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Abstract. Let A be an integral m X n-matrix satisfying E;-;I laijl < 2foralli=1,...,mand
b an integral m-vector. We show that if Az < b has an integral solution then every half-integral
solution of Az < b can be rounded to an integral solution. Moreover, an integral solution can be
found with the same complexity as the single source problem.
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1. Introduction

Consider the following problem:

given : an integral m-vector b and an integral m X n-matrix A = (a;;)
satisfying
n
> lail <2 foralli=1,...,m; (1)
j=1

find : an integral solution of Az < b, if there exists any.

Using Fourier-Motzkin elimination of variables Schrijver [1991] proposed an algorithm which
can be seen to solve (1) in O(n®) time and space. Moreover, Schrijver characterized the existence
of a solution.

We describe here a algorithm for solving (1) in O(mn) time and O(m+n) space. Actually,
we show that (1) can be solved with the same time and space complexity as the single source
problem. (The single source problem is: given: a digraph D = (V, A) with length on its arcs and
a source 8 € V; find: for any vertex v a shortest path, i.e. a path of minimum length, from s
to v.) The algorithm we present is based on (and a proof of) the fact that problem (1) has a
solution if and only if:

(i) Az < b has a half-integral solution and
(ii) every half-integral solution of Az < b can be rounded to an integral solution.

We associate with a system Az < b, given in (1), a digraph D4 with lengths on its arcs.
It turns out that a (half-integral) solution of Az < b, if there exists any, can be found with one
application of a single source shortest path algorithm and that rounding the solution found is
equivalent to 2-SAT (satisfiability with at most 2 literals per clause). Finding a half-integral
solution will be the time-dominating step while the rounding step is solvable in linear time (cf.
Even, Itai & Shamir [1976]).
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isociated with Az <b

with a matrix A satisfying (1) a digraph D4 as follows. For each column index j
. two corresponding vertices, ¥ and j~. If row ¢ has nonzeros in positions j and
, then D4 has arcs of length b; connecting j¥,j~, k%, k™, as shown in Figure 1,
. whether (a;;,a:) = (1,1),(1,-1),(-1,1) or (-1,-1).
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has only one nonzero a;; = 2 (—2 respectively), it is represented in D4 by an arc

,J~) respectively) of length b; as in Figure 2a. Finally, if row ¢ has exactly one
eing +1 (—1 respectively), D4 has arcs (=,7%) ((§+,5 ) respectively) of lenght
in Figure 2b. We shall denote the length of an arc (u,v) by length(u,v).
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Figure 2:

t half-integral solution

:tion p on the vertices of a graph D satisfying
p(v) — p(u) < length(u,v) for each arc (u,v) of D
wction on D. If 2’ is a solution of Az < b and p is the function defined as
p(5t) = z;, p(i7) = —2; for each column index j of A, (2)
tential function on Dy.

1y solution of Az < b gives rise to a potential function on D4. Conversely, if p is
iction on Dy then 2’ defined as

2} = (p(3 1) - p(37))/2 for each column index j of A



is a solution of Az < b. Therefore, there exists a solution of Az < b if and only if there exists
a potential function on D 4. Moreover, if a potential function is integral then the corresponding
solution of Az < b is half-integral. In order to find a (half-integral) solution of Az < b we find
an (integral) potential function on D4 as it is described below.

A graph D has a potential function if and only if D has no negative cycle. (A negative
cycle is a cycle the sum of whose arc lengths is negative.) As it is well known, to find a potential
function on D we can proceed as follows. First we add to D a new vertex s and zero-length
arcs (s,v) for every vertex v in D. Then for each vertex v we compute the length distance(v)
of a shortest path from s to v in the augmented graph. There exists a shortest path from s to
each vertex if and only if the augmented graph (and consequently D) has no negative cycle. If
distance(v) is well-defined for every vertex v, then p(v) := distance(v) for each vertex v of D, is
a potential function on D.

Hence, with one application of a single source shortest path algorithm we either find a
potential function on D or a negative cycle proving that D has no potential function at all.
Moreover, if all the arc lengths are integer then the potential function found is integral.

3. Rounding a half-integral solution

Let z* be a half-integral solution of Az < b. We transform the problem of rounding z* to an
integral solution of Az < b to 2-SAT. For each j = 1,...,n we introduce a variable u;. We shall
construct a collection Fp« of two-literal clauses on the set U = {u;,...,u,} of variables such
that #* can be rounded into a solution of Az < b if and only if F,. is satisfiable. If a truth
assignment ¢t : U — {true, false} has t(u;) =true (false respectively) then we interpret this as
“z} should be rounded up (down respectively)”.

The collection Fp+« will merely have from each inequality a;;z; + a2 < b; of Az < b,
satisfied with equality by nonintegral components z} and z}, of z* (allowing j = k), a two-literal
clause, depending on whether (a;;, aix) = (1,1),(1,-1) or (—1, —1), constructed as follows:

:c;-'+z,:=b,~ — -y Vo
zi—zp=b; — -u; V. ou

J
Tz =b — u; Vo oy

One easily checks that this indeed transforms the rounding step to 2-SAT. The transformation
takes linear time.

Let U = {u;,...,u,} be a set of variables. It can be shown (see Schrijver[1978]) that
a collection of two-literal clauses on U is satisfiable if and only if it contains no “doubly-odd”
formula. A doubly-odd formula is a collection of clauses

(u Vv 11), (lz \% 13), chay (lp \% u), (—:u vV lp+1), (lp+2 \% 1p+3), cony (lq \ -au)

satisfying:
(PYuel;
(%) L, ..., 1, are literals such that for k = 1,...,¢/2
either lrx_1 = u; and by, = —u;
or log—1 = —u; and Iy, = u;
for some u; € U.
Applying the linear-time algorithm of Even, Itai & Shamir [1976] we can either find a truth
assignment satisfying simultaneously all clauses in F,» or a doubly-odd formula in F,». The
correctness of the algorithm can be derived from the following propositions. We shall denote by
distance(u, v) the length of a shortest path from u to v in Dy4.



Proposition 1 If there exists j € {1,...,n} such that
— distance(j*,j7) = distance(j~,jt) and it is odd (3)
then Az < b has no integral solution.

Proof. If #' is an integral solution of Az < b and p is the potential function on D, defined
from 2’ as in (2) then p(j*) = p(j~) (mod 2). But, the condition (3) implies that every integral
potential function p on D4 must satisfy p(j%) = p(j~) + distance(j—, j*). [ |

Proposition 2 Let 2* be a half-integral solution of Az < b and let F,. be the corresponding
collection of two-literal clauses. If F+ has a doubly-odd formula then there ezists j € {1,..., n}
satisfying (3).

Proof. Let F := (u;Vl),...,(lpVu;), (~u;Vip1),. .., (IgV—u;) a doubly-odd formula contained
in Fp+. We show that j fulfill conditions (3). Indeed, the set of arcs in D4 corresponding to
clauses in F contains paths Pj-;+ and Pj+;-, from j~ to j* and from j* to j~ respectively.
By definition of Fp», 2} is half-integer but not integer. The potential function p on D, defined
from z* as in (2) satisfies length(u,v) = p(v) — p(u) for each arc (u,v) in Pj—;+ or P;y;-. Hence,
22} = p(j+)-p(j~) < distance(j~,j*) < length(Pj;+) = 2z}. Analogously, distance(jt, ™) ;
-2z

This proves the correctness of the algorithm: either a half-integral solution z* of Az < b
can be rounded into an integral solution or there exists a j € {1,...,n} satisfying (3).

Theorem 1 If Az < b satisfying (1) has an integral solution then every half-integral solution
of Az < b can be rounded to an integral solution. Moreover, an integral solution can be found
with the same complexity as the single source problem. |
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