schemes, have been applied here to obtain consistent numerical approximations. The "numerical" interfaces
are supposed to coincide with grid cell edges. Further, compared to our previous publication [11], the
modified Newton method for solving the systems of nonlinear equations has been adapted to increase the
robustness of the code. The results of the two test problems indicate that the solution computed with the
local uniform grid refinement method is of the same accuracy as that of the associated uniform grid solution.
The results also indicate that the adapted modified Newton method and the linear iterative solver Bi-
CGSTAB work satisfactorily.

To sum up, we consider our results as satisfactory but nevertheless we think that two warnings are
appropriate here. First, although the adaptation of the modified Newton method has improved the robustness
of the code considerably, there still is a possibility that the code breaks down, simply because the (partially)
interpolated initial guess for the iteration process (cf. Section 5) is too far away from the solution of the sys-
tem of nonlinear equations at hand. A remedy to this could be to create finer grids always at interfaces,
whether this is necessary, regarding the space error monitor values, or not. The second warning has to do
with the dispersion tensor. In [6] we show that the mathematical formulation of the dispersion tensor can
cause serious difficulties for the iterative solution of the systems of nonlinear equations, even to the extent
that a code can break down. This occurs when the velocity exhibits large changes in direction during the
iterative solution process. This is likely to occur when the velocity becomes relatively small, for instance,
near stagnation points or near the kernel of a vortex. When brine transport problems in porous media with
inhomogeneities are solved, stagnation points or points where the velocities are very small are not uncom-
mon, so there is a real danger that the problems above occur.
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