Optimal Multi-Writer Multi-Reader Atomic Register

A. Israeli, A. Shaham

Computer Science/Department of Algorithmics and Architecture

CS-R9235 1992
Optimal Multi-Writer Multi-Reader Atomic Register

Amos Israeli
CWI
P.O. Box 4079, 1009 AB
Amsterdam, The Netherlands
AND
Dept. of Electrical Engineering
Technion — Israel

Amnon Shaham
CWI
P.O. Box 4079, 1009 AB
Amsterdam, The Netherlands
AND
Dept. of Computer Science
Technion — Israel

Abstract. This paper addresses the wide gap in space complexity of atomic, multi-writer, multi-reader register implementations. While the space complexity of all previous implementations is linear, the lower bounds are logarithmic. We present two implementations which close this gap: The first implementation uses multi-reader physical registers while the second uses single-reader physical registers. Both implementations are optimal with respect to the two most important complexity criteria: Their space complexity is logarithmic and their time complexity is linear.

1991 Mathematics Subject Classification: 68M10, 68Q22, 68Q25.
Keywords and Phrases: Shared Register, Concurrent Reading and Writing, Atomicity, Multiwriter Register.
Note: This work is partially supported by NWO through NFI Project ALADDIN under Contract number NF 62-376. A preliminary version of this paper was presented in the 11th Annual ACM Symposium on Principles of Distributed Computing, August 1992, Vancouver, Canada.

1 Introduction

At the most basic level of interprocessor communication, data is transferred via registers — memory devices which support read and write operations. Each register can store any element from its set of permitted values; it has a set of writers — processors that can write values in the register, and a set of readers — processors that can read values from the register. A write operation takes some permitted value as a parameter and stores it in the register; a read operation returns a (permitted) value stored in the register. The stored and returned values should satisfy some consistency guarantees
which depend on the type of the register. Lamport in [La86a, La86b] was the first to formalize the
notion of a register. He defined three types of registers in terms of the consistency guarantees they
provide: safe, regular and atomic. An atomic register supports read and write as atomic, indivisible,
operations. Safe and regular registers provide inferior consistency guarantees which are not discussed
in this paper. The execution of an operation is called an action. Under the global time model, which
we assume throughout this paper, each action has a starting time and an ending time. The interval
between the starting and ending times of an action a is called the execution interval of a. Each writer
or reader executes actions in a serial manner, but we assume absolutely no synchronization among
different processors, thus actions of distinct processors may be executed in overlapping time-periods.

In a situation in which some specific type of register is not available at the local hardware store,
one may resort to implementing the required register using some available registers. For the user, such
implementation is a black box which behaves exactly according to its specifications. Formally, an im-
plementation of a logical register using a set of physical registers, consists of a hardware arrangement
of the physical registers and two programs that are called the writer protocol and the reader protocol.
Both programs are composed of operations of the physical registers (which are called physical oper-
ations) and constitute the operations of the logical register (which are called the logical operations).
The set of processors is partitioned into logical writers and logical readers, that is, writers and readers
of the logical register. For simplicity we assume that each processor is either a logical writer or a
logical reader though in reality a processor can function as both.

An implementation is correct if the assumption that all physical registers provide their consistency
guarantees implies that every execution of the logical register satisfies its consistency guarantees. For
an atomic logical register this requirement materializes as follows: For every logical execution E, there
exists an assignment of a serialization time for every logical action in E, that induces a serialization
of all logical actions in E. Under this serialization every read action returns the value written by the
write action which is the most recent preceding write. To avoid trivial solutions it is required that
the reader and writer protocols are wait-free and that each action is serialized within its execution
interval.

Throughout this paper w and r are used for the number of writers and readers, respectively, and
n = w + r is the total number of processors in the system. A register with w writers and r readers
is denoted as a (w, r)-register. In [La86a, La86b] Lamport presented five implementations of various
logical registers with a single writer. When some of these implementations are combined, they form
an implementation of an atomic (1,1)-register with any value set, from binary, safe, (1,1)-registers.
Several papers, motivated by the work of Lamport, studied the intriguing problem of implementing
atomic, multi-writer, multi-reader registers. The simplest such implementation was presented by
Vitanyi and Awerbuch in [VA86]. They implement an atomic, (w, r)-register, using atomic, (1,1)-
physical registers. In this implementation the physical registers are divided into two fields: a value
field and a label field. The value field stores the last logical value that was written by the its owner 1,
if the owner is a logical writer; if the owner is a logical reader then the value field holds the last value
returned by the owner. The only operations which access the value field are copying a value to this
field or from it. The label field stores all the coordination information needed for the implementation.
We call implementations in which each register is divided into a value field and a label field and
in which the only permitted operations accessing the value field are copy operations, label based
implementations. We rename the label field to be called the coordination field and reserve the term
label for the most basic coordination unit. In our implementations each coordination field consists of
several labels. The complexity of a label-based implementation is measured by several criteria. The
two most important criteria are:

1. Space Complexity - The maximal size of a coordination field of any physical register. (This
criterion is often called label-size.)

1 The writer of every physical register is called its owner.
2. Time Complexity - The maximal number of physical actions executed during a single logical read or write operation.

In the [VA86] implementation labels are time-stamps. This causes its main drawback, namely: unboundedness. The actual size of a label in any logical action is logarithmic in the number of write actions performed prior to that action. The time complexity of this implementation is linear in \(n \), the total number of processors.

Several researchers have devised bounded label-based implementations for atomic, multi-writer, multi-reader registers, using single-writer, multi-reader physical registers: The first implementation was proposed in [VA86] and was found to be erroneous. The second implementation was proposed by Peterson and Burns in [PB87] — this implementation has a bug which was discovered and corrected by Schaffer in [Sc89]. In this implementation the space complexity is \(O(w) \) and the time complexity is \(O(w^2) \). Israeli and Li, in [IL87], suggested bounded time-stamps as a bounded primitive to capture the temporal relationship among asynchronous processors. Using this method they devised an implementation which runs in linear time and with \(O(n) \) space complexity. Other implementations with an inferior complexity are proposed by Abraham in [Ab91a, Ab91b]. The work of Li, Tromp and Vitanyi in [LTV90] presents an implementation using atomic \((1,1)\)-physical registers. The space complexity is \(O(n) \) and the time complexity is linear. Since the implementation of [LTV90] uses inferior physical registers its complexity is superior to all aforementioned implementations.

Thus far all proposed bounded concurrent implementations have a space complexity which is linear in the number of writers, and in some cases even in the total number of processors. Some explanation for this phenomena was suggested by Israeli and Li in [IL87] who defined the class of Binary Comparison Protocols (or in short BCP) as the class of label-based implementations in which the labels of every two processors can be compared to find the most recent label among the two. They showed that the space complexity of any BCP implementation is at least linear in the number of writers. Later Li and Vitanyi in [LV90] have pointed out that though the original [VA86] implementation is BCP as well as all bounded implementations, in principal an implementation of an atomic register does not have to be BCP. To demonstrate this, they presented a sequential implementation (in sequential implementations the logical actions are executed sequentially, without overlapping) with \(O(\log w) \) space complexity. The sequential implementation of Li and Vitanyi uses the ids of the processes, or in other words, is not anonymous. For an anonymous implementation their method requires labels of size \(2\log n \), since the processor's ids are added to the labels. Later it was proven by Cori and Sopena in [CS90] that an anonymous implementation for \(w \) writers should have at least \(2w - 1 \) distinct labels. They also devised a sequential register with exactly \(2w - 1 \) labels which improved the space complexity of the sequential [LV90] implementation by a constant. Recently it was proven by Tromp in [T92] that the sum of sizes of coordination fields in nonanonymous implementations is at least \(n \log n \) which translates to \(\log n \) size coordination fields assuming that the size of all coordination fields is the same.

These results leave an exponential gap between the lower and upper bounds on the space complexity of atomic register implementation. While the lower bounds take into account only to the combinatorial properties of keeping track of the last value (and therefore hold for sequential implementations as well), an actual concurrent implementation should also deal with concurrency problems; all existing implementations require linear space to do that. The significance of this gap is further emphasized when one takes a closer look at the unbounded implementation of Vitanyi and Awerbuch in [VA86]. For polynomial length executions the space complexity of this implementation is logarithmic. A linear space complexity is reached only in executions of exponential length. In other words: The bounded protocols supersede the unbounded protocol only in exponentially long executions. In polynomial length executions, which are often viewed as a better model for real-life situations, ensuring the theoretical boundedness requires an exponential overhead.

The natural question arising here is: Is this cost necessary? The answer is negative as we show
by presenting two bounded, concurrent, label-based implementations for atomic, multi-writer, multi-reader register, with logarithmic space complexity. The first implementation uses atomic, \((1,n)\)-physical registers \(^2\). The second implementation uses atomic, \((1,1)\)-physical registers. These implementations are the first to break the linear space barrier for atomic multi-writer registers; moreover, by the lower bound proven by Cori and Sopena in [CS90] and Tromp in [T92], the logarithmic space complexity is optimal. The time complexity of both implementations is linear, which is obviously optimal. Both implementations are self-stabilizing: Regardless of the system's initial state, it eventually reaches a legitimate state — a state which can be reached in a legally initialized system. In such an arbitrary initial state the processors may be in arbitrary states (e.g. in the middle of some logical action) and the physical registers may hold arbitrary values.

To represent temporal relations among protocol executions we use precedence graphs. These graphs which were introduced by Israeli and Li in [IL87], are time-dependent graphs whose nodes and edges at any given time are determined by the labels stored in the processors' registers at that time. Label \(\ell_1\) precedes \(\ell_2\) if there is a directed edge \((\ell_2,\ell_1)\) in the precedence graph. Following [ILV87] we use dynamic precedence trees in which the outdegree of every node is at most 1; each label points to at most one other preceding label. At any given time the precedence graph is a forest of intrees — trees whose edges are directed towards the root. For each individual label \(lb\) the set of labels whose temporal relationship with \(lb\) can be found by direct comparison includes the labels whose edges point to \(lb\), and the single label to which \(lb\)'s edge points. Hence our protocols are indeed not BC P. Each path of a precedence intree is ordered temporally but labels on distinct paths are in general not comparable. The paths of any precedence intree are ordered lexicographically, by the ids of (the processors which generated) their nodes. The most preceded path in the precedence forest is called the frontal branch of the forest. Roughly speaking the frontal branch consists of nodes which are generated by recent write actions and the last node on this branch is the last serialized write action.

The rest of this paper is organized as follows: In Section 2 we formally define the model of computation and the implementation problem. In Section 3 we explain the data structure used by our protocols and present a sequential implementation. The sequential implementation serves as an exposition for the ideas which are later used in the concurrent implementations. The \((1,n)\) and the \((1,1)\) implementations are presented in Section 4 and Section 5 respectively.

2 The model

In this section we define the model of computation and the atomic register implementation problem.

A system consists of a set of processing entities called processors, and a set of memory entities called registers. Processors access registers by executing read and write operations. Each operation is associated with a processor that can execute the operation and with a register which is accessed by the operation. Each register has a set of permitted values, a set of writer processors and a set of reader processors. A write operation to register REG is executed by some writer of REG, it gets a permitted value of REG as an input parameter and stores the value in REG. Analogously, a read operation from register REG is executed by some reader of REG, it retrieves the (permitted) value stored in REG and returns it as an output parameter. Processors are defined by their programs whose building blocks are instructions; each instruction starts with a number of internal computations which is succeeded by at most one operation. Each program has a distinguished instruction called the program's initial instruction. Each register has a distinguished value called the register's initial value.

The execution of an operation is called an action. Under the global time model, each action has a starting time and an ending time. The time interval between the starting and ending times of action \(a\) is the execution interval of \(a\). Actions whose execution intervals are overlapping are called

\(^2\)Since we assume that a writer always "knows" the values it writes we count it among the readers of its register.
overlapping actions. Each processor is assumed to have a program counter which at any time points to the next instruction to be executed by the processor. When the system is initialized all program counters point to the processors' respective initial instructions, and each register holds its initial value. The actions of a processor are determined by its program and by the values returned by earlier read actions; since processors are serial entities the actions of a processor never overlap. Thus, an execution of processor \(P \) is a sequence of non-overlapping actions of \(P \), with their starting and ending times and their corresponding values.

Let \(REG \) be some register. A set \(A \) of \(REG \)'s actions can be serialized, if every action \(a, a \in A \), can be assigned a distinct point in time which lies within its execution interval, called the serialization time of \(a \), such that the following serialization condition is satisfied:

Any read action returns the value of the write action last serialized before it.

A set of actions that access \(REG \), is an execution of \(REG \), if the set satisfies its consistency guarantee. If \(REG \) is atomic then its consistency guarantees state that each of its executions can be serialized. A sequence of actions \(E \) is a system execution if for every processor \(P \), the set of actions of \(P \) in \(E \) is an execution of \(P \), and for every register \(REG \), the set of actions of \(REG \) in \(E \) is an execution of \(REG \). Those executions are called the induced subexecutions of \(P \) and \(REG \), respectively, under \(E \).

Two executions of processor \(P, a_1, a_2, \ldots \) and \(b_1, b_2, \ldots \) are equivalent, if for all \(i, i > 0 \) \(a_i \) and \(b_i \) are executions of the same operation \(a_i \). If \(a_i \) is a write operation then the written values are equal; if \(a_i \) is a read operation then the read values are equal; thus the only differences allowed between the two executions are in the starting and ending time of their actions. Two system executions \(E_1 \) and \(E_2 \) are equivalent if for every processor \(P \) and for every register \(REG \), the induced subexecution of \(P \) and \(REG \) under \(E_1 \) and under \(E_2 \) are equivalent.

An implementation of a logical register is a system whose registers are called physical registers. The operations accessing the physical registers are called physical operations. A logical operation (either read or write) is defined by a program, called protocol, whose building blocks are physical operations. The set of processors is partitioned into writers and readers. The program of (all) writers is called the writer protocol and the program of (all) readers is called the reader protocol. The writer protocol has one input parameter which is the value that should be stored in the logical register. The reader protocol should be exited through the return instruction. The return instruction does not contain any physical operation but rather returns a value which is the result of the logical read action. In label-based implementations the only instructions that access the value field of a register are copying a permitted value from this field to a local value-variable or from a local value-variable to that field. No other operations that access the value variables are allowed. In label-based implementations the input parameter to the writer protocol is not specified explicitly and is assumed to be the value corresponding to the label generated by the protocol. The return instruction returns a label whose corresponding value, which is not specified explicitly, is the returned logical value.

A logical action \(a \) is an execution of a protocol. Such a logical action is a sequence of physical actions called the physical actions of \(a \). The starting time of \(a \) is the starting time of the first physical action of \(a \). The ending time of \(a \) is the ending time of the last physical action of \(a \). A program is wait-free if all its executions consist of a bounded number of physical actions, where the bound may depend on the number of processors in the system. To avoid implementations which use mutual-exclusion techniques, that almost eliminate the system's concurrency, we require that the logical operations are wait-free. A logical execution is a set of logical actions of the system's processors. Every logical execution \(E \) induces a corresponding physical execution which contains all the physical actions of the logical actions of \(E \). An implementation is atomic if all its logical executions are serializable. An implementation is sequential if every sequential logical execution (in which no two logical actions overlap) is serializable.

In systems all of whose registers are atomic, every system execution is equivalent to (at least one) sequential execution in which every action \(a \) is serialized at a distinct point in time called the occurrence
time of \(a \). When such a system implements a logical register every logical action is equivalent to a sequence of instantaneous physical actions where sequences that correspond to overlapping logical actions might be interleaved. Since every system execution is equivalent to some serial execution, any property which is correct with respect to all serial executions, is correct with respect to all executions. To prove the correctness of such an implementation, we assume that every processor continuously executes logical operations. A schedule is a sequence of processor names. Every schedule \(s \) naturally induces a serial execution in which processors execute (physical) actions in the order in which they appear in \(s \). Since our implementations are label-based, the execution induced by \(s \) does not depend on the logical values written and read, but only on the schedule \(s \). The correctness of the implementation is proven by showing that for every schedule \(s \), the logical execution corresponding to the physical execution induced by \(s \), is serializable.

3 The Precedence Trees

The three implementations presented in this paper are label-based. Temporal relations among logical actions and among the labels corresponding to these logical actions are represented by use of precedence graphs which were originally proposed by [IL87]. These are time dependent directed graphs whose nodes and edges are encoded by the labels generated during the processors' actions. The semantics of the precedence graph is: If there is an edge from label \(\ell_1 \) to \(\ell_2 \) then the action that generates \(\ell_1 \) is serialized after the action that generates \(\ell_2 \). We use dynamic precedence trees which are similar to those used in [ILV87]. In this section we describe the structure of the precedence trees used by all the implementations, and outline a simple sequential implementation of a multi-writer, multi-reader, register using single-writer, multi-reader registers. The sequential implementation does not improve upon the complexity of previously known sequential implementations. It is brought here as an exposition for the ideas which enable the concurrent implementations.

3.1 Data Structure

The writers of the implemented logical registers are denoted by \(W_1, W_2, \ldots, W_w \). Execution number \(a \) of the writer protocol by \(W_k \) is denoted by \(L_1^a \). Each individual execution of the writer protocol, \(L_1^a \), generates a single label which is denoted by \(\ell_1^a \); \(i \) and \(a \) are called the id and the index of \(L_1^a \) (and of \(\ell_1^a \)), respectively. Label \(\ell_1^a \) is stored in the register of \(W_k \), (or in its registers in the (1,1) implementation) at the end of \(L_1^a \).

All our protocols share an identical structure of the labels which is described below: Each label encodes a node and a potential edge emanating from that node, where the outgoing edge is directed either towards the label itself to form a self loop, or towards a node encoded by another label. For convenience we identify the label \(\ell_i^a \) with its node and denote the node by \(\ell_i^a \) as well. Node \(\ell_i^a \) is specified by the number \(i \), which is called the id of the node, and by its address which is an integer. Since the id of all nodes of \(W_i \) is \(i \), the id of a node is omitted from its encoding in \(\ell_i^a \), hence the node of \(\ell_i^a \) is encoded by the address field which is denoted by \(\ell_i^a.address \). The edge of \(\ell_i^a \) is encoded by the edge field which is denoted by \(\ell_i^a.edge \). The edge field stores the id and address of the node to which the potential edge is directed, in two subfields, which are denoted by \(\ell_i^a.edge.id \) and \(\ell_i^a.edge.address \), respectively. The potential edge emanating from \(\ell_i^a \) exists in some precedence graph \(G \) if for some label \(\ell_j^a \) in \(G \), it holds that \(\ell_i^a.edge = (j, \ell_j^a.address) \). In case this equality does not hold for any node (label) in \(G \), there is no edge outgoing from \(\ell_i^a \) in \(G \). Our protocols make sure that in any precedence graph the aforementioned equality holds for at most one label, hence each label \(\ell_i^a \) encodes at most one outgoing edge which is denoted by \(\ell_i^a.edge = (\ell_i^a, \ell_j^a) \), where \(\ell_j^a \) is the node towards which \(\ell_i^a \) is directed.

We require that \(\ell_i^a.edge.id \leq i \), thus the only type of cycles that we permit are self loops. Consequently the nodes (labels) on each directed path of the precedence graph are ordered in increasing order.
of their ids from the root to the leaves. The writers’ id’s lie between 1 and w. In case \(\ell_i^a \).edge.id = 0 we say that \(\ell_i^a \) exists and is directed to the virtual root label \(\ell_0^0 \). Since the outdegree of each node is at most 1, every precedence graph is a forest of labeled intrees — trees whose edges are directed towards the root. From now on we assume that the node set of each precedence graph includes the root label \(\ell_0^0 \). An edge \((\ell_j^b, \ell_i^a)\) reflects the fact that \(L_j^b \) is serialized after \(L_i^a \). If two edges \((\ell_j^b, \ell_i^a)\) and \((\ell_k^c, \ell_i^a)\) enter the same node \(\ell_i^a \), then the serialization of actions \(L_j^b \) and \(L_k^c \) cannot be determined by (the precedence relation induced by) the edges of the precedence tree. In this case we serialize these actions by an ascending order of their ids. (Higher ids are serialized before lower ids.) Later we define and use the history graph of an execution whose nodes are all labels generated during the execution. In this graph it is necessary to serialize labels with equal ids whose edges enter the same node. Since the actions of each individual processor are temporally ordered by their indices, a label with a lower index is serialized before a label with a higher index. These requirements are formally accommodated by the following lexicographic ordering of labels: Let \(\ell_i^a \) and \(\ell_j^b \) be two labels; \(\ell_i^a \) locally precedes \(\ell_j^b \) if either \(j < i \) or if \(i = j \) and \(a < b \). Though the locally precedes relation is defined for any pair of distinct labels, it reflects a precedence relation only among labels whose edges enter the same node in the precedence graph.

Let \(G \) be some precedence graph. The frontal branch of \(G \) is a path which is defined recursively as follows: The first node in the frontal branch is the virtual root label \(\ell_0^0 \); the second node of the frontal branch of \(G \) is a node whose edge enters the root and which is locally preceded by all other nodes in \(G \) whose edges enter \(\ell_0^0 \). In general if \(\alpha \) is a prefix of the frontal branch of \(G \) whose last node is \(\ell_i^a \) then the next node in the frontal branch is the label whose edge enters \(\ell_i^a \) and which is locally preceded by all other labels whose edges enter \(\ell_i^a \). The last node in the frontal branch of \(G \) (whose indegree is 0), is called the last node of \(G \). Let \(e_1 = (\ell_i^a, \ell_j^b) \) and \(e_2 = (\ell_k^c, \ell_j^b) \) be two edges in some precedence graph \(G \), such that \(e_1 \) belongs to the frontal branch of \(G \) (that is \(\ell_i^a \) locally precedes \(\ell_j^b \)). In this case we say that \(e_1 \) excludes \(e_2 \) from the frontal branch of \(G \). A pictorial description of a precedence tree appears in Figure 1, where the edges of the frontal branch appear as solid arrows and the rest of the edges appear as dotted arrows. The basic idea in all the implementations is: At any time \(t \) the labels stored in the registers encode a precedence graph whose last node belongs to the last write action completed until \(t \).

Figure 1. A precedence intree
3.2 Sequential Implementation

In the sequential implementation each writer writes in a \((1, n)\)-register called \(R_i\), which can be read by all processors, writers and readers. (Since the implementation is sequential we need not require that the registers are atomic.) The structure of \(R_i\) is: \(R_i = (value, current)\). Since the value field is not used by the protocol we assume from now on that each label is written with the corresponding value and omit the values from the protocol’s description. In this implementation readers do not write. The \(current\) labels at time \(t\) are the labels stored in the processors’ registers at time \(t\). The \(collect\) operation consists of reading the labels of all writers and computing the precedence graph. This precedence graph is called the \(current\) graph, its nodes are the root and all the current labels, that is \(w + 1\) nodes.

Let \(\alpha\) be a path in a precedence tree. The \(i\)-prefix of \(\alpha\), denoted by \(\alpha/i\), is the prefix of \(\alpha\) which contains all nodes whose \(id\) is less then \(i\). The protocol for \(W_i\), \(1 \leq i \leq w\), works as follows: \(W_i\) collects the labels of all writers, computes the frontal branch and chooses a new label which replaces its previous active label. The edge of the new label is directed towards the last node in the \(i\)-prefix of the frontal branch of the current graph. The new edge excludes the rest of the previous frontal branch from the new frontal branch. At the same time \(W_i\) invalidates all edges which are directed towards its previous label, by choosing a new address which is not the address of the \(edge\) field of any writer. The reader protocol is simply to collect the current graph and to return its last node. The register of \(W_i\), \(R_i\), is initialized to \(((i, 0), 0)\). At the initial state all edges of the current graph are self-loops and its initial frontal branch contains only the virtual root label \(e_0\). The initial logical value is the value corresponding to \(e_0\) which can be chosen freely from the permitted values of the logical register.

Correctness of the sequential implementation is straight forward and is left to the reader. In order to allow a writer to invalidate (at most) \(w - 1\) edges of the precedence tree, it should have at least \(w\) possible addresses. Therefore for each writer, the size of the \(edge\) field is \(2 \log w\), the size of the address field is \(\log w\). The protocol’s space complexity which in this case is equal to the size of one label is therefore \(3 \log w\). Every execution of the writer protocol consists of \(w + 1\) physical actions assuming that each writer reads its own register; every execution of the reader protocol consists of \(w\) actions, hence the time-complexity of the sequential implementation is \(O(w)\).

4 Multi-Writer out of Multi-Reader Registers

In this section we present a concurrent implementation of a \((w, r)\)-atomic register using physical \((1, n)\)-atomic registers. In this implementation communication is again one-sided, readers do not write. An important design decision in this implementation is to serialize all logical write actions \(independently\) of the scheduling of the logical read actions. Serialization of the logical read actions is then done in accordance with the serialization of the write actions. Therefore this section is divided into two subsections: The first subsection presents the writer protocol and the serialization scheme for the logical write actions, and continues with a proof of the correctness of this serialization scheme. The second subsection presents the reader protocol and the serialization scheme for the logical read actions, and then proceeds to prove the correctness of the serialization scheme for the read actions. Together they imply the correctness of the entire implementation.

4.1 The Writer Protocol

4.1.1 Description

The writer protocol is obtained by adjusting the sequential writer protocol to the concurrent environment while keeping its basic ideas and data structure. The structure of the labels in this implementation is identical to the structure of labels in the sequential implementation and once more they
encode a labeled intree as a precedence graph whose last node corresponds to the last completed write action. In a concurrent environment however, a writer cannot simply collect a precedence graph and replace its current label by a new label which becomes the last in the frontal branch of the collected graph. If the protocol were to work in this fashion a new label \(\ell_i^w \) might be pointed \(\textit{at} \) by a label of another write action which is completed at an earlier time, immediately when \(\ell_i^w \) is written. In this way the precedence graph may not reflect the temporal order of actions. This problem does not rise in the sequential implementation which supports only non-overlapping logical actions. To overcome this problem the coordination field of a writer’s register in this implementation consists of two labels called new and current. During \(L_i^a \), the new field holds a tentative choice for \(\ell_i^w \), the next label of \(\mathcal{W}_i \). The final \(\ell_i^w \) is written in the current field in the last physical action of \(L_i^a \). The details of this mechanism are explained below. The structure of \(R_i \), the register of \(\mathcal{W}_i \) is: \(R_i = \langle \text{new, current} \rangle \), and the space complexity is equal to the size of two labels rather than one.

Similar to the sequential implementation the register of \(\mathcal{W}_i \), \(R_i \), is initialized to \(((i, 0), 0, (i, 0), 0)\). That is, at the initial state all edges of the current graph are self loops, its initial frontal branch contains only the root label \(\ell_i^0 \) and the initial logical value is the value corresponding to \(\ell_i^0 \), which can be chosen freely from the set of all permitted values. Let \(\ell_i^a \) and \(\ell_j^b \) be two labels, the fact that \(\ell_i^a \) and \(\ell_j^b \) are actually the same label, i.e. \(i = j \) and \(a = b \), is denoted by \(\ell_i^a \equiv \ell_j^b \). Since the processors cannot compute the relation \(\equiv \), the protocol uses the relation \(\ell_i^a \simeq \ell_j^b \) which denotes the fact that \(\ell_i^a \).edge = \(\ell_j^b \).address \(\equiv \ell_j^a \).address \(\ell_i^a \).address = \(\ell_j^b \).address.

\begin{verbatim}
begin
 Collect \(G_j \) \hspace{1cm} \(r_i^a[1], \ldots, r_i^a[w] \)
 last := id of the last node of \(B_i/i \)
 new.address := select \((G_j) \)
 new.edge := \(\langle \text{last}, \ell_{\text{last}}.address \rangle \)
 \(R_i := \text{write} \ (\text{new}, \text{current}) \)
 \(n \ell_{\text{last}} := \text{read} \ R_{\text{last}}.current \)
 if \(\ell_{\text{last}} \simeq n \ell_{\text{last}} \)
 /* connect: Direct \(r_i^a \) towards last */
 current := new
 else
 /* loop: Direct \(r_i^a \) toward \(\ell_i^w \) */
 current.edge := \(\langle i, \text{new.address} \rangle \)
 current.address := new.address
 endif
 \(R_i := \text{write} \ (\text{new}, \text{current}) \)
end
\end{verbatim}

Figure 2. The protocol for \(\mathcal{W}_i \) in the \((1, n)\) implementation

The writer protocol appears in Figure 2. We now describe the protocol assuming that \(L_i^a \) is executed: First \(\mathcal{W}_i \) executes the procedure \textit{collect} in which it reads the registers of all other writers and computes a graph, denoted by \(G_i^a \). The labels of \(G_i^a \) are those read from the current fields of all registers. Execution of \textit{collect} takes \(w \) atomic physical actions which are denoted by \(r_i^a[1] \ldots r_i^a[w] \). During collection of \(G_i^a \) some writers may change their labels, therefore \(G_i^a \) is not necessarily equal to the current graph at any time during its collection. The frontal branch of \(G_i^a \) is denoted by \(B_i^a \). The node with the maximal id in \(B_i^a/i \) is the last node of \(B_i^a/i \). Let \(\ell_{\text{last}} \) be the last node of \(B_i^a/i \). After \(G_i^a \) is
collected, W_i chooses a tentative new label whose edge is directed towards $\ell_{i,\text{last}}$, and whose address is obtained by the function select; this function ensures that the new label is not the head of any (existing or potential) edge encoded by any current or new label read during L^i_0. In this way all edges entering $\ell_{i,0}$ are invalidated. In addition the function select ensures that $\text{new.address} \neq \ell_{i,0}.\text{address}$ even if no other edge is directed towards $\ell_{i,0}$; thus a writer never uses the same address twice in a row. The chosen label is declared by W_i by writing it into the new field of R, while the current label is not changed. The declaring write action is denoted by d^i_0. Following d^i_0, W_i rereads the register of $W_{i,\text{last}}$, the writer whose label is last in B^i_0/i. This second read action is denoted by $r^i_0[\text{last}].$ The label read in action $r^i_0[\text{last}]$ is called the target label of L^i_0. The logical write action L^i_0 is concluded by a final physical write action which is denoted by w^i_0. In this action W_i replaces its current label as follows: Let $\ell_{i,\text{last}}$ and $n\ell_{i,\text{last}}$ be the two labels read by W_i in actions $r^i_0[\text{last}]$ and $r^i_0[\text{last}]$, respectively. If $\ell_{i,\text{last}} \neq n\ell_{i,\text{last}}$ then new label is assigned to current, in this case we say that L^i_0 connects. If however $\ell_{i,\text{last}} = n\ell_{i,\text{last}}$ then current is chosen such that its edge is a self-loop directed towards $\ell_{i,0}$ itself. In this case we say that L^i_0 loops.

The function select considers at most $2w - 1$ addresses, thus $2w$ possible addresses are needed in order to ensure that select can always find an unused address. Therefore, the size of the edge field in each label is is $\log w + O(1)$ and the size of the address field is also $\log w + O(1)$. The protocol's space complexity which in this case is equal to the size of two labels is therefore $O(\log w)$. Every execution of the writer protocol consists of $w + 2$ physical actions assuming that each writer reads its own register; every execution of the reader protocol consists of $3w$ actions, hence the time-complexity of this implementation is $O(w)$.

4.1.2 Serialization Scheme for Logical Write Actions

The atomicity of an implementation is proved by showing that for every sequential physical execution, the induced logical execution can be serialized. A sequential execution is entirely determined by its schedule; the complete asynchrony of the system means that the only points in time which can be used to serialize a logical action, are the occurrence times of the physical actions, and whenever some flexibility is possible, the intervals between these occurrence times. For this reason we sometimes use the name of an action to denote its occurrence time. Whenever we say that some property p holds at action a we mean that p holds right after the occurrence time of a. In the following subsections we fix some arbitrary sequential physical execution with respect to which all definitions and proofs are being made, since this fixed execution is arbitrary, the results hold for every system execution of the implementation. The logical write actions are serialized by an explicit assignment of serialization time for each action. This assignment is done using a History graph — a precedence graph whose structure reflects the execution of the system. The history graph which is not computable by the processors plays a key-role in the correctness proof of our protocols.

Definition 1: Let E be an execution of the system. Let τ be the minimal time interval between any two successive physical actions in E. The History graph of E, H, is a time dependent graph which is constructed incrementally during the execution, as follows:

1. H^0 is the History graph at time 0 (before the execution begins). It contains only the root node $-\ell^0_0$.

2. Let L^i_0 be an arbitrary logical write action. Let t be the time when w^i_0 occurs, The graph H^t is obtained from $H^{t-\tau}$ by adding the node, ℓ^i_0, and the directed edge e^i_0 as follows: If L^i_0 connects then e^i_0 is directed towards the target label of L^i_0, otherwise (if L^i_0 loops) e^i_0 is a self-loop. According to our convention of using an action's name to denote its occurrence time, H^t is also denoted by $H^{w^i_0}$.
At any time t, the history graph H' is a precedence forest which consists of a single precedence tree and some disjoint self-loops. The frontal branch of H^t is denoted by B_H^t. In order to serialize the logical actions we first partition the set of logical write actions into two subsets, good and bad, where a good write action is a write action whose label is last in B_H^t at the time t that it joins the history graph.

Definition 2: Let L_i^a be an arbitrary logical write action. L_i^a is *good* if ℓ_i^a is last in B_H^a. A logical write action which is not good, is *bad*.

Obviously if L_i^a loops then it is bad, but there are many cases in which L_i^a connects and it is also bad. Using the partition of logical write actions to good and bad we assign a serialization time to every logical write action. The serialization time establishes a total order on the set of logical write actions:

Definition 3: Let t be the occurrence time of w_i^a. Define the *serialization time* of L_i^a as follows:

1. If L_i^a is good, that is, ℓ_i^a is the last node of B_H^a, then L_i^a is serialized at t.

2. If L_i^a is bad and ℓ_j^b is the last node of B_H^b, then L_i^a is serialized before L_j^b and after any other physical action which precedes w_i^a. In this case we say that L_i^a is *serialized by* L_j^b. In case two bad write actions, L_i^a and L_j^b, are serialized by the same good write action L_k^c, L_i^a and L_j^b are serialized by an ascending order of their ids.

Let t be the occurrence time of an arbitrary physical action. Under the defined serialization time the last node in B_H^t is the most recent write action, that is the value of the logical register.

4.1.3 Correctness of the Serialization Scheme for Logical Write Actions

In the correctness proof we have to prove that the serialization time satisfies the serialization requirements for atomic registers. In Theorem 9 we prove that every logical write action is serialized within its execution interval. In Theorem 11 we prove that all graphs collected by the writers are precedence graphs. We start the correctness proof with some technical lemmas.

Lemma 1: Let ℓ_i^a be a node in H^t. If $\ell_i^a \not\in B_H^t$, then for every $t' > t$, $\ell_i^a \not\in B_H^{t'}$.

Proof: If L_i^a loops then ℓ_i^a is not connected to the root at any time $t' > t$. Assume that L_i^a connects and denote the path in H^t from ℓ_i^a to the root by α. Since $\ell_i^a \not\in B_H^t$, let (ℓ_i^a, ℓ_j^a) be the first edge which is in α but not in B_H^t and let (ℓ_k^a, ℓ_j^a) be the edge excluding (ℓ_i^a, ℓ_j^a) from B_H^t. No edge of H is ever deleted, therefore at any time $t' > t$, (ℓ_k^a, ℓ_j^a) excludes the suffix of α, and in particular ℓ_i^a, from $B_H^{t'}$.

Let a and b be two physical atomic actions; the fact that a occurs before b is denoted by $a \rightarrow b$.

Lemma 2: If (ℓ_i^a, ℓ_j^b), $i \neq j$, is an edge in H then w_i^a occurs before w_j^b (i.e. $w_j^b \rightarrow w_i^a$).

Proof: According to the definition of the history graph, (ℓ_i^a, ℓ_j^b), $i \neq j$, is an edge in H only if the id of the last node of B_H^a/i is equal to j, and the label read in $\tilde{r}_i^a[\text{last}]$ is ℓ_j^b. Therefore $w_j^b \rightarrow \tilde{r}_i^a[j]$. Since $\tilde{r}_i^a[j] \rightarrow w_i^a$, we get $w_j^b \rightarrow w_i^a$.

Lemma 3: If $\ell^a_i \in B^t_H$ then L^a_i is good.

Proof: By Lemma 1 $\ell^a_i \in B^a_{H^i}$. Lemma 2 implies that for any edge (ℓ^j_i, ℓ^a_i) in H, $w^a_i \rightarrow w^b_j$. Hence the indegree of L^a_i in $H^a_{H^i}$ is 0, and L^a_i is last in $B^a_{H^i}$. By definition L^a_i is good. \[\square\]

Lemma 4:

(a) The sequence of node ids along any path of the history graph from the leaf towards the root is strictly decreasing.

(b) Every path of the history graph contains at most one label of every writer.

Proof: (a) According to the protocol e^a_i is directed towards the last node of $B^a_{H^i}/i$. Since $B^a_{H^i}/i$ contains only nodes whose id < i, the proof follows. (b) is implied immediately by (a). \[\square\]

Due to concurrency it is not guaranteed that the edges of a graph collected by any writer or reader belong to the history graph. A weaker relationship between the edges of the collected graphs and the edges of the history graph is depicted in the next lemma:

Lemma 5: If (ℓ^a_i, ℓ^b_j) is an edge in G^a_h then there exists an integer r, $r \geq 0$, such that (ℓ^a_i, ℓ^{b+r}_j) is an edge in H.

Proof: The lemma holds trivially if $i = j$. Assume $i > j$, by the definition of the history graph, there exists some integer r such that (ℓ^a_i, ℓ^{b+r}_j) is an edge in H, and ℓ^{b+r}_j is the current label of W_j at $r^a_i[j]$. To prove the lemma we have to show that $r \geq 0$. Assume by way of contradiction that $r < 0$. Since (ℓ^a_i, ℓ^{b+r}_j) and $(\ell^{b+r}_j, \ell^{b+r+2}_j)$ are both edges of some precedence graph, it holds that $\ell^{b+r}_j.address = \ell^{b+r+2}_j.address$, thus if $r < 0$ then $r < -1$, because a writer never uses the same address twice in a row. Therefore $w^{b+r}_j \rightarrow w^{b+1}_j \rightarrow r^b[i]$. Consider actions d^a_i and $r^b[i]$: In d^a_i, W_i declares that e^a_i may be directed towards the current label of W_j read in $r^a_i[j]$, and in $r^b[i]$, W_j reads the register of W_i. We first show that the case $r^a_i[j] \rightarrow d^a_i$ is impossible. In this case we get that $w^{b+r}_j \rightarrow w^{b+1}_j \rightarrow r^b[i] \rightarrow d^a_i \rightarrow r^a_i[j]$, and in particular $w^{b+r}_j \rightarrow w^{b+1}_j \rightarrow r^a_i[j]$. Therefore r^{b+r}_j is not the current label of W_j when $r^a_i[j]$ occurs, and the edge (ℓ^a_i, ℓ^{b+r}_j) does not belong to H, contradiction.

The proof is completed by showing that the case $d^a_i \rightarrow r^b[i]$ is also impossible. First we prove that under this assumption, either the new label or the current label read by W_j in action $r^b[i]$, is ℓ^a_i. By our assumption $d^a_i \rightarrow r^b[i]$. By the protocol $r^b[i] \rightarrow w^b_j$. Since ℓ^a_i is a node in G^a_h it holds that $w^b_j \rightarrow r^a_i[j]$. Since all graphs and in particular G^c_h are collected in ascending order we get that $r^a_i[j] \rightarrow r^b[i]$. Thus we get that $d^a_i \rightarrow r^b[i] \rightarrow r^c[i]$. Since $r^a_i \in G^a_h$, ℓ^a_i is the current label of W_i at $r^c[i]$. Therefore during the interval $[d^a_i, r^b[i]]$, ℓ^a_i appears either as the new label of W_i or as its current label. In this case the definition of the function select implies that the new.address, selected during L^a_j satisfies $\ell^{c_a}_i.address = \ell^{c_a}_i.edge.address$. On the other hand the fact that (ℓ^a_i, ℓ^{b+r}_j) is an edge of G^a_h implies that $\ell^{c_a}_i.edge.address = \ell^{c_a}_i.address$, a contradiction. \[\square\]

The fact that every label $\ell^a_i \in B^a_{H^i}$ is in $B^a_{H^i}$ and every label $\ell^c_i \in B^c_{H^i}$ is in $B^c_{H^i}$, is denoted by $B^a_{H^i} \equiv B^a_{H^i}$. In the next lemma we prove that if ℓ^a_i belongs to the frontal branch of the history graph at some arbitrary time t then ℓ^c_i is the current label of W_i at t.

Lemma 6: If $\ell^a_i \in B^t_H$ for some time t, then ℓ^c_i is the current label of W_i at t.

Proof: Assume by way of contradiction that there are labels which do not satisfy the lemma. Let \(x_i \) be the label with the lowest id among these labels, that is, there exists some time \(t_0 \) such that \(u_i \) occurs before \(t_0 \), while \(x_i \) occurs after \(t_0 \). Under these conditions Lemma 1 implies that \(x_i \) is in \(B_{H}^{u_1+1} \). By Lemma 4(b), the ids along any path of the history graph are distinct, therefore \(x_i \notin B_{H}^{u_1+1} \). Let \(\ell_m \) be the last node of \(B_{H}^{u_1+1} \). Since \(x_i \notin B_{H}^{u_1+1} \), \(\ell_m \) is not the last node of \(B_{H}^{u_1+1} \) and therefore \(B_{H}^{u_1+1} / i \neq B_{H}^{u_1+1} / i \).

Now we show that \(B_{H}^{u_1+1} / i \) is a subgraph of \(G_i^{a+1} \), that is, every label of \(B_{H}^{u_1+1} / i \) is also a label of \(G_i^{a+1} \). Let \(\ell_m \), \(m < i \), be an arbitrary label in \(B_{H}^{u_1+1} / i \). Since \(x_i \in B_{H}^{u_1+1} \), Lemma 2 implies that \(u_i \rightarrow u_i \) and \(\ell_m \) is on the path from \(x_i \) to the root. Therefore, for any \(t \) during the interval \([u_i, u_i + 1]\) it holds that \(\ell_m \in B_{H}^{u_1+1} / i \). Since \(u_i \rightarrow u_i + 1 / i \) we get that \(\ell_m \in B_{H}^{u_1+1}[m] \). By the minimality of \(i \), \(\ell_m \) is the current label of \(W_m \) at \(r_1^{i+1}[m] \), and therefore \(\ell_m \in G_i^{a+1} \).

Let \(\ell_j \), \(j < i \), be the last node in the common prefix of \(B_{H}^{u_1+1} / i \) and \(B_{H}^{u_1+1} / i \). Such a node always exists because the root, \(\ell_0 \), belongs to both branches. Now we show that \(\ell_j \) is in \(B_{H}^{u_1+1} / i \). Assume by way of contradiction, that \(\ell_j \) is not in \(B_{H}^{u_1+1} / i \). In this case, a node with id smaller than \(i \) and with an edge directed towards \(\ell_j \) does not exist in \(G_i^{a+1} \). Since \(B_{H}^{u_1+1} / i \) is a subgraph of \(G_i^{a+1} \), there is no incoming edge to \(\ell_j \) in \(B_{H}^{u_1+1} / i \), that is \(\ell_j \) is last in \(B_{H}^{u_1+1} / i \). Since \(\ell_j \) is the last node in the common prefix of \(B_{H}^{u_1+1} / i \) and \(B_{H}^{u_1+1} / i \) and since \(\ell_j \) is last in \(B_{H}^{u_1+1} / i \) and in \(B_{H}^{u_1+1} / i \) we get that \(B_{H}^{u_1+1} / i \equiv B_{H}^{u_1+1} / i \), a contradiction.

Since \(\ell_j \) is not in \(B_{H}^{u_1+1} / i \), let \(\ell_k \), \(k < i \), be the edge incoming to \(\ell_j \). Since \(\ell_j \) is the last node in the common prefix of \(B_{H}^{u_1+1} / i \) and \(B_{H}^{u_1+1} / i \), \(\ell_k \notin B_{H}^{u_1+1} / i \). Now we show that \((\ell_k, \ell_j) \) is an edge in \(H_{H}^{u_1+1} \). By Lemma 5 there exists some \(r \), \(r > 0 \) such that \((\ell_k, \ell_j + \ell_k) \) is an edge in \(H_{H}^{u_1+1} \). Since \(\ell_j \in B_{H}^{u_1+1} \), the minimality of \(i \) implies that \(\ell_j \) is the current label of \(W_j \) at \(u_i \). Therefore \(r = 0 \), which implies that \((\ell_k, \ell_j) \) is an edge in \(H_{H}^{u_1+1} \) (but not in \(B_{H}^{u_1+1} \)). Since \((\ell_k, \ell_j) \) is not in \(B_{H}^{u_1+1} \), let \((\ell_k, \ell_j) \), \(k < i \), be the edge excluding \((\ell_k, \ell_j) \) from \(B_{H}^{u_1+1} / i \). By the definition of \(B_{H}^{u_1+1} / i \), \(\ell_j \) locally precedes \(\ell_k \). Since \(B_{H}^{u_1+1} / i \) is a subgraph of \(G_i^{a+1} \), \((\ell_j, \ell_j) \) is an edge in \(G_i^{a+1} \). Since \(\ell_k \) locally precedes \(\ell_j \) we get that \((\ell_k, \ell_k) \) excludes \((\ell_k, \ell_j) \) from \(B_{H}^{u_1+1} / i \), contradiction to the assumption that \((\ell_k, \ell_j) \) is an edge in \(B_{H}^{u_1+1} / i \). The lemma follows.

The next corollary forms a tighter relationship between edges of \(G \) whose head belong to the frontal branch of the history graph and the corresponding edges of \(H \).

Corollary 7: Let \((\ell_i, \ell_j) \) be an edge in \(G_i^{a} \). If for some \(t \) after \(r_1^{i}[i] \), \(\ell_j \in B_{H}^{t} \) then \((\ell_i, \ell_j) \) is an edge in \(H^{t} \).

Proof: Since \((\ell_i, \ell_j) \) is an edge in \(G_i^{a} \), Lemma 5 implies that for some \(r \), \(r > 0 \), \((\ell_i, \ell_j + \ell_i) \) is an edge in \(H^{t} \). Since \(\ell_j \in B_{H}^{t} \), Lemma 6 implies that \(\ell_j \) is the current label of \(W_j \) at \(t \), therefore \(r = 0 \).

In the next lemma and in the theorem that follows, we prove that the serialization time of each logical write action lies within its execution interval.

Lemma 8: Let \(t_0 \) be the occurrence time of \(r_1^{i}[j] \). If for some \(t \), \(t \geq t_0 \), \(B_{H}^{t} / (j + 1) \neq B_{H}^{a} / (j + 1) \), then there exists a good logical action \(L_k^{i} \), for some \(k \leq j \), such that \(w_k \) occurs within the time interval starting at \(r_1^{i}[k] \) and ending at \(t \).
Proof: By the assumption of the lemma, \(B_t^i/(j+1) \neq B_t^a/(j+1) \). Let \(\ell^d_k, \ell \leq j, \) be the node with the maximal \(i \) in the common prefix of \(B_t^i/(j+1) \) and \(B_t^a/(j+1) \). First, we show that \(\ell^d_k \) is not the last node of \(B_t^i/(j+1) \). If \(\ell^d_k \) is the last node of \(B_t^i/(j+1) \) then since \(B_t^a/(j+1) \neq B_t^i/(j+1) \), \(\ell^d_k \) is not the last node of \(B_t^a/(j+1) \). Let \(e_1 = (\ell^d_m, \ell^d_k), m < j+1, \) be the edge entering \(\ell^d_k \) in \(B_t^i \). Corollary 7 implies that \((\ell^d_m, \ell^d_k) \) is an edge of \(H^t \); since \(m < j+1 \), either \(e_1 \in B_t^i/(j+1) \) or there exists some edge \(e_2 \in B_t^i/(j+1) \) excluding \(e_1 \) from \(B_t^i/(j+1) \), a contradiction to the assumption that \(\ell^d_k \) is the last node of \(B_t^i/(j+1) \).

Since \(\ell^d_k \) is not the last node of \(B_t^i/(j+1) \), let \((\ell^d_k, \ell^d_{k'}) \), \(\ell < k' \leq j \), be the edge entering \(\ell^d_k \) in \(B_t^i/(j+1) \). We now show that \(L^c_k \) satisfies the requirements of the lemma; since \(\ell^d_k \in B_t^i \) Lemma 3 implies that \(L^c_k \) is good. Since \(\ell^d_k \in H^t \), it is obvious that \(w^c_k \) occurs before \(t \). To complete the proof it remains to show that \(r^a_{i}[k] \rightarrow w^c_k \). Assume by way of contradiction that \(w^c_k \rightarrow r^a_{i}[k] \). We reach a contradiction as follows (see Figure 3): First we show that \((\ell^c_k, \ell^c_{k'}) \) is an edge in \(G^a_t \) (but not in \(B_t^i \)). By its definition, \(\ell^c_k \) is a node of \(B_t^i \), therefore by Lemma 6, \(\ell^c_k \) is the current label of \(W_k \) at \(t \). By our assumption \(w^c_k \rightarrow r^a_{i}[k] \), hence \(\ell^c_k \) is a node of \(G^a_t \). Therefore \((\ell^c_k, \ell^c_{k'}) \) is an edge in \(G^a_t \). Since \(k > \ell \), and \(\ell^d_k \) is the maximal common node in \(B_t^i/(j+1) \) and \(B_t^a/(j+1) \) we conclude that \(\ell^c_k \notin B_t^a/(j+1) \). Let \((\ell^c_m, \ell^c_{k'}) \), \(\ell < m < k \), be the edge excluding \((\ell^c_k, \ell^c_{k'}) \) from \(B_t^a/(j+1) \). By Corollary 7, \((\ell^c_m, \ell^c_{k'}) \) is an edge in \(H^t \). Since \(m < k \), \((\ell^c_m, \ell^c_{k'}) \) excludes \((\ell^c_k, \ell^c_{k'}) \) from \(B_t^i \), a contradiction to the assumption that \((\ell^c_k, \ell^c_{k'}) \) is in \(B_t^i/(j+1) \). The lemma follows.

\[\text{Figure 3. The graph for Lemma 8} \]

\[B_t^a/(j+1) \]. By its definition, \(\ell^c_k \) is a node of \(B_t^i \), therefore by Lemma 6, \(\ell^c_k \) is the current label of \(W_k \) at \(t \). By our assumption \(w^c_k \rightarrow r^a_{i}[k] \), hence \(\ell^c_k \) is a node of \(G^a_t \). Therefore \((\ell^c_k, \ell^c_{k'}) \) is an edge in \(G^a_t \). Since \(k > \ell \), and \(\ell^d_k \) is the maximal common node in \(B_t^i/(j+1) \) and \(B_t^a/(j+1) \) we conclude that \(\ell^c_k \notin B_t^a/(j+1) \). Let \((\ell^c_m, \ell^c_{k'}) \), \(\ell < m < k \), be the edge excluding \((\ell^c_k, \ell^c_{k'}) \) from \(B_t^a/(j+1) \). By Corollary 7, \((\ell^c_m, \ell^c_{k'}) \) is an edge in \(H^t \). Since \(m < k \), \((\ell^c_m, \ell^c_{k'}) \) excludes \((\ell^c_k, \ell^c_{k'}) \) from \(B_t^i \), a contradiction to the assumption that \((\ell^c_k, \ell^c_{k'}) \) is in \(B_t^i/(j+1) \). The lemma follows.

Theorem 9: Every logical write action is serialized within its execution interval.

Proof: Let \(L^a_t \) be some logical write action. If \(L^a_t \) is good then it is serialized at its concluding physical write \(w^a_t \), which is within its execution interval. For the rest of the proof we assume that \(L^a_t \) is bad. Let \(\ell^b_j \) be the last node of \(B_t^a \). According to the serialization definition for bad write actions, \(L^a_t \) is serialized by \(L^b_j \). We have to prove that \(L^b_j \) is serialized within the execution interval.
of L^a_i, that is $r^a_i[1] \rightarrow w^b_j \rightarrow w^a_i$. Since $\ell^a_i \in H^a_i$, it is clear that $w^b_j \rightarrow w^a_i$. We now prove that $r^a_i[1] \rightarrow w^b_j$. Action L^a_i is bad, therefore $B^{w^a_i} / i \neq B^a / i$. By Lemma 8 there exists a good logical action L_k, $k < i$, such that w^a_k occurs within the time interval starting at $r^a_i[k]$ and ending at w^a_i. Therefore $r^a_i[k] \rightarrow w^a_k \rightarrow w^a_i$, which implies $r^a_i[1] \rightarrow w^a_k \rightarrow w^a_i$. If $L^b_j \equiv L^b_k$ then the proof follows.

Otherwise, since L^b_j and L^b_k are both good, and since ℓ^a_i is the last node in $B^{w^a_i}_H$, we get that $w^a_k \rightarrow w^b_j$. Therefore, $r^a_i[1] \rightarrow w^a_k \rightarrow w^b_j$, which implies $r^a_i[1] \rightarrow w^b_j$.

The fact that L^a_i is serializability before L^b_j is denoted by $L^a_i \Rightarrow L^b_j$. The next lemma proves that the history graph is a precedence graph with respect to the relation \Rightarrow. Since the history graph is not computable by the processors, the significance of this lemma is reflected in the theorem that follows in which it is proved that the graphs collected by the processors are also precedence graphs with respect to the relation \Rightarrow.

Lemma 10: If (ℓ^a_i, ℓ^b_j), $i > j$, is an edge in H then $L^b_j \Rightarrow L^a_i$.

Proof: By Lemma 2 $w^b_j \rightarrow w^a_i$. Consider the following cases:

Case 1: L^a_i is good. In this case L^a_i is serialized at w^a_i. Since L^b_j is not serialized after w^b_j, and since $w^b_j \rightarrow w^a_i$ it holds that $L^b_j \Rightarrow L^a_i$.

Case 2: L^a_i and L^b_j are both bad. Let ℓ^a_k and ℓ^b_k be the last nodes in $B^{w^a_i}_H$ and $B^{w^b_j}_H$ respectively. In this case L^a_i is serialized by L^a_k and L^b_j is serialized by L^b_k. If $\ell^a_k \equiv \ell^b_k$, then by Definition 3, L^a_i and L^b_j are serialized by their ids. Since $i > j$, we have $L^b_j \Rightarrow L^a_i$. Assume $\ell^a_k \neq \ell^b_k$. By definition 3, L^b_k is the last good write action serialized before w^b_j and L^a_k is the last good write action serialized before w^a_i. Since $w^b_j \rightarrow w^a_i$ it holds that $w^a_k \rightarrow w^a_i$ and therefore $L^b_k \Rightarrow L^a_k$. Since L^b_j is serialized by L^b_k and L^a_i is serialized by L^a_k, we get $L^b_j \Rightarrow L^a_i$.

Case 3: L^a_i is bad, L^b_j is good. In this case ℓ^b_j is not the last node of $B^{w^b_j}_H$. Let ℓ^a_k be the last node of $B^{w^a_i}_H$, that is $w^a_j \rightarrow w^a_k \rightarrow w^a_i$. Since L^a_i and L^b_j are both good, and since $w^b_j \rightarrow w^a_k$, $L^b_j \Rightarrow L^a_k$. By Definition 3(2) L^a_i is serialized by L^a_k, therefore we get $L^b_j \Rightarrow L^a_i$.

Theorem 11: If (ℓ^a_i, ℓ^b_j), $i > j$, is an edge in G^a_k then $L^b_j \Rightarrow L^a_i$.

Proof: By Lemma 5, there exists some r, $r > 0$, such that $(\ell^a_i, \ell^b_j + r)$ an edge in H. By Lemma 10 $L^b_j + r \Rightarrow L^a_i$. If $r = 0$ then we get $L^b_j \Rightarrow L^a_i$. If $r > 0$ then since $L^b_j \Rightarrow L^b_j + r$ we get again that $L^b_j \Rightarrow L^a_i$.

4.2 The Reader Protocol

4.2.1 Description

Like the writer protocol, the reader protocol is obtained by adjusting the sequential reader protocol to the concurrent environment. Though the basic idea in this implementation is to keep a precedence graph whose last node is the last value written to the logical register, it is not possible to just collect a precedence graph and return the last node in its frontal branch: Due to concurrency, the current graph
and its last node may change during the execution of the collect procedure by the reader. In particular a label of an action which should not be returned by a reader, may appear as last in its collected graph. This happens when some concurrent write actions cause the reader to see some branches of the graph as "hanging in the air". Therefore a single collection is not sufficient. Our protocol collects three precedence graphs and analyzes the differences among them to determine the returned label. The three graphs are denoted by G, \tilde{G}, and \hat{G}. Graph \tilde{G} is collected in reverse order — from R_w down to R_1, therefore most of the lemmas proven in the previous section do not hold for \tilde{G}. The analysis of the three graphs does not yield an accurate description of the current graph, but rather enables the reader to identify a label which satisfies the requirements for the reader protocol as follows: The identified label is either last in the history graph when the logical read action starts, and hence it is the last logical write action that is serialized before the read action starts, or the identified label is generated by a logical write action serialized within the execution interval of the logical read action. In this case the logical read is serialized immediately after the logical write. The physical actions, executed by R_u, during the reader protocol are denoted by: $r_u[1] \ldots r_u[w]$, in which G is collected, $\tilde{r}_u[1] \ldots \tilde{r}_u[w]$, in which \tilde{G} is collected, and $\hat{r}_u[1] \ldots \hat{r}_u[w]$, in which \hat{G} is collected. The notation $B^a_i \subseteq B^b_j$ is used when for each $\ell^a_i \in B^a_i$, there is a label $\ell^b_j \in B^b_j$ such that $\ell^a_i \simeq \ell^b_j$. The notation $B^a_i \simeq B^b_j$ is used when $B^a_i \subseteq B^b_j$ and $B^b_j \subseteq B^a_i$. The code of the reader protocol appears in Figure 4.

begin
 Collect G_u; Collect \tilde{G}_u; Collect \hat{G}_u
 if ($B_u \simeq \hat{B}_u \neq \tilde{B}_u$) then
 $i := \min_j (\ell^a_i (\in G_u) \neq \ell^b_j (\in \tilde{G}_u))$ and $(\ell^a_i \neq \ell^b_j (\in \hat{G}_u))$
 return ℓ^a_i
 elseif ($B_u \simeq B_u \simeq \tilde{B}_u$) then
 return the label of last in \tilde{B}_u
 elseif ($B_u \neq \hat{B}_u$) and ($B_u \subset \tilde{G}_u$) then
 return the label of last in \tilde{B}_u
 elseif ($B_u \neq \tilde{B}_u$) and ($B_u \not\subset \hat{G}_u$) then
 $i := \min_j (\ell^a_i (\in B_u) \neq \ell^b_j (\in \hat{G}_u))$
 return ℓ^a_i
 endif
end

Figure 4. The protocol for R_u in the $(1,n)$ implementation

4.2.2 Serialization Scheme for Logical Read Actions

Throughout this paper S^a_u denotes the a-th execution of the read protocol by R_u. The serialization time of any logical read action is determined by the serialization time of the logical write action whose value is returned by the read action, according to the following proposition:

Proposition 12: If for any logical read action S^a_u the returned label ℓ^b_j satisfies one of the following conditions:

1. L^b_j is the logical write action that is serialized last before S^a_u starts.
2. L_j^u is serialized within the execution interval of S_u^a.

then the implementation is atomic.

To prove the proposition correct we have to show that if for every action in some execution E, one of these conditions holds, then the E is serializable. This is proven by the following serialization scheme:

Definition 4: Let ℓ_i^t be the label returned by S_u^a. Denote by t_s and t_e the occurrence time of $r_u^a[1]$ and $r_u^b[u]$ respectively. The serialization time of S_u^a is defined as follows:

1. If L_j^t is not serialized within the execution interval of S_u^a then S_u^a is serialized at t_s.
2. If L_j^t is serialized within the execution interval of S_u^a then S_u^a is serialized by L_j^t, that is after L_j^b and before any physical action which occurs or any logical write which is serialized after L_j^b. In case two logical actions are serialized by the same logical write action they are serialized by an ascending order of their ids.

4.2.3 Correctness of the Implementation

The correctness of the serialization scheme for logical read actions, and the correctness of the entire implementation, is based on Proposition 12 and on the following theorem:

Theorem 13: Let (t_s, t_e) be the execution interval of S_u, let ℓ be the label returned by S_u, and let L be the logical write action that produced the label ℓ. The label L satisfies one of the following two claims:

1. L is the last logical write action serialized before t_s (and hence ℓ is last in B_{HF}^t), or
2. L is serialized within the interval (t_s, t_e).

Proof: Since ℓ is read during the execution of S_u, it is clear that L terminates before t_e. Therefore, to conclude that (2) holds, it suffices to show that L is serialized after t_s. Consider the following cases (which follow the cases of the protocol):

Case 1: $B_u \simeq \tilde{B}_u \not\simeq B_u$.

Let i be the smallest id such that $\ell_i^t \simeq \ell_i^d \not\simeq \ell_i^t$, where ℓ_i^t, ℓ_i^d and ℓ_i^t are nodes in G_u, \tilde{G}_u, and \tilde{G}_u respectively. According to the protocol S_u returns ℓ_i^d. Since $\ell_i^d \not\simeq \ell_i^t$ we get that

$$r_u[1] \rightarrow r_u[i] \rightarrow w_i^t$$

(1)

Since $\ell_i^d \not\simeq \ell_i^t$ we get that

$$w_i^t \rightarrow r_i^d[1]$$

(2)

Therefore from (1) and (2) we get that $r_u[1] \rightarrow r_i^d[1]$. Hence L_i^d is serialized after t_s.

Case 2: $B_u \simeq \tilde{B}_u \simeq B_u$.

Let ℓ_i^t be the last node of \tilde{B}_u. According to the protocol S_u returns ℓ_i^t. Consider the following cases:
Case 2.1: $B_u \neq \tilde{B}_u$

In this case there exist two distinct labels ℓ^b_j and ℓ^c_j ($b < c$) of the same writer, W_j, such that $\ell^b_j \in B_u$ while $\ell^c_j \in \tilde{B}_u$. Since $B_u \simeq \tilde{B}_u$, $\ell^b_j \simeq \ell^c_j$, and in particular $\ell^b_j.address = \ell^c_j.address$. A writer does not use the same address twice in a row, hence $(b + 1) < c$. Therefore $\tau^b_u[i] \rightarrow w^b_j[i+1] \rightarrow \tau^c_u[i] \rightarrow w^c_j[i]$, which implies that ℓ^c_j is serialized after ℓ^b_j. If $\ell^c_j \neq \ell^c_j$ then there is a path from ℓ^b_j to ℓ^c_j in \tilde{G}_u (because ℓ^b_j and ℓ^c_j are both in B_u, and ℓ^c_j is last in \tilde{B}_u), hence by Theorem 11 $\ell^c_j \Rightarrow L^c_j$. Therefore L^c_j is serialized after ℓ^c_j.

Case 2.2: $B_u \equiv \tilde{B}_u$

We first show that B_u is a branch in H^*_{aw}. Let (ℓ^b_i, ℓ^c_i) be an arbitrary edge in B_u. By Lemma 5 there exists an integer r, $r \geq 0$, such that $(\ell^b_i, \ell^c_i + r)$ is an edge in H^*_{aw}. Since $B_u \equiv \tilde{B}_u$, ℓ^c_i is a label in \tilde{G}_u, hence it is the current label of W_k at $\tilde{\tau}_u[k]$, and therefore $r = 0$. Thus every edge in B_u belongs to H^*_{aw}. Similarly, the assumptions $B_u \simeq \tilde{B}_u$ (case 2) and $B_u \equiv \tilde{B}_u$ (case 2.2) imply that $B_u \equiv \tilde{B}_u \equiv \tilde{B}_u$. Since $B_u \equiv B^r_{aw}$ (which is proven in Claim 1) we get that ℓ^c_i is last in B^r_{aw}, which implies that either ℓ^b_i is last in B^r_H or ℓ^a_i is serialized after ℓ^b_i.

Claim 1: $B_u \equiv B^r_{aw}$.

Proof of claim: Assume by way of contradiction that $B_u \neq B^r_{aw}$. In this case at every time t after $\tau^b_u[w]$ there exists some edge in H^t that excludes a suffix of B_u from B^r_H.

Let $S = \tau^b_u[w] < \tau^b_u[w-1] < ... < \tau^b_1$ be the sequence of occurrence times of actions $\tau^b_u[w], \tau^b_u[w-1], ... \tau^b_1$ respectively. Define the function $EX(t)$ on S as follows: The value of $EX(t)$ is k where k is the id of the edge in B^r_H whose edge excludes a suffix of B_u from B^r_H. Note that $EX(\tau^b_u) < w$ while $EX(\tau^b_1) > 1$. We now show that EX is not increasing in t. Assume that $EX(t) = k$, $EX(t') = \ell$, and $t < t'$. Let α denote the common prefix of B^r_H and B_u, and let β denote the common prefix of B^r_H and B_u. Since $t < t'$, β is a (not necessarily proper) prefix of α. If $\alpha \equiv \beta$ then $\ell < k$ and we are done. If β is a proper prefix of α then let (ℓ^a_i, ℓ^a_i) and (ℓ^b_i, ℓ^b_i) be the edges of B_u and B^r_H respectively where (ℓ^a_i, ℓ^a_i) excludes (ℓ^b_i, ℓ^b_i) from B^r_H. Obviously $\ell < j < k$.

We now use the function EX to reach a contradiction by showing that under these assumptions $B_u \neq \tilde{B}_u$. Since \tilde{G}_u is collected in reverse order (from w to 1) and EX is not increasing, there exists a time $\tilde{\tau}_u$, $\tilde{\tau}_u \in S$, such that $EX(\tilde{\tau}_u) = k$. Let (ℓ^a_i, ℓ^a_i) be the edge of B^r_H excluding a suffix of B_u from B^r_H. By this definition, $\ell^a_i \in \tilde{B}_u$, since $B_u \equiv \tilde{B}_u$, $\ell^a_i \in \tilde{B}_u$, hence obviously $\ell^a_i \in \tilde{G}_u$. Since ℓ^a_i belongs to B^r_H, Lemma 6 implies that it is the current label of W_k at $\tilde{\tau}_u$ and therefore ℓ^a_i is a node in G_u. Since $\ell^a_i \in G_u$ and $\ell^a_i \in G_u$, we get that (ℓ^a_i, ℓ^a_i) is an edge in \tilde{G}_u. Since (ℓ^a_i, ℓ^a_i) excludes a suffix of B_u from B^r_H, (ℓ^a_i, ℓ^a_i) excludes a suffix of B_u from \tilde{B}_u, contradiction to the assumption that $B_u \equiv \tilde{B}_u$. □

Case 3: $B_u \neq \tilde{B}_u$ and $B_u \subset \tilde{G}_u$.

Let ℓ^a_i be the last node of \tilde{B}_u. According to the protocol S_u returns ℓ^a_i. In the sequel we show that ℓ^a_i is serialized after t_s. Since $B_u \subset \tilde{G}_u$ and $B_u \neq \tilde{B}_u$ there is a suffix of \tilde{B}_u, none of whose labels are in B_u. Let j be the id of the minimal label ℓ^c_j in that suffix (see Figure 5), and let ℓ^c_j be the label of W_j in G_u. By this definition $\ell^c_j \neq \ell^c_j$.

In order to show that ℓ^a_i is serialized after t_s it is enough to show that ℓ^a_i is serialized after t_s, since if $L^a_i \neq L^c_j$ then there is a path from ℓ^a_i to ℓ^c_j in \tilde{B}_u, and therefore Theorem 11 implies
that $L^e_j \Rightarrow L^e_i$. We proceed to show that L^e_j is serialized after t: Since $\ell^e_j \notin \ell^e_i$ it is clear that $r_u[j] \rightarrow w^e_j$ and therefore w^e_j occurs after t. If L^e_j is good then it is serialized at w^e_j and the proof follows. If L^e_j is bad, then let ℓ^d_k be the last node in B^w_H. Since L^e_j is bad it is serialized by L^d_k. If L^d_k is serialized after t, then L^e_j is also serialized after t, and we are done. We continue the proof assuming that L^d_k is serialized before t, that is, $w^d_k \rightarrow r_u[1]$. By this assumption, there are no good writes which are serialized in the interval starting at $r_u[1]$ and ending at $r_u[j]$. In this case, Lemma 8 implies that $B^w_H/(j + 1) \equiv B_u/(j + 1)$. Consider (ℓ^e_j, ℓ^e_i), the outgoing edge from ℓ^e_j in \tilde{B}_u. By Lemma 5 there exists an integer r, $r \geq 0$, such that $(\ell^e_j, \ell^e_i + r)$ is an edge in H^u_i. By Lemma 10 L^e_j is serialized after $L^e_i + r$. We now show that if $r > 0$, then $L^e_j + r$ is serialized after t, and therefore L^e_j is also serialized after t. Later we show that indeed $r > 0$. If $r > 0$ then $r > 1$ since a writer never uses the same address twice in a row. Since ℓ^e_j is the current label read at $\tilde{r}_u[\ell]$, $\tilde{r}_u[\ell] \rightarrow w^e_{i - 1}$. Since $w^e_{i - 1} \rightarrow r^e_{i - 1} + 1$ we get that $\tilde{r}_u[\ell] \rightarrow r^e_{i - 1} + 1$, which implies that $L^e_j + r$ is serialized after t. Therefore L^e_j is also serialized after t. The proof is completed by showing that $r > 0$. Assume by way of contradiction that $r = 0$, that is, (ℓ^e_j, ℓ^e_i) is an edge in H^u_i. Since L^e_j is bad, ℓ^e_i is not last in B^w_H/j. Since $B_u/(j + 1) \equiv B^w_H/(j + 1)$ and $B_u \subset \tilde{G}_u$, the edge exclusion (ℓ^e_j, ℓ^e_i) from B^w_H also excludes (ℓ^e_j, ℓ^e_i) from \tilde{B}_u, contradiction to the definition of ℓ^e_j.

Figure 5. Case 3 - Relation between B_u and \tilde{B}_u when $B_u \subset \tilde{G}_u$
Case 4: $B_u \neq \hat{B}_u$ and $B_u \notin \hat{G}_u$.

Let i be the smallest id such that $\ell_i \in B_u$, $\ell_i \in \hat{G}_u$ and $\ell_i \neq \ell_j$. According to the reader protocol, S_u returns ℓ_i. We show that L^i_i is serialized after t_s. Since $\ell_i \neq \ell_j$, $w_i \rightarrow r_u[i] \rightarrow w_i \rightarrow \bar{r}_u[i]$, in particular $r_u[1] \rightarrow w_i$. If L^i_i is good, then it is serialized after t_s. Hence for the rest of Case 4, we assume that L^i_i is bad. We show that there exists a good write action L^j_j which is serialized after t_s, and L^i_i is either serialized by L^j_j or it is serialized after L^j_j. Consider the following cases:

Case 4.1: $\ell_i \in B^w_H[i]$.

Since L^i_i is bad, $B^w_H[i]/i \neq B^w_H/[i$, hence Lemma 8 implies that there exists a good write action L^j_j such that $j < i$ and $r_k[j] \rightarrow w_j \rightarrow w_i$. Since $w_i \rightarrow r_u[i]$ we get that $w_i \rightarrow w_j \rightarrow w_i$.

Now we use L^j_j to show that L^i_i is serialized after t_s. Since L^i_i is bad, it is serialized by the label that was last in B^w_H. Since $w^i_j \rightarrow w^i_i$, the last label in B^w_H is either ℓ_i or the label of another logical write action which is serialized after L^i_i. The proof is completed by showing that L^j_j is serialized after $r_u[i]$, which implies that L^i_i is also serialized after $r_u[i]$ and therefore after t_s. Since L^j_j is good, it is serialized at w^j_j. Therefore it is enough to show that $r_u[i] \rightarrow w^i_j$. Note that since $w^i_j \rightarrow w^i_i$, $\ell_i \in H^w_j$. However, since ℓ_i is last in B^w_H and $i > j$, Lemma 4(a) implies that $\ell_i \notin B^w_H[j]$. Therefore Lemma 1 implies that for any t after the occurrence time of w^i_j, $\ell_i \notin B^w_H[i].$ By the assumption of this case $\ell_i \in B^w_H[i]$ therefore $r_u[i] \rightarrow w^i_j$.

Case 4.2: $\ell_i \notin B^w_H[i]$.

By the definition of i in Case 4, $\ell_i \in B_u$. On the other hand, by Case 4.2 $\ell_i \notin B^w_H[i]$, therefore $B^w_H[i]/(i + 1) \neq B_u/(i + 1)$. By Lemma 8 there exists a good write action, L^j_j, $j < i$, such that $r_u[j] \rightarrow w^j_j \rightarrow r_u[i]$. L^j_j is good, therefore it is serialized at w^j_j. Since $w^j_j \rightarrow r_u[i] \rightarrow w^i_i$, we get $w^j_j \rightarrow w^i_i$, and therefore L^i_i is serialized either by L^j_j or later.

Since w^j_j occurs after t_s, L^i_i is serialized after t_s too.

\[\square\]

5 Multi-Writer out of Single-Reader Registers

5.1 Description

In this section we present an implementation in which the physical registers are atomic, $(1, 1)$-registers. In this implementation readers and writers share the same protocol which is obtained by modifying the writer protocol of the $(1, n)$ implementation. Throughout this section we assume that the ids of the readers are larger than the ids of the writers. The reader protocol contains an extra return statement which terminates its execution. Communication is two-sided, as implied by the fact that the writer and reader protocols are the same and as proved necessary by the recent result of [ITV92].

Processor P_i communicates with processor P_j, where $i \neq j$, by writing into a $(1, 1)$ atomic register denoted by $R_{i,j}$ from which P_j reads. A physical read action executed by P_i from $R_{i,j}$ is denoted by $r_i[j]$; while $w_i[j]$ denotes a physical write action by P_i to $R_{i,j}$. Logical action number a of P_i, where P_i is either a writer or a reader, is denoted by L^a_i. Since we use $(1, 1)$ registers, some single physical actions of the $(1, n)$ implementation are now replaced by n physical actions (for example w^a_i is replaced by $w^a_i[1] \ldots w^a_i[n]$). For reasons we explain later each register contains five successive labels (and their corresponding values). The five labels are called new, current, previous, old and ancient.
begin
\begin{align*}
&H \text{and}_{i} \text{Shake}_U \text{p}(i) ; H \text{and}_{i} \text{Shake}_D \text{own}(i) \\
&\text{Collect } \Gamma_i \\
&\text{if } L_i \text{ is enclosed free then} \\
&\quad \ell_{\text{last}} := \text{last label in } B_{i/i} \\
&\text{else} \\
&\quad \ell_{\text{last}} := \text{label with maximal id enclosed in } L^a_i \\
&\text{endif} \\
&\text{new.address} := \text{select}(\Gamma_i) \\
&\text{new.edge} := (\ell_{\text{last}}, \ell_{\text{last}}.\text{address}) \\
&\text{new.reg} := \text{write } (\text{new, current, previous, old, ancient}) \\
&\text{R}_{i,\text{last}} := \text{read } R_{\text{last},i} \\
&\text{if } (\ell_{\text{last}} \simeq \text{new.reg.current}) \text{ then } \text{ret.label} := \text{current} \\
&\quad \text{connect} \\
&\text{else if } (\ell_{\text{last}} \simeq \text{new.reg.previous}) \text{ then } \text{ret.label} := \text{previous} \\
&\text{else if } (\ell_{\text{last}} \simeq \text{new.reg.old}) \text{ then } \text{ret.label} := \text{old} \\
&\text{else} \\
&\quad \text{new.edge} := (i, \text{new.address}) \\
&\quad \text{ret.label} := \ell_{\text{last}} \\
&\text{endif} \\
&\text{for } j := 1 \text{ to } \eta \\
&\quad \text{R}_{i,j} := \text{write } (\text{new, current, previous, old, ancient}) \\
&\text{endfor} \\
&\text{current, previous, old, ancient} := \text{new, current, previous, old} \\
&\text{for } j := 1 \text{ to } i \\
&\quad \text{R}_{i,j} := \text{write } (\text{new, current, previous, old, ancient}) \\
&\text{endfor} \\
&\text{for } j := i + 1 \text{ to } \eta \\
&\quad \text{end} := \text{start}_j \\
&\quad \text{R}_{i,j} := \text{write } (\text{end, new, current, previous, old, ancient}) \\
&\text{endfor} \\
&\text{if you are a reader } (i > w) \text{ then return(} \text{ret.label} \text{)} \\
&\text{end}
\end{align*}

\textbf{Figure 6. The protocol for } P_i \text{ in the } (1,1) \text{ implementation}
Procedure Hand_Shake_Up(i)
begin
 for j = (i + 1) to n
 temp := read $R_{i,j}$
 $start_{j} := temp.c$
 $R_{i,j} := write (start_{j})$
 endfor
end

Procedure Hand_Shake_Down(i)
begin
 for j = 1 to (i - 1)
 temp := read $R_{i,j}$
 complement := -temp.start
 $R_{i,j} := write (complement)$
 endfor
end

\[\text{Figure 7. The Hand_Shake procedures} \]

Immediately after the occurrence of $w_{i}^{t}[j]$ the \textit{current} label in $R_{i,j}$ holds ℓ_{i}^{t}, the label computed by L_{i}^{t}, while \textit{previous}, \textit{old} and \textit{ancient} hold ℓ_{i}^{t-1}, ℓ_{i}^{t-2} and ℓ_{i}^{t-3} respectively.

The \textit{serialization interval} of logical action L_{i}^{t} is some interval (to be precisely defined later) enclosed within its execution interval and in which its serialization time lies. Our goal in this protocol is to enable each processor to compute its target label after collection of a single precedence graph. In case there exists no lower indexed processor that executes many actions overlapping the collection phase we show that the frontal branch of the history graph at the beginning of L_{i}^{t}'s serialization interval is a subgraph of G_{i}^{t}. In this case the last node of B_{i}^{t}/i is a valid target. If however there exists a lower indexed processor that executes many overlapping actions then the last node of B_{i}^{t}/i may not be used as a target. In this situation the processor identifies one of these overlapping actions of a lower-indexed processor and uses its label as its target. The overlapping actions identified during execution of L_{i}^{t} are called enclosed within L_{i}^{t}. The \textit{hand-shake} mechanism enables L_{i}^{t} to detect enclosed actions. In section 5.2 we formally define the enclosed relation and give a detailed explanation on how the hand-shake procedures work.

The code of the protocol appears in Figures 6 and 7: We now describe the code assuming logical action L_{i}^{t} is executed. Action L_{i}^{t} is started with execution of procedures \textit{Hand_Shake_Up} and \textit{Hand_Shake_Down}. Procedure \textit{Hand_Shake_Up} enables detection of L_{i}^{t} as enclosed by actions of processors with $id > i$. The physical actions executed during \textit{Hand_Shake_Up} are denoted by $r_{i}^{a}[i + 1].c$, $w_{i}^{a}[i + 1].s$... $r_{i}^{a}[n].c$, $w_{i}^{a}[n].s$. Procedure \textit{Hand_Shake_Down} enables L_{i}^{t} to detect enclosed actions of processors with $id < i$. The physical actions executed during \textit{Hand_Shake_Down} are denoted by $r_{i}^{a}[1].s$, $w_{i}^{a}[1].c$... $r_{i}^{a}[i - 1].s$, $w_{i}^{a}[i - 1].c$.

After executing the hand-Shake procedures L_{i}^{t} collects G_{i}^{a} in actions $r_{i}^{a}[1]$... $r_{i}^{a}[n]$. The graph G_{i}^{a} contains $3n + 1$ nodes — three nodes per processor and the virtual root node. The three labels of P_{j} in G_{i}^{a} are chosen from the five labels read from $R_{j,i}$ in action $r_{j}^{a}[j]$: If in G_{i}^{a} there exists a label ℓ_{k}, $j < k < i$, such that ℓ_{k} is directed to the new label of P_{j} in $R_{j,i}$ (i.e. $\ell_{k}.edge = (j,R_{j,i}.new.address)$) then the three chosen labels are new, current and previous. Otherwise the three labels are current, previous and old. After G_{i}^{a} is collected, P_{i} computes a label called ℓ_{last} towards which the edge of its
new tentative label is directed. If \(L_i^a \) does not have any enclosed label then \(\ell_{last} \) is the last label in \(B_i^a \)/. Otherwise \(\ell_{last} \) is the enclosed label with the maximal id. Then \(P_i \) declares its new tentative label to \(P_{last} \) in action \(d_i^a[\text{last}]\). In the next step (action \(\tilde{r}_i^a[\text{last}] \)) \(P_i \) re-reads \(R_{last,i} \). If \(\ell_{last} \) is \(\simeq \) to either current, or previous, or old then \(L_i^a \) connects — the tentative new label becomes current. In this case we say that the target label of \(\ell_i^a \) is the label read in \(\tilde{r}_i^a[\text{last}] \), which is \(\simeq \) to \(\ell_{last} \). Otherwise (\(L_i^a \) loops), \(e_i^a \) forms a self-loop.

The address of the tentative new label is obtained by the function select that considers all five labels collected from each processor. Since every register contains five labels, the addresses of every consecutive five labels are distinct. Therefore, if \(\ell_i^a \simeq \ell_i^{a+r} \) and if \(r > 0 \), then \(r > 4 \). The ancient label is used as follows: Consider an execution \(E \) in which the edge outgoing from \(L_i^a \) is \(\ell_i^a \). In action \(w_i^{b+i}[i] \) \(\ell_i^a \) is removed from \(R_{j,i} \), but it is still present in registers \(R_{j,k} \) for \(k > i \). At this point, \(P_i \) may select the address of \(\ell_i^a \) as an address for some new label \(\ell_i^{a+r} \) \((r > 0) \) where \(L_i^{a+r} \) starts after \(L_j^b \) terminates. If, after \(L_i^{a+r} \) is completed, \(P_k \) starts logical action \(L_i^c \) and reads both \(R_{j,k} \) and \(R_{i,k} \) while collecting \(F_i^c \), then \(P_k \) adds the edge \((\ell_j^c, \ell_i^{a+r}) \) to \(G_i^c \). Since in \(E \), \(L_i^b \Rightarrow L_i^{a+r} \), this edge violates the precedence relation. The reason for this problem is the fact that due to the use of \((1,1)\) registers, a label "leaves" the system gradually, first for processors with lower ids and then to those with higher ids. The ancient label provides a window of time during which the old label leaves the system while re-use of its address is delayed. For this reason the ancient label itself is never chosen as a target for new labels.

Action \(L_i^a \) ends with the concluding write stage in which \(\ell_i^a \) is written to each processor in turn. The physical actions in this stage are \(w_i^a[1] \ldots w_i^a[n] \). The fact that the concluding write of the previous implementation is now replaced with \(n \) physical actions causes the following problem: If processor \(P_j \) directs an edge towards \(\ell_i^a \) before action \(w_i^a[k], k > j \), takes place and if at that point \(P_k \) reads both \(R_{j,k} \) and \(R_{i,k} \), \(P_k \) may see \((\ell_j^a, \ell_i^a) \) as "hanging in the air", while in fact both its endpoints join the history graph at an earlier stage, hence the graph collected by \(P_k \) is not updated. To prevent this problem \(P_i \) informs all processors that \(\ell_i^a \) is its next label before the concluding write stage. This is done during the inform stage of the protocol, in physical actions \(i_i^a[1] \ldots i_i^a[n] \), in which \(\ell_i^a \) is written in the new label field, of \(R_{i,1} \ldots R_{i,n} \) respectively, while all other fields in these registers remain unchanged. If in action \(L_i^a \) \(P_k \) sees some edge \(e_{ij}, i > j < k \), directed towards a new label \(\ell_i^a \), \(P_k \) concludes that \(\ell_i^a \) can safely be added to \(G_i^c \).

During execution of \(L_i^a \), \(P_i \) computes a label called \(\text{ret.label} \). This label is used only if \(P_i \) is a reader, in this case the value returned by \(L_i^a \) is the value corresponding to \(\text{ret.label} \); this value also becomes the value corresponding to \(\ell_i^a \). This is the only place in the implementation in which a value corresponding to one label is copied to another label. Since there are five labels in each register, and each label contains three fields each of which is of size \(\log n + O(1) \) bits, the space complexity of the \((1,1)\) implementation is \(O(\log n) \). The time complexity is \(5n + O(1) \).

5.2 Serialization Scheme

Serialization in the \((1,1)\) protocol is done once more using a history graph. The history graph contains labels of writers and readers. The time \(\ell_i^a \) joins the history graph, which is called the joining time of \(\ell_i^a \) should satisfy the following requirements:

1. The joining time of \(\ell_i^a \) lies within the interval \([w_i^a[i+1], w_i^a[n]] \).
2. If \((\ell_i^a, \ell_j^a), i > j \) is an edge in \(H \) then the joining time of \(\ell_i^a \) is after the joining time of \(\ell_j^a \).

These requirements are fulfilled by the following formal inductive definition:
Definition 5: Let τ be the minimal time interval between any two successive physical actions and let $\epsilon = \tau / n$. Let L^a_i be a logical action where t_1 is the occurrence time of $u^a_i[t_1]$ and t_2 is the earliest joining time of any label whose target is ℓ^a_i. The joining time of ℓ^a_i is defined to be $\min(t_1, t_2 - \epsilon)$. If ℓ^a_i is the target label of ℓ^a_j and the joining time of ℓ^a_i is determined according to the joining time of ℓ^a_j then we say that ℓ^a_i joins the history graph by ℓ^a_j.

Using this definition we now define the history graph and the set of good actions:

Definition 6: Let E be an execution of the system. The History graph H of E is defined as follows:

1. H^0 is the History graph at time 0 (before the execution begins). It contains only the root node ℓ^0.

2. Let L^a_i be an arbitrary logical action. Let t be the joining time of ℓ^a_i. H^t is the graph obtained from $H^{t-\epsilon}$ by adding node ℓ^a_i, and the directed edge e^a_i as follows: If L^a_i connects then e^a_i is directed towards the target label of ℓ^a_i. Otherwise (L^a_i loops), e^a_i is a self-loop.

Definition 7: Action L^a_i is good if ℓ^a_i is last in B^t_H where t is the joining time of ℓ^a_i.

We now define the enclosed relation; we first give an operational definition and then motivate it by some intuitive explanation: To detect enclosed actions, every physical register $R_{i,j}$, $i < k$, is augmented with two hand-shake bits called start and end, while every $R_{i,j}$, $i > j$ is augmented with one hand-shake bit called complement. Action L^a_i detects an enclosed action L^b_j, $j < i$, as follows: In actions $r^a_i[i].c$ and $u^b_j[i].s$ (executed in procedure $Hand_Shake_Up$ during L^b_j) the complement bit of $R_{i,j}$ is read and copied to the start bit of $R_{j,i}$. Then in action $u^b_j[i]$ this value is copied to the end bit of $R_{j,i}$. In contrast, in actions $r^a_j[j].s$ and $u^a_i[j].c$ (executed in $Hand_Shake_Down$ during L^a_i) the start bit of $R_{j,i}$ is read and its complement is written into the complement bit of $R_{i,j}$. If in action $r^a_j[j]$, executed during the collect stage of L^a_i, it is found that the values of the start and end bits in $R_{j,i}$ are both equal to the complement bit in $R_{i,j}$, then L^b_j is enclosed within L^a_i.

Definition 8: Let L^a_i and L^b_j, $j < i$, be some logical actions. Action L^a_i and label ℓ^b_j are enclosed within L^a_i if ℓ^b_j is the current label in $R_{i,j}$ at $r^a_i[j]$ and the start and the end bits read in $r^a_i[j]$ are both equal to the complement bit in $R_{i,j}$. Action L^a_i is enclosed free if it has no enclosed labels.

This operational definition can be intuitively motivated as follows: The protocol is designed so that the serialization time of action L^a_i lies within the interval starting at $r^a_i[1].s$ (the first operation in the $Hand_Shake_Down$ procedure) and ending at the joining time of ℓ^a_i. This interval is called the serialization interval of L^a_i. If while G^a_i is collected label L^b_j is detected as enclosed within L^a_i, then it holds that $r^a_i[1].s \rightarrow r^b_j[1].s$. If under these conditions L^a_i decides to direct e^a_i towards L^b_j then the joining time of ℓ^a_i occurs after the joining time of ℓ^b_j and the serialization interval of L^a_i is enclosed within the serialization interval of L^b_j. This is formally presented in the following proposition:

Proposition 14: If L^b_j is enclosed within L^a_i, then $r^a_i[1].s \rightarrow r^b_j[1].s \rightarrow u^b_j[i].s \rightarrow r^a_i[j].s$.

Proof: Since L^b_j is enclosed within L^a_i, the complement bit in $R_{i,j}$ is equal to the start bit in $R_{j,i}$. Therefore it is clear that $r^a_i[j].s \rightarrow u^b_j[i].s$. Since $r^a_i[1].s \rightarrow r^b_j[1].s$ (if $j \neq 1$) and $u^b_j[i].s \rightarrow r^b_j[1].s$, we get that $r^a_i[1].s \rightarrow r^b_j[1].s$. Since ℓ^b_j is the current label in $R_{j,i}$, at $r^a_i[j]$ it holds that $u^b_j[i].s \rightarrow r^a_i[j]$, the proof follows.
Now we can explain why each collected graph contains three labels for each processor: Our goal in this protocol is to enable each processor to compute its target label after collection of a single precedence graph. In case the processor detects some enclosed labels it chooses one of them as its target. Otherwise we require that \(B_{H}^{t_i, [1]} / i \) should be a subgraph of \(G_{a}^{i} \). Assume that \(\ell_{j} \in B_{H}^{t_i, [1]} / i \). It can be shown that if \(P_{j} \) does not generate any enclosed label then it can produce at most two labels in addition to \(\ell_{j} \) before the occurrence time of \(\tau_{i}^{a}[j] \). The first label is produced by an action which starts before the occurrence of \(\tau_{i}^{a}[1] \) while the second is finished after the occurrence of \(\tau_{i}^{a}[j] \). To ensure that either \(R_{j,i} \) consists of some enclosed label or that \(\ell_{j} \in G_{a}^{i} \) each collected graph contains three labels of every processor.

We now define the serialization time for the logical actions. Logical write actions are serialized independently of the logical read actions. A good write action is serialized at its joining time. A bad write action \(L_{a}^{i} \) is serialized by the last label in \(B_{H}^{i, (w + 1)} \) (i.e. the last label of a writer) where \(t \) is \(L_{a}^{i} \)’s joining time. In Theorem 21 we prove that each logical write action is serialized within its serialization interval.

Definition 9: Let \(L_{a}^{i} \) be a logical write action whose joining time is \(t \).

1. If \(L_{a}^{i} \) is good then \(L_{a}^{i} \) is serialized at \(t \).

2. If \(L_{a}^{i} \) is bad and \(\ell_{j}^{i} \) is the last node of \(B_{H}^{i, (w + 1)} \) then \(L_{a}^{i} \) is serialized by \(L_{j}^{b} \), that is, before \(L_{j}^{b} \) and after any other physical action that precedes the joining time of \(L_{j}^{b} \). In case several logical write actions are serialized by the same logical action they are serialized in ascending order of their ids, starting with the lowest id and ending with the highest.

Read actions are serialized according to the labels they return. The serialization time of a logical read action \(L_{r}^{i} \) is defined as follows:

Definition 10: Let \(L_{r}^{i} \) be a logical read action whose ret.label is \(\ell_{j}^{i} \). If \(L_{j}^{i} \) is serialized before \(\tau_{i}^{r}[1] \), then \(L_{r}^{i} \) is serialized at \(\tau_{i}^{r}[1] \). Otherwise, \(L_{r}^{i} \) is serialized by \(L_{j}^{b} \), that is, after \(L_{j}^{b} \) and before any physical action which occurs after \(L_{j}^{b} \), and any logical action which is serialized after \(L_{j}^{b} \). In case several logical read actions are serialized by the same logical action they are serialized in ascending order of their ids.

Based on this definition it is very easy to show for a logical read action \(L_{r}^{i} \) that is serialized within its serialization interval. The fact that \(L_{r}^{i} \) is serialized after \(\tau_{i}^{r}[1] \) follows immediately from Definition 10. In the next proposition it is shown that the serialization time of \(L_{r}^{i} \) is not later then its joining time and therefore the requirement that \(L_{r}^{i} \) is serialized within the interval \([\tau_{i}^{r}[1], t] \), where \(t \) is the joining time of \(L_{r}^{i} \) is preserved. The proof is by induction.

Proposition 15: Let \(t \) be the joining time of \(L_{r}^{i} \). If \(\ell_{j}^{i} \) is the ret.label of \(L_{r}^{i} \) then \(L_{j}^{b} \) is serialized before \(t \).

5.3 Correctness Proof

We begin this section with several auxiliary lemmas which are used in the proof of Theorem 21 in which it is proved that the serialization definition of the write actions satisfies the requirements.

Proposition 16: The last label in \(B_{H}^{i} / i \) is not a new label.
Proof: By the definition of \(B^i_{k}/i \), the last label of \(B^i_{k}/i \) has no incoming edge from a label whose id is smaller than \(i \). Therefore, by the construction of \(G^i_{k} \), the last label in \(B^i_{k}/i \) is either current or previous or old.

Lemma 17: If \((\ell^i_{\delta}, \ell^j_{\delta})\), \(i > j \), is an edge in \(G^i_{k} \) then there exists some integer \(r, r \geq 0 \) such that \((\ell^i_{\delta}, \ell^{b+r}_{j})\) is an edge in \(H \).

Proof: By the protocol, if \((\ell^i_{\delta}, \ell^j_{\delta})\) is an edge in \(G^i_{k} \), where \(i > j \), then \(L^i_{\delta} \) connects, and its target label is some label of \(P_j \), \(\ell^{b+r}_j \). Obviously \(\ell^{b+r}_j . address = \ell^j_{\delta} . address \). To prove the lemma we show that \(r \geq 0 \). Assume by way of contradiction that \(r < 0 \). Since the addresses of every five consecutive labels are distinct and \(\ell^{b+r}_j . address = \ell^j_{\delta} . address \), we get that \(r < -4 \). Label \(\ell^i_{\delta} \) is one of the five labels in \(R_{i,j} \) throughout the interval \([\ell^i_{\delta}[j], \ell^{a+4}_{i}[j]]\). We prove the lemma by showing that \(\ell^i_{\delta}[j] \rightarrow r^i_{\delta}[i] \rightarrow \ell^{a+4}_{i}[j] \), contradictory to the definition of the function \(\text{select} \) (executed during \(L^i_{\delta} \)).

First we show that \(\ell^i_{\delta}[j] \rightarrow r^i_{\delta}[i] \). The old, previous and current labels in \(R_{i,i} \) at \(w_{b-2}[i] \) are \(\ell^{b-4}_j \), \(\ell^{b-3}_j \) and \(\ell^{b-2}_j \) respectively. Since \(r < -4 \), \(\ell^{b+r}_j \) is neither old nor previous nor current in \(R_{i,i} \) at \(w_{b-2}[i] \). Since \(\ell^{b+r}_j \) is one of these labels in \(R_{i,i} \) at \(r^i_{\delta}[j] \) we get that \(r^i_{\delta}[j] \rightarrow \ell^{b-2}[i] \). By the protocol \(d^i_{\delta}[j] \rightarrow r^i_{\delta}[i] \) and \(w^{a+2}[i] \rightarrow r^i_{\delta}[i] \), hence \(d^i_{\delta}[j] \rightarrow r^i_{\delta}[i] \).

The fact that \(r^i_{\delta}[i] \rightarrow w^{a+4}_{i}[j] \) is proved as follows:

1. \(r^i_{\delta}[i] \rightarrow r^i_{\delta}[k] \) (according to the protocol)
2. \(r^i_{\delta}[k] \rightarrow r^i_{\delta}[j] \) (since \(\ell^i_{\delta} \in G^i_{k} \))
3. \(r^i_{\delta}[j] \rightarrow r^i_{\delta}[i] \) (since \(i > j \) and \(G^i_{k} \) is collected in ascending order)
4. \(r^i_{\delta}[i] \rightarrow w^{a+3}_{i}[k] \) (since \(\ell^i_{\delta} \in G^i_{k} \))
5. \(w^{a+3}_{i}[k] \rightarrow w^{a+4}_{i}[j] \) (\(P_i \) works in sequential manner)

Since the right hand side of each relation is the left hand side of the next one we get \(r^i_{\delta}[i] \rightarrow w^{a+4}_{i}[j] \). In conclusion: \(d^i_{\delta}[j] \rightarrow r^i_{\delta}[i] \rightarrow w^{a+4}_{i}[j] \), a contradiction.

Lemma 18: Let \(L^i_{\delta} \) be an enclosed free action and let \(t \) be the joining time of \(\ell^i_{\delta} \). Every node of \(B^i_{k}/k \) belongs to \(H^t \).

Proof: We first show that the last label of \(B^i_{k}/k \) satisfies the lemma: Let \(\ell^i_{\delta} \) be the last label of \(B^i_{k}/k \). By Proposition 16, \(\ell^i_{\delta} \) is not the new label in \(R_{i,k} \) at \(r^i_{\delta}[i] \). Therefore \(\ell^i_{\delta} \) is either current or previous or old. If \(w^n_{i}[n] \) occurs before \(t \), as in the case when \(\ell^i_{\delta} \) is either previous or old, we are done. The only remaining case is when \(w^n_{i}[n] \) occurs after \(t \). In this case \(\ell^i_{\delta} \) is current in \(R_{i,k} \) at \(r^i_{\delta}[i] \). Since \(L^i_{\delta} \) is enclosed free the label \(\ell^i_{\delta} \) computed during \(L^i_{\delta} \) is the last label in \(B^i_{k}/k \), namely \(\ell^i_{\delta} \). We now show that \(w^n_{i}[k] \rightarrow r^i_{\delta}[i] \rightarrow w^n_{i}[n] \), which implies that \(\ell^i_{\delta} \) is the target label of \(\ell^i_{\delta} \), that its joining time is no later than the joining time of \(\ell^i_{\delta} \), namely \(t \). The first relation is proved as follows: Since \(\ell^i_{\delta} \) is current in \(R_{i,k} \) at \(r^i_{\delta}[i] \), we get that \(w^n_{i}[k] \rightarrow r^i_{\delta}[i] \). According to the protocol \(r^i_{\delta}[i] \rightarrow r^i_{\delta}[i] \) thus \(w^n_{i}[k] \rightarrow r^i_{\delta}[i] \). To prove that \(r^i_{\delta}[i] \rightarrow w^n_{i}[n] \) note that by Definition 5, the joining time of \(\ell^i_{\delta} \) is within the interval \([w^n_{i}[k] \), \(w^n_{i}[n]]\). According to the protocol \(r^i_{\delta}[i] \rightarrow w^n_{i}[i] \), hence \(r^i_{\delta}[i] \) is before \(t \). Since we assume that \(w^n_{i}[n] \) occurs after \(t \), we get that \(r^i_{\delta}[i] \rightarrow w^n_{i}[n] \).
To complete the proof it suffices to show that if \((\ell^a_i, \ell^j_j)\) is an edge in \(B^a_H / k\), and if the joining time of \(\ell^a_i\) is before \(t\), then the joining time of \(\ell^j_j\) is also before \(t\). By Definition 5 the joining time of \(\ell^a_i\) is after the occurrence time of \(u^a_i[i]\). Since according to the protocol \(\tilde{\sigma}^a_i[j] \rightarrow u^a_i[i]\) and since the joining time of \(\ell^a_i\) is before \(t\), we get that \(\tilde{\sigma}^a_i[j]\) occurs before \(t\). By Lemma 17 there exists some \(r, r \geq 0\), such that \(\ell^{a+r}_j\) is the target label of \(\ell^a_i\). If \(r = 0\) then \(\ell^{a}_j\) is the target label of \(\ell^a_i\) which implies by Definition 5 that the joining time of \(\ell^{a}_j\) is before \(t\), and we are done. If \(r > 0\) then \(u^a_i[n] \rightarrow u^{a+r}_j[i] \rightarrow \tilde{\sigma}^a_i[j]\). In this case \(u^a_i[n]\) occurs before \(t\) and again by Definition 5 the joining time of \(\ell^{a}_j\) is before \(t\).

Lemma 19: If \(\ell^a_j\) is the label with the maximal id enclosed in \(L^a_j\), then the joining time of \(\ell^a_j\) is before the joining time of \(\ell^a_i\).

Proof: By the protocol \(\ell^a_j\) is the label \(\ell^a_{	ext{art}}\) computed during \(L^a_j\). By Definition 5 the joining time of \(\ell^a_j\) occurs within the interval \([u^a_j[j], u^a_j[n])\). To prove the lemma we show that either \(u^a_j[n] \rightarrow u^a_j[1]\) or \(\ell^a_j\) is the target label of \(\ell^a_j\) and hence, by Definition 5, the joining time of \(\ell^a_j\) is before the joining time of \(\ell^a_i\). If \(u^a_j[n] \rightarrow \tilde{\sigma}^a_i[j]\) then \(u^a_j[n] \rightarrow u^a_j[1]\) and we are done. Assume \(\tilde{\sigma}^a_i[j] \rightarrow u^a_j[n]\). Since \(\ell^a_j\) is enclosed in \(L^a_j\), Definition 8 implies that \(u^a_j[i] \rightarrow \tilde{\sigma}^a_i[j]\). Since \(\tilde{\sigma}^a_i[j] \rightarrow \tilde{\sigma}^a_i[j]\) we get \(u^a_j[i] \rightarrow \tilde{\sigma}^a_i[j] \rightarrow u^a_j[n]\). Therefore \(\ell^a_j\) is the current label in \(R_{j,i}\) at \(\tilde{\sigma}^a_i[j]\), that is, \(\ell^a_j\) is the target label of \(\ell^a_i\).

Lemma 20: Let \(t\) be the joining time of \(\ell^a_i\).

1. If \(B^a_H [\tilde{\sigma}^a_i[i]] \neq B^a_H / i\) then
 (1.a) \(L^a_i\) is enclosed free.
 (1.b) \(B^a_H [\tilde{\sigma}^a_i[i]] \neq i\) is a subgraph of \(G^a_i\).
 (1.c) \(L^a_i\) is good.

2. For any \(t' \geq t\), if \(\ell^a_i \in B^a_{H'}\) then \(\ell^a_{i+1} \notin H'\).

Proof: By induction on \(i\) the id of the labels.

Base \(i = 1\):
(1.a) Every logical action executed by \(P_1\) is enclosed free. (1.b) For any \(t\), \(B^a_H / i\) contains a single node, namely \(\ell^a_i\). (1.c) Every action of \(P_1\) is good.
(2) Every label of \(P_1\) excludes its previous label from the frontal branch of the history graph.

Step: Assume correctness for \(j < i\). We now prove correctness for \(i\).

Proof of (1.a): Assume by way of contradiction that \(L^a_i\) is not enclosed free. Let \(L^a_j, j < i\), be the action with maximal id, enclosed in \(L^a_i\). By Proposition 14 it holds that \(\tilde{\sigma}^a_i[1].s \rightarrow \tilde{\sigma}^a_j[1].s\). Since \(\tilde{\sigma}^a_j\) is the label with the maximal id enclosed in \(L^a_i\), Lemma 19 implies that the joining time of \(\tilde{\sigma}^a_j\), \(t'\), is before \(t\). Hence the interval \([\tilde{\sigma}^a_j[1].s, t']\) is enclosed within the interval \([\tilde{\sigma}^a_i[1].s, t]\). Since \(B^a_H / i \equiv B^a_H / i\) we get that \(B^a_H [\tilde{\sigma}^a_j[1].s] \neq B^a_H / i\). By the induction assumption, \(L^a_j\) is good. Hence the frontal branch of the history graph is modified at \(t'\), the joining time of \(\tilde{\sigma}^a_j\). Since \(j < i\), \(B^a_H [\tilde{\sigma}^a_j[1].s] \neq B^a_H / i\), contradiction.
Proof of (1.b): In order to show that $B^*_{i}^A[1..s]/i$ is a subgraph of G^*_i, we show that every label of $B^*_{i}^A[1..s]/i$ belongs to G^*_i: First we show that every such label is read during collection of G^*_i either as new or as current or as previous. Let ℓ^j_i be some label in $B^*_{i}^A[1..s]/i$. Clearly $\ell^j_i[i] \rightarrow r^i_0[1..s]$ and therefore $\ell^j_i[i] \rightarrow r^i_0[j]$. Since $B^*_{i}^A[1..s]/i \equiv B^*_i/i$ we get that $\ell^j_i \in B^*_i/i$ which implies, by induction hypothesis (2), $\ell^{b+1}_j \not\in H^t$. Therefore $w^{b+1}_{j}[n]$ occurs after t which implies that $\ell^j_i[i] \rightarrow r^i_0[j] \rightarrow w^{b+1}_{j}[n]$. Thus ℓ^j_i is either new or current or previous in R^*_i at $r^i_0[j]$. Labels which are either current or previous belong to G^*_i independently of the rest of the labels in G^*_i. A new label belongs to G^*_i only if it has an edge incoming from another legal in G^*_i whose id is smaller than i. If the last label of $B^*_{i}^A[1..s]/i$ is in G^*_i then all the labels in $B^*_{i}^A[1..s]/i$ which were read as new have such an incoming edge. Thus, to show that all the labels of $B^*_{i}^A[1..s]/i$ are in G^*_i, it suffices to show that the last label of $B^*_{i}^A[1..s]/i$ is in G^*_i.

Let ℓ^c_k be the last label in $B^*_{i}^A[1..s]/i$. We now show that $w^c_k[i] \rightarrow r^i_0[j]$ which implies that ℓ^c_k is either current or previous in R^*_i at $r^i_0[j]$, hence $\ell^c_k \in G^*_i$. If the joining time of ℓ^c_k is at $w^c_k[n]$, then $w^c_k[n] \rightarrow r^i_0[1..s]$. Since, by the protocol, $r^i_0[1..s] \rightarrow r^i_0[j]$, it holds that $w^c_k[i] \rightarrow r^i_0[j]$. Otherwise, ℓ^c_k joins the history graph by another label $\ell^j_i, j < i \leq k$, whose target label is ℓ^j_i. Since $\ell^j_i \in B^*_{i}^A[1..s]$ and ℓ^j_i joins the history graph by ℓ^c_k we get that $\ell^c_k \in H^*_i$. The proof is completed by the following relations:

1.a. $w^c_k[i] = w^j_i[k]$ — if $k = i$.
1.b. $w^c_k[i] \rightarrow w^j_i[k]$ — according to the protocol, assuming $i < k$.
2. $w^j_i[k] \rightarrow r^i_0[j]$ — since ℓ^j_i is the target label of ℓ^j_i.
3. $r^c_k[j] \rightarrow r^i_0[1..s]$, since $\ell^c_k \in H^*_i$.
4. $r^c_k[i] \rightarrow r^i_0[j]$ — according to the protocol.

which imply $w^c_k[i] \rightarrow r^i_0[j]$. Therefore $\ell^c_k \in G^*_i$, and $B^*_{i}^A[1..s]/i$ is a subgraph of G^*_i.

Proof of (1.c): Assume by way of contradiction that L^*_i is bad. Since $B^*_{i}^A[1..s]/i \equiv B^*_i/i$, induction hypothesis (1.a) and (1.b) for i imply that L^*_i is enclosed free and that B^*_i/i is a subgraph of G^*_i. Since L^*_i is enclosed free and since L^*_i is bad, we get that $B^*_i/i \not\equiv B^*_i/i$. Let $\ell^j_i, j < i$, be the label with the maximal id in their common prefix. Label ℓ^j_i is not last in B^*_i/i since B^*_i/i is a subgraph of G^*_i and $L^*_i \not\equiv B^*_i/i$. Let $(\ell^c_k, \ell^j_i), k < i$, be the incoming edge to ℓ^j_i in B^*_i/i. We now show that (ℓ^j_i, ℓ^c_k) is an edge in H^t: Since L^*_i is enclosed free, Lemma 18 implies that $\ell^j_i \in H^t$. By Lemma 17 there exists some $t \geq 0$, such that (ℓ^c_k, ℓ^j_i) is an edge in H^t. Since $\ell^j_i \in B^*_i/i$, induction hypothesis (2) implies that $\ell^{b+1}_j \not\in H^t$, that is $t = 0$. Therefore (ℓ^j_i, ℓ^c_k) is an edge in H^t. By the maximality of ℓ^j_i, $(\ell^c_k, \ell^j_i) \not\in B^*_i/i$. Let (ℓ^j_i, ℓ^c_k) be the edge excluding (ℓ^c_k, ℓ^j_i) from B^*_i/i. Since B^*_i/i is a subgraph of G^*_i(a), $(\ell^j_i, \ell^c_k) \in G^*_i$, and it excludes (ℓ^c_k, ℓ^j_i) from B^*_i/i, contradiction.

Proof of (2): Assume by way of contradiction that ℓ^c_k does not satisfy the lemma, that is $\ell^c_k \not\in B^*_i$ where t_0 is the joining time of ℓ^c_k. Since $\ell^c_k \not\in B^*_i$ it is clear that L^*_i is bad. We reach the required contradiction by showing that L^*_i is good. Since the joining time of ℓ^c_k is before $r^*_i[1..s], s$ and $\ell^c_k \in B^*_i/i$, there are no good actions with id smaller then i in the interval $(r^*_i[1..s], t_0)$. Hence $B^*_{i}^A[1..s]/i \equiv B^*_i/i$ which implies, by (1.c), that L^*_i is good.
The next theorem shows that the protocol satisfies the first design requirement namely that every logical write action is serialized within its serialization interval.

Theorem 21: Every logical write action L_i^a is serialized within the interval $[r_i^a[1], s, w_i^a[n]]$.

Proof: By Definition 9, every logical write action is serialized no later than its joining time. Therefore we only have to show that L_i^a is serialized after $r_i^a[1]$. Let t be the joining time of L_i^b. If L_i^a is good then it is serialized at t and the theorem follows. Assume L_i^a is bad. By Lemma 20.1(c) \(B_{H}^{r_i^a[1]/i} \neq B_{H}^{r_i^a[1]/i} \), hence there exists a good logical write action L_j^b, whose joining time is after $r_j^b[1]$. Therefore L_i^a is serialized either by L_j^b or by another logical write action which is serialized after L_j^b and before t, and the theorem follows.

The next lemma shows that the protocol satisfies the second design requirement:

Lemma 22: If L_i^a is enclosed free then $B_{H}^{r_i^a[1]/i}$ is a subgraph of G_i^a.

Proof: To prove this lemma we show that every label in $B_{H}^{r_i^a[1]/i}$ belongs to G_i^a. Assume by way of contradiction that there are labels in $B_{H}^{r_i^a[1]/i}$ that do not belong to G_i^a, and let ℓ_j^b, $j < i$, be the label with maximal id among them. Let $\ell_j^{b+r} \neq \ell_j^{b+r-1}$ and ℓ_j^{b+r-2} be the three labels of P_j in G_i^a. By the contradiction assumption $\ell_j^b \notin G_i^a$, therefore either $r < 0$ or $r \geq 3$. We reach the required contradiction by the following case analysis:

Case 1: $r < 0$.

By Definition 5 the joining time of ℓ_j^b is after $i_j^b[i]$. Since $i_j^b \in B_{H}^{r_i^a[1]/i}$, we get that $i_j^b[i] \rightarrow r_i^a[1]$. According to the protocol $r_i^a[1] \rightarrow r_i^a[j]$, hence $i_j^b[i] \rightarrow r_i^a[j]$. Since we assume that $r < 0$, $r_i^a[j] \rightarrow w_j^b[i]$. Therefore $i_j^b[i] \rightarrow r_i^a[j] \rightarrow w_j^b[i]$, and hence ℓ_j^b is the new label in $R_{j,i}$ at $r_i^a[j]$. Since $r_i^a[j] \rightarrow w_j^b[i]$ there is no incoming edge to ℓ_j^b in $H^{r_i^a[1]}$ from any label whose id $> i$. Consider the following cases:

Case 1.a: ℓ_j^b is last in $B_{H}^{r_i^a[1]/i}$.

Since there is no incoming edge to ℓ_j^b in $H_{r_i^a[1]}$ from any label whose id $> i$ and since ℓ_j^b is last in $B_{H}^{r_i^a[1]/i}$, we get that ℓ_j^b is last in $B_{H}^{r_i^a[1]}$. Therefore ℓ_j^b joins the history graph at $w_j^b[n]$, that is $w_j^b[n] \rightarrow r_i^a[1]$, contradiction.

Case 1.b: ℓ_j^b is not last in $B_{H}^{r_i^a[1]/i}$.

Let ℓ_j^b, $i > k > j$, be the incoming edge to ℓ_j^b in $B_{H}^{r_i^a[1]/i}$. Since $k > j$ and ℓ_j^b is the label with the maximal id that does not satisfy the lemma, $\ell_k^b \in G_i^a$. Since ℓ_j^b is the new label in $R_{j,i}$ at $r_i^a[j]$, by the construction of G_i^a, ℓ_j^b joins G_i^a by ℓ_k^b, that is $r \geq 0$, contradiction.

Case 2: $r \geq 3$.

In this case we reach a contradiction by showing that the current label read in action $r_i^a[j]$, denoted by ℓ_j^a, is enclosed within L_i^b. Note that ℓ_j^a is either ℓ_j^{b+r} or ℓ_j^{b+r-1}. Since ℓ_j^a is the current label read in action $r_i^a[j]$, we only have to show that $w_j^b[j,c] \rightarrow r_i^a[j],c$. Since $\ell_j^a \in B_{H}^{r_i^a[1]/i}$, Lemma 20.2 implies that $\ell_j^{b+1} \notin H_{r_i^a[1]}$. Therefore $r_i^a[1] \rightarrow w_j^{b+1}[n]$. Since $w_j^b[j,c] \rightarrow r_i^a[1]$ and since $w_j^{b+1}[n] \rightarrow r_j^{b+2}[i],c$ we get that $w_j^b[j,c] \rightarrow r_j^{b+2}[i],c$. Since $c > b + 2$ we get that $w_j^b[j,c] \rightarrow r_j^{b+2}[i],c$. The proof follows.
The next theorem shows that all graphs collected by the processors are precedence graphs:

Theorem 23: If (ℓ_i^a, ℓ_j^a), $i > j$, is an edge in G^a_i then $L^b_i \Rightarrow L^a_i$.

Proof: By Lemma 17 (ℓ_i^a, ℓ_j^{b+r}), $r \geq 0$, is an edge in H. By Definition 5 the joining time of ℓ_j^{b+r} is before the joining time of ℓ_i^a. We show that $L^b_i \Rightarrow L_j^{b+r}$. Since $L^b_i \Rightarrow L^a_i$ the proof follows. Consider the following cases:

Case 1: $i \leq w$

In this case ℓ_j^{b+r} and L^a_i are both write actions. If L^a_i is good or L^a_i and ℓ_j^{b+r} are both bad Definition 9 implies that L^a_i is serialized after L_j^{b+r}. If L^a_i is bad while ℓ_j^{b+r} is good then since (ℓ_i^a, ℓ_j^{b+r}) is an edge in H, there at least one good write action which joins the history graph after L_j^{b+r}. L^a_i is serialized by one of these actions, therefore it is serialized after L_j^{b+r}.

Case 2: $j \leq w < i$

In this case the value written by L_j^{b+r} is returned by L^a_i. By Definition 10, $L_j^{b+r} \Rightarrow L^a_i$.

Case 3: $j > w$

By Definition 10 $L_j^{b+r} \Rightarrow L^a_i$.

The next lemma is used in the correctness proof of the reader protocol.

Lemma 24: Let L^a_i, $i > w$, be an enclosed free read action. If ℓ_j^b, $j \leq w$, is the last label in B^a_i / i and $\ell_j^d \not\in B^r_H[i] / i$ then L^b_i is serialized after r^a_i.

Proof: Since $\ell_j^d \in B^a_i / (w+1)$ but $\ell_j^d \not\in B^r_H[i] / (w+1)$, $B^a_i / (w+1) \neq B^r_H[i] / (w+1)$. Let ℓ^a_i be the label with the maximal id in the common prefix. By Lemma 22 $B^r_H[i] / i$ is a subgraph of G^a_i, hence ℓ^a_i is not last in $B^a_i / (w+1)$ (otherwise $B^a_i / (w+1) \equiv B^r_H[i] / (w+1)$). Let t be the joining time of ℓ^d_k, we now show that t is after r^a_i. Assume by way of contradiction that t is before r^a_i, that is, $\ell^a_k \in H^{r^a_i}$. By Lemma 17, there exists some r, $r > 0$, such that (ℓ^d_k, ℓ^a_k) is an edge in $H^{r^a_i}$. Since $\ell^a_k \in B^r_H[i] / (w+1)$, Lemma 20(2) implies that $\ell^a_k \not\in H^{r^a_i} / (w+1)$. Hence $r = 0$ and (ℓ^d_k, ℓ^a_k) is an edge in $H^{r^a_i}$, $\ell^a_k \not\in H^{r^a_i}$. Let (ℓ^d_k, ℓ^a_k), $m < k$, be the edge in $B^r_H[i]$ excluding (ℓ^d_k, ℓ^a_k) from $B^r_H[i]$. Since $B^r_H[i] / i$ is a subgraph of G^a_i, (ℓ^a_k, ℓ^a_k) is an edge in G^a_i. Therefore (ℓ^a_k, ℓ^a_k) excludes (ℓ^d_k, ℓ^a_k) from B^a_i contradiction. Hence the joining time and (as we show below) the serialization time of ℓ^a_k is after r^a_i. If $L^b_i \neq L^a_i$ then there is a path from from ℓ^a_k to ℓ^a_k in G^a_i (because ℓ^a_k and ℓ^a_k are both in B^a_i / i and ℓ^a_k is last in B^a_i / i). By Theorem 23, $L^b_i \Rightarrow L^a_i$, therefore L^b_i is serialized after r^a_i.

Now we show that L^b_i is serialized after r^a_i. If $B^r_H[i] / \ell \neq B^b_H / \ell$, then L^b_i is serialized by the good write action that is serialized last before t, that is after r^a_i. Assume that $B^r_H[i] / \ell \equiv B^b_H / \ell$. The following three facts:

1. $B^r_H[i] / \ell$ is a subgraph of G^a_i.

2. $\xi_k \in B^\tau_{H[i]}$.
3. (ℓ_k^i, ξ_k^i) is an edge in $B^\tau_{H[i]}$.

Implies that ξ_k^i is the last label in $B^\tau_{H[i]}[\ell]$ (Otherwise the edge incoming to ξ_k^i in $B^\tau_{H[i]}[\ell]$ excludes (ℓ_k^i, ξ_k^i) from $B^\tau_{H[i]}$). Since $B^\tau_{H[i]}[\ell] \equiv B^\tau_{H[i]}[\ell]$ it holds that ξ_k^i is last in $B^\tau_{H[i]}[\ell]$ and therefore L^τ_i is good. Hence L^τ_i is serialized at t_i that is after $\tau_i^\tau[1]$. The lemma follows.

Theorem 25: Let L^τ_i be a logical read action, and let L^σ_j be the logical write action which wrote the value returned by L^σ_i. L^σ_j is the most recent write action serialized before L^σ_i.

Proof: We prove this theorem by induction on i, the id of logical readers.

Base: $i = w + 1$

Let $\ell_j^{\tau_i}$, $r \geq 0$, be ℓ_{last} computed in L^τ_i. Consider the following cases:

Case 1: L^τ_i is enclosed free

In this case $\ell_j^{\tau_i}$ is the last label in $B^\tau_{H[i]}$. By Lemma 22, $B^\tau_{H[i]}$ is a subgraph of G^τ_i. We show that either $L^\tau_j = r[1]$ or $L^\tau_j = r[1]$ is the most recent write action serialized before $r[1]$. If $\ell_j^{\tau_i} \not\in B^\tau_{H[i]}[\ell]$ then by Lemma 24 $L^\tau_j = r[1]$. If $\ell_j^{\tau_i} \in B^\tau_{H[i]}[\ell]$ then since $B^\tau_{H[i]}$ is a subgraph of G^τ_i and since $\ell_j^{\tau_i}$ is the last label in $B^\tau_{H[i]}[\ell]$, $\ell_j^{\tau_i}$ is last in $B^\tau_{H[i]}[\ell]$. Hence $L^\tau_j = r[1]$. Since $L^\tau_j = r[1]$, the proof follows.

Case 2: L^τ_i is not enclosed free

In this case, $\ell_j^{\tau_i}$ is the label with the maximal id enclosed in L^σ_i. By Proposition 14, it holds that $r[1], s \rightarrow r[1], s$. By Theorem 21, $L^\tau_j = r[1]$ is serialized after $r[1], s$. Hence $L^\tau_j = r[1]$ is serialized after $r[1], s$. Since $L^\tau_j = r[1]$ is serialized after $r[1], s$. By Definition 10, L^τ_i is serialized by L^σ_j, that is, L^τ_j is the most recent write action serialized before L^τ_i.

Step: Assume correctness for $m, w < m < i$. We now prove for i

If $\ell_j^{\tau_i}$ is the ret.label of L^τ_i then the proof is identical to the proof of the induction base. Otherwise let $\ell_k^i, w < i < b$, be the ret.label of L^σ_j, and let $\ell_j^{\tau_i}$, $r \geq 0$, be the label ℓ_{last} computed during L^τ_i. In this case L^τ_i is a logical read action which also returns the value written by L^σ_j. Consider the following cases:

Case 1: L^τ_i is enclosed free

By the inductive assumption L^τ_j is the most recent write action serialized before L^σ_i. If L^σ_i is serialized after $r[1], s$ then since L^τ_i is serialized by L^σ_j, we are done. Assume that L^σ_i is serialized after $r[1], s$. According to Definition 10, L^σ_i is serialized at $r[1], s$. We claim that there are no good write actions serialized after L^σ_i and before L^τ_i (that is, before $r[1], s$), and therefore the proof of this case follows. Assume by way of contradiction that there are such good writes. Let $\ell_k^i, w < k < b$, be the last label in $B^\tau_{H[i]}[(w, 1)]$. By this definition $L^\tau_i = L^\tau_k$. By Lemma 22 $B^\tau_{H[i]}$ is a subgraph of G^τ_i. Since $\ell_k^i \in B^\tau_{H[i]}[(w, 1)]$ we get that $\ell_k^i \in G^\tau_i$. In both of the following cases we reach the required contradiction:

Case 1.1: $\ell_k^i \in B^\tau_{H[i]}[w, i]$.

Since ℓ_k^i is last in $B^\tau_{H[i]}[w, i]$, there is a path from ℓ_k^i to ℓ_j^i in G^τ_i. Therefore by Theorem 23 $L^\tau_j = L^\tau_k$. Since $r \geq 0$ we get that $L^\tau_j \rightarrow L^\tau_k \rightarrow L^\sigma_j$, hence, L^σ_j is not the last write action serialized before L^σ_i, contradiction to the induction assumption.
Case 1.2: $\ell^s_r \not\in B^q_i$ / i

In this case there is some label ℓ^s_m, $m < \ell$, that excludes the suffix of $B^{q[1]}_i$ (and ℓ^d_k) from B^q_i / i. Therefore $L^d_i \Rightarrow L^s_i$. Since $\ell^s_m \in B^q_i$ / i and ℓ^{c-r} is last in B^q_i / i, Theorem 23 implies that $L^s_m \Rightarrow L^{c-r}_k$. Therefore we get $L^b_j \Rightarrow L^d_i \Rightarrow L^s_i \Rightarrow L^{c-r}_k \Rightarrow L^c_k$ and in particular $L^b_j \Rightarrow L^s_i \Rightarrow L^c_k$, contradiction to the induction assumption.

Case 2: L^q_i is not enclosed free

In this case ℓ^{c-r}_k is the label with the maximal id enclosed in L^q_i. By Definition 8 it holds that $r^q_i[1].s \Rightarrow r^{c-r}_k[1].s$, therefore L^{c-r}_k is serialized after $r^q_i[1].s$. Since $r \geq 0$ we get that L^q_k is serialized after $r^q_i[1].s$. By the induction assumption, L^b_j is the most recent write action serialized before L^q_i. Since L^q_i is serialized by L^q_i, L^b_j is the most recent write action serialized before L^q_i.

\[\square \]

ACKNOWLEDGMENTS

We thank Paul Vitányi, for his tireless efforts to convince us that implementations with sublinear space complexity are worth looking at. We also thank Yael Gafrin, Arie Rudich comments on an earlier version have helped us in this presentation. Last but surely not least is John Tromp whose continuous help during this work was invaluable in terms of both correctness and style.

REFERENCES

