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e we consider two queueing systems: a symmetric polling system with gated service at all N
id with switchover times, and a single-server single-queue model with one arrival stream of ordi-
mers and N additional permanently present customers. It is assumed that the combined arrival
the queues of the polling system coincides with the arrival process of the ordinary customers in
queue model, and that the service time and switchover time distributions of the polling model
ith the service time distributions of the ordinary and permanent customers, respectively, in the
ue model. A complete equivalence between both models is accomplished by the following
srtion of arriving customers. In the single-queue model, an arriving ordinary customer occupies
bility p; a position at the end of the queue section behind the i-th permanent customer, i=1,...,N.
ic polling model, an arriving customer with probability p; joins the end of the +th queue to be
he server, measured from its present position.

ingle-queue model we prove that, if two queue insertion distributions {p;, i=1,...,N} and
N} are stochastically ordered, then also the workload and queue length distributions in the
fing two single-queue versions are stochastically ordered. This immediately leads to equivalent
orderings in polling models.

: single-queue model with Poisson arrivals and py=1 is studied in detail.
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ling system is a single-server multiple-queue system, in which the server visits the queues in
ing customers at these queues and requiring (possibly zero) switchover times between visits
ieues (cf. Figure 1). Recently, polling systems have received much attention; cf. the exten-
ist of references in Takagi [10]. The arrival processes at the queues are almost invariably
dependent Poisson processes. Moreover, the position of the server at the epoch of a custo-
not influence the number of the queue to which that customer arrives. This is a natural
ost applications found in computer-communications. However, in case the customers are
» not unnatural for a customer to take the present position of the server into account and to
jueue that will be visited relatively soon by the server.
10te we consider polling systems with some general arrival process of customers to the sys-
and where the server position at the time of arrival of a customer does influence the choice
: joined by the arriving customer. We restrict ourselves mainly to the case of gated service
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at all queues, viz., at each visit to a queue the server serves exactly those customers found upon its arrival.

Intuitively one expects the polling system to perform relatively good when customers choose queues that
are relatively soon to be visited by the server. We show this formally by introducing a stochastic ordering for
the queue arrival positions (as measured w.r.t. the server position), and subsequently proving that this leads
to a stochastic ordering of workloads (total amount of work to be performed by the server) and of total
numbers of customers. In the proof we exploit the relation between (i) polling systems with N queues and
switchover times and (ii) single-server single-queue systems with externally arriving ‘ordinary’ customers
and with N additional permanently present customers (cf. Figure 2). A permanent customer who has
received a service immediately returns to the end of the queue. The relation between these two models has,
for a special case, first been observed in [4]. The two models can be made equivalent by equating the total
arrival process in both models, by also equating the service time distribution of the customers in the polling
model with the service time distribution of the ordinary customers in the single-server single-queue model,
and by finally equating the switchover time distribution in the polling model with the service time distribu-
tion of the permanent customers. Various rules for the insertion of the ordinary customers between the per-
manent customers translate into various rules for polling model arrivals that take the server position into
account. In particular, the queue insertion probability distribution P = (p, . . . , py) indicates that an arriving
customer joins the end of the queue section behind the i-th permanent customer with probability p;, i=1,...,N;
this translates into a customer in the polling model arriving with probability p; at the i-th queue to be subse-
quently visited by the server. Stochastic orderings for queue insertion probability distributions in the single-
server single-queue model are introduced, leading to the above-mentioned stochastic ordering resuits for
workloads and for numbers of customers (Theorem 2.1 and Corollary 2.1). The indicated equivalence allows
a direct translation to polling models.

One of the advantages of the present study may be that special choices of the arrival rules can lead to rela-
tively simple systems that can be analysed in much detail. This is useful because few detailed polling results
are known, even for relatively simple polling systems like those with exhaustive or gated service at all
queues and with independent Poisson arrival processes. For example, consider the case that, in the single-
server single-queue model with additional permanent customers, ordinary customers join the end of the
quene according to a Poisson process, having all permanent customers in front of them. This model has been
analysed in [4], where a relatively simple expression for the sojourn time Laplace-Stieltjes Transform (LST)
has been derived. From that LST one immediately finds the waiting time LST and hence (PASTA) the work-
load LST, and finally the LST of the workload of ordinary customers. The results of the present paper show
that the latter workload is an upper bound for the workload of the symmetric polling system with gated ser-
vice at all quenes.

Very few stochastic bounds for polling systems are known. Levy et al. [6] compare various service poli-
cies w.r.t. total workload, using sample path comparisons. They build a hierarchy of policies, and they show
that the exhaustive policy dominates any other policy. Altman et al. [2] show that several performance
measures in polling systems are stochastically increasing in arrival rates, service times, and switchover times.
Liu et al. [7] try to find dynamic server routing and service policies (taking emptiness, or even exact queue
lengths, into account) that stochastically minimize the amount of work and the total number of customers at
all times.

The paper is organized as follows. Section 2 contains our main result, a stochastic ordering for workloads
in the model with permanent customers. Some generalizations are also discussed. Subsequently a restriction
is made to Poisson arrivals. Three models are described in some detail. Model I is the symmetric cyclic pol-
ling model with gated service; model II is the permanent customer model with ordinary (Poisson) customers
joining the end of the queue; and model III is the permanent customer model with ordinary (Poisson) custo-
mers overtaking all permanent customers except the first one. The mean waiting times of Poisson customers
in models I, II and III are presented and compared. .

Section 3 is devoted to a detailed analysis of model III. This model can in fact be viewed as an M/G/1
queue with gated service and multiple vacations. Our main result for this model is the joint distribution of
the numbers of Poisson customers before and after the first permanent customer (before and after the gate), at
departure epochs of Poisson customers.
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ngle-server single-queue models with N additional permanently present customers, with as
the queue insertion probability distributions P = (py, - - - ,py) and Q =(qy, - -  ,qy) (recall
he probability that an arriving customer joins the end of the queue section behind the i-th per-
):

Y < i qi» j=19'"1N- (2.1)

’ is stochastically larger than Q, cf. Ross [8]. The arrival process of ordinary customers is an
stic process, which is the same for both models. Similarly, the service times of ordinary cus-
rendent generally distributed stochastic variables, with identical distributions in both models.
ient holds for the service times of permanent customers. The interarrival, service and switch-
re assumed to be independent. It is assumed that the traffic characteristics of ordinary custo-
at the limiting distributions of workloads and of total numbers of ordinary customers in both
| are equal to the stationary distributions.

P) (VD) the steady-state total workload of ordinary customers in model P (Q), the model
tion probability distribution P (). Our main result is:

>, VO, 22)

s theorem is based on classical coupling arguments. In fact we shall compare sample paths
1Q, and we shall show that with an appropriate coupling the workload of ordinary customers
rizes the workload of ordinary customers in model Q for each sample path. Let us consider
both models starting with no ordinary customers at r=0. We shall prove that at any moment

)2, VO,

2(¢)) the total workload of ordinary customers at time ¢ in model P (Q) (note that this is a
an (2.2)). As the ergodicity condition is fulfilled, we obviously have the same inequality

>, VO

rsions of those workloads.

tdering of P and Q unéJhes a stochastic ordering of the stochastic vectors of queue insertion

e r® - yand o= @ 1_'_5(9) -++). According to Strassen’s lemma, there exist sto-
and F(Q) such that Pr{—( 2T } 1. Consider a realization ® of the input sequence of

vice times of ordinary and permanent customers and queue insertion positions (r{,r{, ..

ke the following coupling: arrival times of successive ordinary customers in both models are

vice time of the j-th service of an ordinary customer (respectively of a permanent customer)

s identical, j=1,2,..; and r = for all jh, while r{ > r{2). Then obviously V¥)(r)

ith the exception of a pcnod stanmg with the arrival of the A-th ordinary customer, during

(1) > VO@).

low i) > @ for a second index k#h, etc.; iterating this procedure we end up with

for all 720. The proof is concluded by removing the conditioning on .

(

ling of the service times in the proof of Theorem 2.1 immediately shows that the numbers of
ars in models P and Q are also stochastically ordered. Such an ordering does not hold for
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of ordinary customers. Counterexamples can be easily constructed, exploiting the fact that
mers are not necessarily served in order of arrival.

chastic ordering results can be adapted and generalized in various ways. A brief discussion of
sibilities is given below.

1 2.1 it is assumed that an arriving customer occupies, with probability p;, a position at the end
section behind the i-th permanent customer. The proof of the theorem shows that the exact
ied within the i-th queue section is not relevant for its result.

12.1 an arriving customer can only occupy a position in the queue sections behind the i-th per-
1er, i=1,...,N; in the framework of polling, this corresponds to gated service. Let us now also
customers to occupy a position in the queue section before the first permanent customer (if
t customer is not in service). For example, if an arriving customer joins the queue section
tively after) the ith permanent customer with probability 1/N, i=1,...,N when upon its arrival
espectively permanent) customer is in service, then the comesponding polling model is the
lic polling model with exhaustive service. If each amriving customer joins the queue section
t permanent customer, then a single-server queue with exhaustive service and multiple vaca-
3enerally, we could have queue section insertion probabilities pf"), i=0,...,N, when an arriving
an ordinary customer in service, and queue section insertion probabilities p?’), i=1,...,N, when
tomer finds a permanent customer in service. If the corresponding P is stochastically larger
and Q®, and similarly P® is stochastically larger than both Q‘? and Q®, then again sto-
ngs of workioads and numbers of customers can be proved. For example, taking
N, i=l,..,N, p{? =q{®) =1/N, i=l,..,N, leads to the result that the workload in the sym-
system with exhaustive service is stochastically smaller than the workload in the symmetric
with gated service (a result that has already been obtained in [6]).
le can go even further, and allow the possibility that an arriving customer has to wait several
eceiving service. For this purpose one has to introduce more permanent customers than there
he corresponding polling model.

nework of poiling it might be interesting to allow a more general influence of the server posi-
vice of queue for an arriving customer, by assigning newly arriving customers with probability
1~ When the server is at @;. In the single-server single-queue model this corresponds to mak-
m between the various permanent customers. Polling models where the position of the server
choice of the queue at which a new customer arrives have hardly been considered so far. At
| study of such models is being started, including the existence of conservation laws.

ler of this paper we restrict ourselves almost exclusively to three special cases of the above
dinary customers arriving according to a Poisson process. These models will be called model
d are described below in some detail.

model I (cf. Figure 1)
clic polling system with N queues, Q,...,Qy, where each queue has an infinite buffer capacity
g customers. Customers arrive at all queues according to independent Poisson processes. The
y at Q; is A/N, i=1,...,N. The service times of the customers at all queues are i.i.d. stochastic
general distribution B(.), first moment B and second moment B® and Laplace-Stieltjes
. The total offered traffic to the system is p=Af. The queues are attended by a single server
queues in a fixed cyclic order. The switchover times of the server between any two consecu-
, Qi1 are ii.d. stochastic variables with general distribution S(.), first moment s and second
nd Laplace-Stieltjes transform of.}. The interarrival, service and switchover processes are
independent. The server serves each queue according to the gated discipline, and serves cus-
gach queue in FIFO order. The server keeps switching in an empty system. It is well-known
el p<1 is a necessary and sufficient ergodicity condition (Takagi [9]). As argued in this
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san also be viewed as a single-server single-queue model with N additional permanently
's, the latter ones having service time distribution S (.), and with the ordinary (Poisson) cus-
g the position at the end of the queue section behind the i-th permanent customer with pro-
i=l1,...N.

odel II (cf. Figure 2)

from the permanent customer version of model I in only one respect. The queue section
lity distribution is (0,0,...,1): The Poisson customers join the very end of the queue, behind
stomers. Figure 3 indicates the queue composition of this model.

erved in Boxma and Cohen [4] that model II can be viewed as a - rather special - cyclic pol-
N queues and gated service at all queues. The service times of the permanent customers
» switchover times of the server between successive queues. To take into account that in the
're is really only one queue, one has to assume that arrivals at a particular queue of the spe-
21 are only possible during the server visit to that queue and during the subsequent switch-
ifter, arrivals can only take place at the next queue, etc. This "discriminatory” arrival pro-
s of the special polling model, with customers arriving at what is apparently the worst possi-
§ it intuitively clear that the workload of Poisson customers in model II is stochastically
tal workload in model I.

t customer version of model II has been analyzed in detail in [4]. It has been shown that
ty and sufficient ergodicity condition. Among other things, an explicit expression is obtained
g function of the queue length distribution of the Poisson customers at departure epochs of
rs. This immediately yields an expression for the LST of the sojourn and waiting time distri~
isson customers, from which moments can be easily obtained.

odel I

:s from model II in only one respect. The queue section insertion probability distribution is
Poisson customers join the queue in the order of their arrival, but overtaking all permanent
. for the first one. Figure 4 indicates the queue composition of this model. Just like model
quivalent to a cyclic polling model with N queues and gated service at all queues, in which
s is special: arrivals at a particular queue only take place during the server visit to the previ-
iring the subsequent switchover time. Customers hence arrive at what is from their point of
isible queue, making it intuitively clear that the workload of Poisson customers in model III
imaller than the total workload in model L.

1 Vy; denote the steady-state workloads of Poisson customers in models I, I and TI. The
n probabilities for models I, I and TI (respectively: p;=1/N, i=1,...,N for model I, py=1 for
=1 for model 1) immediately lead to the following corollary of Theorem 2.1 (obviously the
r a general arrival process of the ordinary customers).

' V12 V. 2.3)

2, Yy, combined with the PASTA property and the FIFO order of service for Poisson cus-
i II and III, implies a stochastic ordering of waiting times in models II and III. However,
ordering does not hold w.r.t. model 1. It is easy, though, to rank the mean waiting times in
II. In model I (cf. Takagi [9]),

MDD s 04
= 21-p) + 2 + 2(1—p)(N 14+2p). 2.4)
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In model II, one can obtain the mean of Zj, the number of Poisson customers left behind after the departure
of a Poisson customer, from (2.8) of [4]; using the obvious relation EZ;; = MEW+B) we find:

MO P
TSR e U U @.5)

Some reflection shows that Poisson customers do not see a difference between model III and the N=1 variant
of model I. The latter model is an M/G/1 queue with one permanent customer, and can also be viewed as an

M/G/1 queue with gated service and multiple vacations. The mean waiting time of Poisson customers now
follows either from (2.5) with N=1 or from Section 2.5 of [11]:

_ABD @ o
mr 2(1-p) + % + " (2.6)

EWII =

Hence
s
2(1-p)

with equality when s=0 or N=1. Application of Little’s formula immediately gives similar results for mean
numbers of customers.

EWI - EWIII = EW[I —EW[ = (N—l) 2 0, (2.7)

Remark 2.3

Consider the following variant of model I, the cyclic polling model: model RP, a random polling model in
which the next queue to be visited by the server is Q; with probability 1/N, i=1,2,...,N, regardless of which
queues have previously been visited. Assume that all traffic characteristics and switchover time distributions
are the same as in model I. Comparison of (2.5) and formula (5.37) of [5] reveals the intriguing fact that the
mean waiting time EWpp at all queues in model RP equals EWy;. In model II the server visits all queues
exactly once in every set of N consecutive visits, according to a cyclic pattern, and the customers arrive ‘in
the worst possible queue’. In model RP the customer arrival process uses no information about the server
position, and the server visits all queues on the average one out of N times, but according to a completely
random pattern.

The equality EWpgp=E'W/; can easily be verified by using the theory of work decomposition for single
server queueing systems with service interruptions (vacations, switchover times; cf. [3]). Denote by Vpp the
steady-state amount of work in model RP, and denote by Yzp (Yy) the steady-state amount of work in
model RP ( workload of Poisson customers in model II) at a switchover epoch of the server. Finally denote
by V4641 the steady-state amount of work in the corresponding M/G/1 queue without switchover times (an
M/G/1 queue with arrival rate A and service time distribution B (.)). It follows from [3] that

EVgp =EVy61 +EYpp,
EVy=EVye, +EYy.

We next show that EYpp=E Yy and hence E Vgp=E Vy;; this rapidly implies the equality of the mean waiting
times in both models: EWgp=E Wy, cf. Formula (3.5) of [3]. Note that both EYpp and EY; can be written
as the sum of ps‘?/2s (the mean amount of work that has arrived in the past part of the switchover interval
under consideration) and the mean amount of work present in the system at the beginning of that switchover
interval. In model II, all this work is gathered in the past cycle, minus one switchover period; its mean
equals (with EC the mean cycle time) p[EC — 5] = ps(N—-1+p)/(1-p). Similarly, in model RP each queue
was last left behind by the server on the average N visits ago, hence Ns/(1-p) — 5 =s (N -14+p)/(1-p) time
units ago, and has since then acquired p/N work per unit of time. Hence the mean amounts of work in both
models at the beginning of a switchover interval are the same, and so are EYpp and EYy;.




f model III
1 we analyse the queue length process in model III, viz., the M/G/1 queue with additional per-
mers, in which arriving Poisson customers join the queue in order of arrival and occupy the
ediately ahead of the 2nd permanent customer. As observed in Remark 2.2, this model is
th an M/G/1 queue with only one permanent customer (model II with N =1), and hence also
1 queue with multiple vacations and gated service. The latter model has been extensively stu-
in contribution is an exact analysis of the joint distribution of the numbers of customers ahead
the (first) permanent customer, at departure epochs of Poisson customers. The special struc-
)del allows us to solve the two-dimensional functional equation for the generating function of
e length distribution. The functional equation is of a type that is not completely uncommon in
e queueing models. The queue length analysis easily leads to the marginal and total queue
itions, and to the LST and mean of the waiting times and workload. The distribution of the
1gth can also be found in Takagi [11], Section 2.5, and in [4]. The latter paper considers also
¢ length distribution at service completion epochs of arbitrary customers, Poisson and per-
A detailed study of the M/G/1 queue with multiple vacations and gated service is given in
asegawa [12]. They present the time-dependent analysis of the numbers of customers before
gate at time £ It should be noted that the joint limiting distribution of these numbers differs
ing distribution at departure epochs of Poisson customers. Another related paper is Ali and
their model customers arrive according to a Poisson process, and wait for service in a two-
he first stage is a waiting room; the second stage resides in the service room. Whenever the
ecomes empty, it is replenished by the transfer of all customers in the waiting room and the
ositive random number of overhead customers. These overhead customers play the role of our
tomers, while the presence of the waiting room corresponds to the insertion of Poisson custo-
first permanent customer. In the model of Ali and Neuts, overhead customers have the same
istribution as Poisson customers. Under this assumption, they determine, a.o., the joint distri-
umbers of customers in both stages.
sent our analysis of model IIl. Consider the epoch of the n-th departure of a Poisson custo-
vy Z5 and Z? the numbers of Poisson customers at this epoch before and after the first per-
ter; the last N—1 permanent customers always form the tail of the queue. We have

3.1
B=2 -1,

31 = Z'('Z) + Vua1s

D =ZP 4y -1 if ZP>0,
~Q

Y=py -1 if Z®=0,

21 =Vn41-

enotes a s.v. with distribution that of the number of Poisson arrivals during the service of a
sson) customer; |1, denotes the same quantity as 1,,, but under the condition that the number
witive. Note that

1 =BM1-1)},  Elr™]=o{M1-r)}, (3.2)
] = 6fM1-r)} = [6{A1-r)} — ofA1/[1 - A1,

"1,7'2) the generating function of the joint distribution of Z{" and Z%. It can be shown that
: F(ry,rp) exists when p<1, with F(r;,r,) denoting the generating function of the joint



ation of ZM and ZP. From the set of recurrence relations (3.1) it follows by standard
) satisfies the following functional equation for |ry|<1, |r;|<I:

ra)= % BOM1—r)} [F(r1.r2) — FO,rp)] + 3.3)
% G{M1—r 1)} BIM1-r2)} [F (O,r1) — F(0,0)] +
% SM1=r 1)} BM1—r2)} F (0,0).

1, |ra 11,

r2) = [ry = BA(-r )i 34
[-BIM1-72)} F(O,r2) + o{M1-r )} B{M1-r2)} FO,r1) +
[6fM1-r1)} ~ S{A(1—r D} B{M1-r2)}F(0,0)].

sy ro with |r,|<1, the denominator of the right-hand side of (3.4) has exactly one zero

and |ry|<1. Since F(ry,r,) is an analytic function in r; and r; for jry|<1, |ry|<1, the
right-hand side of (3.4) must be zero for all these zeros ry = B{M1-r;)}. Hence, defining

=B{M1-r)}, Irlsl,
3.2) that for |7 |<1,

r) = G{M1-8()} F (0,8(r)) + [S{M1-8(r))} — [o{M1-8(r))J1 F (0,0) = (3.5
SfA1-8(r)} F (0,8(r)) + [6{M1-3(r))} — 1] c{x{i} F(0,0).

ne F (0,r) - and hence finally F (r,r,) from (3.3) - by iteratively solving (3.5), successively
r), 8(8(r)), - * - in the left-hand side. Introduce for |r |<1,

ry=r,

r) =8V, k=1,2,..,

r) =M1-80(r), k=0,1,....

tional equation (3.5) is not uncommon in branching-type queueing models like the one under
ote that 8®(r) can be viewed as the generating function of the number of kth generation
igle element in the Oth generation, with B{A(1-r)} the generating function of the branching

single element. Similar to the analysis on p. 180 of [4] one can show that successive itera-
rerges iff p<1. For p<1 one obtains:

P =FODTIof®¢) +F(©00) 1"% X lfof6P ()} - 1] h of¢®@}= (39
j=1 j=t

DTT o4y +FO.0 2L "W [IIG{¢""(r)} 11

j=1

ermine F(0,1) and F(0,0). Substitution of r=0 in (3.6) yields one linear relation between
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0,1). A second linear relation between these quantities is obtained by substituting r,=r,=r in

— (1 =7) BIM1-1)}
() = () =gt )
L=ofMIr)] FQr) , ofMl=r)} =o(MI-r)} FO0, |\
1—r 1-p 1-r 1-p 7 -
(3.7) yields the required second linear relation between F (0,1) and F (0,0):
_ _StM_ -
= [AsF (0,1) + As vy F (0,0)]/[1-p]. 3.8)

an easily be interpreted by rewriting it into
:-YE =1F(0,1) - F(0,0)] + F (0,0)/[1 - o{A]],

that both the left-hand side and the right-hand side represent the ratio of services given to per-
isson customers. Indeed (1-p)/s permanent customers are served per unit of time, as opposed
1stomers; and 1/(1-6{)A}) denotes, starting from a system with no Poisson customers present,
nber of permanent services before a new Poisson arrival must be served.

nd (3.8) we can rewrite (3.7):

1oy LD BN 1= oMr)} =
) = ) HoWPeR, Irist (3.9)

tion structure of (3.9) should be noted; the left-hand side of (3.9) denotes the generating func-
ibution of the total number of Poisson customers in the system with permanent customers, and
e the square brackets in the right-hand side of (3.9) represents the generating function of the
the number of customers in the corresponding M/G/1 queue without permanent customers.
) = E [exp (~M1-r)Wy)] BfM1-r)}, which determines the LST of the waiting time distribu-
- customers. The PASTA property and the FIFO order of service of the Poisson customers
LST of the waiting time distribution equals the LST of the total workload distribution. We
* to Section 2.5 of Takagi [11] for further discussions of the queue length and waiting time
s model (viewed as an M/G/1 queue with multiple vacations and gated service).

one can calculate the correlation between the two queue lengths before and after the per-
er. We refrain from presenting the results of this lengthy calculation; instead, we turm to the
1g distributions of Z{" and ZP. From (3.4), (3.6) and (3.8) we obtain their generating func-
[

16090 -1

= 1P 0

D=a= 55— , (3.10)
)= BAA=N}A-r) FO,1)~F(0,r)

’ 1-B{M1-r)} 1-r '

(3.8), the latter relation can be rewritten into

T1 06?1
o BMIrY 1-p i @3.11)
? 1-BIM1-r)} As r-1 )




| observed that ﬁ o(¢9)(r)) is the GF of the queue length distribution at the end of the ser-

=0 .
srmanent custojmer; apparently the right-hand side of (3.10) is the GF of the corresponding

ution. The interpretation is clear: at the end of the service of a permanent customer, the
. customers after this permanent customer is ‘complete’, and becomes the block of Poisson
! of the (first) permanent customer. The size of this block subsequently reduces after each
on. At a departure epoch of a Poisson customer, F (r, 1) gives the GF of the remainder of

mine EZ;, the mean number of Poisson customers left behind after the departure of a Pois-
'ote that EZy;; equals the derivative of F (r,r) at r=1. Differentiating both sides of (3.9) we

. MBP  As@  Aps
7-—p+2(1_P)+ % + 1-—-p.

(3.12)

mg time EWp; of Poisson customers in model I follows from the obvious relation
+ PB); we find, cf. (2.6):

e 5@ s

decomposition reasoning at the end of Remark 2.3, one can readily generalize (3.13) and
: of a customer insertion that occurs with probability one at the end of the queue section
ermanent customer: The mean waiting time EW® for the case of p; = 1 becomes:

LAY @ g
O M2 s s L _ 3.14
2(1-p) +5o 1p (i-1+p) (3.14)

lel with N permanent customers with p;=1 corresponds (as far as the Poisson customers is
model with only i permanent customers, with insertion of arriving Poisson customers at the
This observation allows us to deduce from [4] that the generating function of the distribution
ser of Poisson customers X in the case p;=1 is given by (cf. (3.9)):

X1 = (1) A=) BOMI-T)} 3.15
T T @15

0T o611/ 6M1-r)}, |7 ]<L.

j=0

- ofM1-r)}
(1-r)ks

function of the total queue length distribution in a symmetric polling model with gated ser-
accurately represented by a weighted sum of the expression in (3.15) for i = 1,...,N, with
IN.

nt
grateful to H. Levy for an observation that has led to Remark 2.3, to G.M. Koole for valuable
- stochastic orderings, and to S.C. Borst and M.B. Combé for interesting discussions.
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