1992

A. Israeli, A. Shaham, A. Shirazi

Linear-time snapshot protocols for unbalanced systems

Computer Science/Department of Algorithmics and Architecture Report CS-R9236 September

CWl is het Centrum voor Wiskunde en Informatica van de Stichting Mathematisch Centrum
CWi is the Centre for Mathematics and Computer Science of the Mathematical Centre Foundation

is the research institute of the Stichting Mathematisch Centrum, which
founded on February 11, 1946, as a non-profit institution aiming at the
iotion of mathematics, computer science, and their applications. 1t is
sored by the Duich Government through the Netherlands organization
sientific research (NWO).

ight © Stichting Mathematisch Centrum, Amsterdam

Linear-Time Snapshot Protocols for Unbalanced Systems

Amos lIsraeli
cwi
P.O. Box 4079, 1009 AB
Amsterdam, The Netherlands
AND
Dept. of Electrical Engineering
Technion — Israel

Amnon Shaham
cwi
P.O. Box 4079, 1009 AB
Amsterdam, The Netherlands
AND
Dept. of Computer Science
Technion — lIsrael

Asaf Shirazi
Dept. of Computer Science
Technion — Israel

Abstract. The snapshot problem for shared memory systems is to enable a set of processors called
scanners to obtain a consistent picture of the shared memory while other processors called updaters
keep updating memory locations concurrently. One of the most intriguing open-problems in wait-free
distributed computing is the existence of a linear-time solution to this problem. In this paper we show
that if the number of either scanners or updaters is smaller than the square root of the total number
of processors then such a linear solution exists.

1991 Mathematics Subject Classification: 68M10, 68Q22, 68Q25.

CR Categories: B.3.2, B.4.3, D.4.1, D.4.4.

Keywords and Phrases: Snapshot, Wait-Free, Shared Memory, Register, Scan, Update, View.
Note: This work is partially supported by NWO through NFI Project ALADDIN under Contract
number NF 62-376.

1 INTRODUCTION

Consider a system of processors communicating through shared memory in which write and read to
the shared memory are executed instantaneously. At any given time ¢ each memory cell holds a well
defined value which is the value that was most recently written to it (or its initial value if no such
write action occurs before t). A Snapshot at time ¢ is the vector of values held by all memory cells
at t. The snapshot problem is to allow some processors to acquire a snapshot while other processors
are updating their memory cells concurrently. A solution to the snapshot problem consists of two

Report CS-R9236

ISSN 0169-118X

Cwi

P.O. Box 4079, 1009 AB Amsterdam, The Netherlands

programs called the updater protocol and the scanner protocol. A processor that wishes to update
one of its memory cells executes the updater protocol; a processor that wishes to acquire a snapshot
executes the scanner protocol. Solutions to the snapshot problem are key tools in designing concurrent
protocols.

Traditionally this problem is solved by means of locking — a processor who wishes to scan the
memory first locks it so no other processor can write until the scan operation is completed. This
approach is used in many database systems satisfactorily. From a theoretical point of view however,
there is an interest in nonwaiting protocols. In these protocols no processor is required to wait for
actions of another processor while executing its own scan or update protocol. Besides the theoretical
interest nonwaiting protocols have a desirable fault tolerant property: Since no processor waits for
any other processor, a halted processor cannot stop the execution of any other processor.

One should distinguish between the multi-writer problem and the single-writer problem: In the
multi-writer problem each memory cell can be written into by all updaters while in the single-writer
problem each cell can be written to by a single processor. The complexity of a nonwaiting solution fo
each of the snapshot problems is measured by several criteria. The two most important criteria are:

1. Time Complexity - The maximal number of read and write actions during a single execution
of an update or a scan operation.

2. Space Complexity - The maximal size of the auxiliary hardware (not including the space in
which the actual value is held) used by the protocols.

The wait-free snapshot problem was proposed and solved independently by Afek et al in [AAD90]
and by Anderson in [A90]. In [A90] Anderson presents exponential-time protocols for the multi-
writer snapshot problem. A polynomial solution for both single-writer and multi-writer snapshot
problems was presented in [AAD90]. Later works dealt with the single writer problem: another
polynomial solution was presented by Aspnes and Herlihy in [AH90]. A solution for a system with
one scanner was presented by Kirousis, Spirakis and Tsigas in [KST91]. Recently a new solution
was proposed by Attiya, Herlihy and Rachman in [AHR92]. In this paper the authors introduce the
notion of Lattice-Agreement and show that the snapshot problem and the lattice agreement problem are
equivalent for wait-free computation. Then they introduce a lattice agreement protocol whose time-
complexity is linear using test and set registers for two writers and two readers. This last protocol
induces a randomized solution for the snapshot problem using read write registers. The expected
time complexity of this solution is O(n log? n). The time-complexity of all these solutions except the
single scanner solution of [KST91] is super-linear. A linear-time protocol for a similar problem called
the Time-Lapse snapshot problem is presented by Dwork, Herlihy, Plotkin and Waarts in [DHPW92].
This problem however is slightly weaker than the snapshot problem, since the snapshots it returns are
allowed to be inconsistent.

A common conjecture states: There erists a solution to the snapshot problem such that the time
complezity of both update and scan protocols is linear. In this paper we show that if the number of
either scanners or updaters is smaller then the square root of the total number of processors then such
a linear solution exists. This is done by presenting two methods of converting arbitrary solutions for
the snapshot problem to other solutions in which one of the protocols has linear-time complexity: The
first method converts an arbitrary solution to a solution whose scan protocol works in linear-time.
The second method converts an arbitrary solution to a solution whose update protocol works in linear-
time. The linear-time protocols for unbalanced systems are obtained by applying both methods to the
protocol of [AAD90]. Both methods rely on time-stamps to keep total order among all update actions
of every individual updater, hence the space complexity of the resulting solutions is unbounded. For
the case of a system with more updaters than scanners we have a similar method that yields bounded
solutions. Since this method is more complex we chose to present the unbounded method.

The rest of this paper is organized as follows: In Section 2 we present the computational model and
the snapshot problem. The conversion methods are presented in Sections 3 and 4. In Section 5 we

show how to derive linear-time protocols for unbalanced systems using our methods.

2 MODEL AND REQUIREMENTS

A system consists of a set of processing entities called processors, a set of memory entities called
registers and a set of operations. Each processor has a unique ¢d. Each register has a set of permitted
values. One of the register’s permitted values is a distinguished value called the register’s ¢nitial value.
Each operation is associated with a processor that can ezecute the operation and with a register which
is accessed by the operation. Operations are partitioned into input operations and output operations.
An input operation gets an input parameter while an oulput operation returns an output parameter.
Each operation is executed instantaneously. A system ezecution is a sequence of operation executions
(an execution of an operation is called an action) which satisfies some consistency requirements.
Each action is said to happen at its occurrence time which is an indivisible instant. The consistency
requirements depend on the individual system; as an example consider the set of operations which
includes read operations from the system’s registers and write operations to the system’s registers.
The consistency requirement for this system is: Each read action accessing register r returns the input
parameter to the latest write action that accessed r (or r’s initial value if no such write action occurs).

A compound system is defined using another sysytem called the elementary system. Both elementary
and compound systems have the same sets of processors and registers. The set of compound operations
(operations of the compound system) is defined in terms of programs of the elementary system. The
building blocks of programs are instructions; each instruction starts with a nonempty sequence of
internal computations which is succeeded by at most one elementary operation. Each program has a
distinguished instruction called the program’s initial instruction. If the program implements an input
action then it takes an input parameter; if it implements an output action then it returns an output
parameter. For simplicity we assume that each processor P has a single program called P’s program.

A program ezecution is a sequence of actions determined by the program and by the parameters
returned by the output actions. Each processor has a program counter which at any time points to
the next instruction the processor is about to execute. When the compound system is initialized
all program counters point to the processors’ respective initial instructions, and each register holds
its initial value. An ezecution of a compound system is an execution of the elementary system in
which each processor repeatedly executes its program. A schedule is a sequence of processor ids; every
schedule induces a compound system execution in which processors execute elementary actions one
after the other in the order dictated by the schedule. It is important to note that elementary actions
of different processors, each of which executing its own program, might be interleaved. The set of
compound system executions is the set of executions induced by all possible schedules.

Our goal is to use the compound system as an elementary system for implementing yet another, more
complex, compound system. Roughly speaking this goal requires that executions of the compound
system can be viewed as elementary executions. In particular it is required that each compound
action can be looked at as if it happens instantaneously. A serialization of a compound execution
is an assignment of serialization times for each compound action. Serialization times are specified
using the elementary actions, that is, an action might be serialized either at the occurrence time of
some elementary action or in between the occurrence times of two consecutive elementary actions.
Once an execution is serialized one can view every compound action as if it happens instantaneously
at its serialization time and check whether the execution preserves the consistency requirements of
the compound system. A serialization scheme for a compound system S is a function from the set
of all executions of S that matches a serialization for every execution. A compound system is an
implementation of an elementary system if it has a serialization scheme under which every execution
satisfies the elementary system’s consistency requirements. It should be noted that the elementary
system implemented by the compound system is different from the elementary system by which the
compound system was defined.

A snapshot system is a system with two operations called update and scan. Update operations

are executed by w processors called updaters. Each updater U; has a register called R:, an update
operation executed by U; stores a value in R;. A snapshot at time t, is the vector of values stored in
R;...R, at t. A scan operation is an output operation that returns the snapshot at its occurrence
time. A program is wait-free if all its executions consist of a bounded number of elementary actions,
where the bound may depend on the number of processors in the system. The ezecution interval
of a compound action is the time interval that starts with the occurrence time of the action’s first
elementary action and ends with the occutrence time of its last elementary action. In this paper we
present implementations of snapshot systems. To avoid trivial implementation we require that each
compound operation is implemented by a wait-free program and that the serialization time of each
action falls within its execution interval.

3 SoLuTiONS WITH LINEAR SCcAN PROTOCOLS

In this section we describe a method to convert an arbitrary solution to the snapshot problem to
another solution with a linear-time scan protocol. The requirements from the protocols of the original
solution ensure that we can use them as elementary operations in the snapshot system we present. The
original solution and its two protocols are called the elementary solution and elementary protocols,
respectively. The underlying idea is that the updaters execute the scan for the scanners, using the
elementary scan protocol. The result of each such elementary scan is a snapshot and all snapshots are
ordered temporally by time-stamps. The scanner collects a snapshot from each updater and returns
the latest one.

3.1 Description

The update and scan protocols are presented in Figure 1. The elementary update and scan protocols
are denoted by es(can) and eu(pdate) respectively. Each updater, U;, keeps an internal variable count;
which is initialized to zero and incremented by 1 every time P; executes an update operation. The
data field of the elementary protocol is replaced with a record (data, count) where count; is written
in the count field in every execution of the elementary update protocol. The new update protocol
for U; consists of an elementary update operation which is followed by an elementary scan operation.
The snapshot obtained by this elementary scan is written atomically into an additional (1,r) register
called r; which can be read by all the scanners. The ath update action of U; is denoted by U?; the
value it gets as input is denoted by u¢; Its elementary update, elementary scan and the atomic write
are denoted by euf, es? and ew{ respectively. The sum associated with a snapshot is the sum of its
count fields. The snapshot returned by es{ is denoted by evf, its sum is denoted by sum(evf). The
new scan protocol works as follows: first each »; is read to obtain a snapshot from each updater U;
and then the snapshot whose sum is largest is returned. The bth scan operation executed by S; is
denoted by S?; its subactions are denoted by r¥[1],...r¢[w] and the snapshot it returns is denoted by
3;?. The complexity of the update protocol is equal to the sum of the complexities of the elementary
protocols. The complexity of the scan protocol is equal to w, that is linear in the number of writers.

8.2 Serialization Scheme

In the serialization scheme for the protocol we slightly modify the serialization requirement and allow
an action to be serialized a short time before its starting time or after its ending time, where short
time is defined relative to the interval between any two consecutive elementary actions. (In this paper
actions are serialized only after the end of actions). Alternatively we could have added two dummy
elementary operations to each program, one before the first “real” elementary operation and the other
after the last one. For any action a, the serialization time of a is denoted by t(a), while its starting
and ending times are denoted by start(a) and end(a), respectively. Let a and b be two elementary
actions, we say that a sees b if a is serialized after b.

The occurrence times of the elementary actions are used to define the serialization for the new
solution. In this serialization update operations are serialized independently of scans, while scan

Update;(value)
count; 1= count; + 1
eu(value, count;) euf
s[1...n]:=es es?
r; i= write (s[1..n]) ew?
Scan;
for j:=1tow read (r;) ri1]. . rg[w]

return snapshot with maximum sum

FIGURE 1. The Protocols for Few Updaters

operations take the serialization of updates into account, therefore we first define the serialization for
updates:

DEFINITION 1: The serialization time for update action U is defined to be just after the serialization
time of the earliest ewrite ewj, whose corresponding escan es sees eu?.

W(U8) = rg;’ibn {t(ew?) : t(es?) > t(eud)} +¢

The constant ¢ is defined to be small relative to the time interval between any consecutive elementary
operations.

In this case we say that U? is serialized by ew§. If several update operations are serialized by the
same ewrite operation, they are further serialized in the order of their own eupdates, in this way no
two updates are serialized at the same time. Nevertheless, we will not address the differences in their
serialization times and regard all these update actions as if they are serialized at the same time.

DEFINITION 2: The serialization time of a scan operation .S'J'? is defined to be just after the maximum
between its starting time and the serialization time of the latest update action whose value is included
s b
in 89,

i

t(SJ'-’) = max {start(SJI?), max {8(Ug) 1 u§ € s;?}} +e

In case the serialization time of S} is determined by update operation U} we say that S} is serialized
by U{. By this definition a scan S]’? that returns snapshot ev} may be serialized before ew}.

3.3 Correctness Proof
LEMMA 1: Let esf and es? be two escan actions. If sum(evf) > sum(ev?), then every eupdate eu§
satisfying t(euf) < t(es?) also satisfies t(eug) < t(es?).

Proof: If sum(ev?) > sum(ev?) then the fact that the value of every count field is monotonically
increasing and the atomicity of the elementary protocols imply that t(es}) > t(es?) and the lemma
follows immediately. If sum(ev¢) = sum(ev?) then it is possible that t(es?) < t(es?) but it is not hard
to see that no eupdate action occurs in between and the lemma, follows once more. &1

The following lemma shows that every action is serialized within its execution interval:

LEMMA 2: Every compound action is serialized within its execution interval.

Proof: We first prove the lemma for update action: Let U be an arbitrary update. By Definition 1
we have : t(eu?) < t(Uf) < t(ew?) + &£ = end(Uf) + €. The lemma follows.

We now prove the lemma for scan actions: Let .S'_;? be an arbitrary scan action, the lemma holds
trivially if SJ'-’ is serialized at its starting time. Assume that SJ'-’ is serialized by update operation Uf
and let ev{ be the elementary snapshot returned by SJ'? . Since S;-’ returns ev} we get that t{ewf) <
t(r[f]) < end(S?) . Since uf € s it holds that euf is seen by es{. By Definition 1 we have :
t(Ug) < t(ewf) + e. Since S? is serialized by Uf it holds that £(S?) = t(U{) + €. Combining these
inequalities we get t(S?) = t(Uf) + € < t(ew]) + 2 < end(S?) + 2¢. The lemma follows. O
To complete the correctness proof, we show that the scan protocol returns snapshots:

LEMMA 3: If S¢ is serialized at ¢ then s is the snapshot at £.

Proof: It should be noted that since update actions are not serialized at the time of their cor-
responding eupdate actions the fact that s? is a snapshot does not follow immediately from the
correctness of the elementary solution. Definition 2 ensures that a scan does not return any value
whose update is serialized after that scan; to prove the lemma we have to show that all values whose
update is serialized before a scan are considered by that scan, since in this case the ordering of the
update actions ensures that the most recent value of each updater is returned. Let S be an arbitrary
scan action, let UZ, be the update that is serialized last among the updates included in sf, and let

evi be the elementary snapshot returned by S¢. We consider two cases according to the way 57 is
serialized:

Case 1: Action S} is serialized at start(S?). In this case we prove that the value of every update
that is serialized before the beginning of S (or a later value of the same updater) is included
in evi. Assume by way of contradiction that UJl’ is an update serialized before start(S¢) and
its value (or a later value) is not included in evf and let ew} be the ewrite action by which
U} is serialized. It follows that t(ew}) < start(S7) hence S¢ collects evf (or a later elementary
snapshot executed by Uy). Since S¢ collects both evf and ev§ and chooses evf we conclude that

sum(evy) < sum(evf). From Lemma 1 we have that eu} (or a later value of U;) is included in
evy, a contradiction.

Case 2: Action S? is serialized by UZ. In this case t(SF) = t(ew]) + 2¢, where Uy, is serialized
by ew},c . We prove that the elementary update of every update that is serialized before ew{, is
serialized before es{. As a result, we get that every update serialized before S{ is considered by
es;. Assume by way of contradiction that U;’ is an update that is serialized before ew{ bu s

elementary update is serialized after es¢. Let ewf, (£,d) # (p, f), be the ewrite action by whica

U} is serialized. Since eu? is serialized before es§ and after es$, it holds that t(es§) > t(esf).

Therefore es? is serialized after eu?, . Since UJ{’ is serialized by ew} before SZ, it follows that

k3
t(ewf) < t(ew]). Therefore, UZ, is serialized by ewf, a contradiction. Note that the above
proof does not include updates serialized by ew{; . Indeed, it is possible for some of the updates
serialized by ew{ not to be included in es},. However, this case can be easily handled by serializing
the scan between such two updates since updates serialized by the same atomic write are further
serialized by their elementary update times.

a

4 SoLuTIONS WITH LINEAR UPDATE PROTOCOLS

In this section we describe a method to convert an arbitrary solution (to which we once more refer
as the elementary solution) to the snapshot problem to another solution with a linear-time update
protocol. The underlying idea is to modify the single scanner protocol of [KST91]. The scanners use
the elementary solution to reach a lattice agreement (see [AHR92]).

begin
count = count + 1
for ji=1tow
temp := read (view;) r#[7]

for k:=1tow
if templk].count > lview[k].count then lview[k] := templk]
endfor
endfor
lview[d] := (count, value)
view; := write (lview) w
end

FIGURE 2. Protocol for U;

4.1 Description

The Protocols appear in Figures 2 and 3. Once more every value is associated with a number called
its count. Updater U; keeps an internal variable count; which is initialized to 0 and is incremented
at the beginning of every update action. The register of U; consists of an array of w entries called
view; in which each entry is a pair of the form (value, count). The k-th entry of view; always holds a
(value, count) pair of Ug. The updater protocol is to read the views of all other updaters, and for each
updater to choose the pair with the highest count. All these pairs are stored in a local view variable
called lview. After that U; assigns its new (value, count) pair to lview[i] and then lview is atomically
written into view;. The elementary actions executed during UZ are denoted by r#[1] ... rfw], wf.
The value and the view written during U} are denoted by u¢ and v, respectively. The complexity of
the update protocol is w, that is, linear in the number of writers.

The register of each scanner also holds a view; these registers are accessed by the elementary update
and scan protocols. The scanner protocol consists of two parts: In the first part the scanner reads
the updaters’ registers and computes a local view from the views of all updaters. In the second part
the scanner executes an eupdate operation in which its local view is written to view; (assuming SJI-’ is
executed) followed by an escan operation on the views of all scanners. Following the elementary scan
operation the local view is once more updated as before. At this point lview; holds a snapshot which
is returned. The elementary actions executed during SJ’-’ are denoted by rjl? 1] ... r;’ [w], eug , esg. The
view eupdated in action eu;? and the snapshot returned by .S']é are denoted by vJ'? and sg respectively.
The count field of U}, in UJI? is denoted by v}’ [k].count. The complexity of the scan protocol is equal to
the number of updaters plus the sum of the complexities of the elementary protocols.

4.2 Serialization Scheme

As in the previous solution we use the occurrence times of the elementary actions to define the
serialization for the new solution. We start with defining serialization time for scan operations which
are serialized independently of updates:

DEFINITION 3: The serialization time of S¢ is defined as follows: Let {1 be the occurrence time of
es; and let t3 denote the occurrence time of the first elementary write action wJ@, J < w, for which b
is larger then the count of s¢[j]. Action S? is serialized at min(t;, ¢y — €). where ¢ is defined once
more to be small relative to the time interval between any consecutive elementary operations. In case
ta < t; we say that S? is serialized by w;' Note that no two scans of the same processor can be
serialized by the same ewrite action. We say that view v; dominates view vjifforallk,1 <k <w,

.tow

= read (viewy) r2[k]

=1%o w

mp[m].count > lview[m].count then lview[m] := temp[m]

b
; st
J
.tor
=1tow
anlk][m].count > lview[m].count then lview|[m] := scan[k][m]

view)

F1GURE 3. Protocol for S;

> vj[k].count. In Lemma 6 below we show that if two views are not equal then one of them
1e other. Thus if two scan actions are serialized by the same ewrite action then they are
lized by domination order of the views they return as snapshots where the action whose
lominated is serialized first. If the snapshots are equal then the operations are serialized
r order of their ids.

4: The serialization time of update action Ujb is defined as follows: Let ¢; be the
ime of w;? and let ¢, denote the serialization time of the first scan action S§ which returns
'JJ!’ is serialized at min(ty,t2 — €). In case a3 < f; we say that U}’ is serialized by S55. If
are serialized by the same escan then they are further serialized by an ascending order

tness Proof

u}
efore Uf starts. A view v is consistent if it contains no inconsistent values. First we show

»w returned by the scanners is consistent.

and u§ are inconsistent if there exists no snapshot consisting of both values, that is

Every view v returned by a scanner is consistent.

ssume by way of contradiction that v is inconsistent and let u;’ and uj be the inconsistent
'8, where U;"H ends before U starts. By the definition of inconsistent pair we get that

ril7]) < t(wg). Therefore ug'*'l (or a later value of U;) appears in vf (the view written at

7). Hence every view which includes uf includes ug"'l or a later value of U}, a contradiction.

O

Every view written by updater U; dominates all previous views written by U;; the same
r view that is eupdated by scanner S;.

9

Proof: We prove the lemma for updaters only. The proof for scanners is similar. Assume by way
of contradiction that the lemma does not hold. Let wj be the first ewrite action, according to the
total order on the elementary execution, that contradicts the lemma. It follows that there exists j # ¢
such that v{[j].count < vf~1[j].count. Let U, be the updater from which the (value, count) pair of
Uj in v™! was taken. The count of Uj read in r{[k] is smaller then the count of U; read in ¢).
Since t(r#~'[k]) < t(r&[k]) this is a contradiction to the minimality of w¢. 0

Two views v, and vq are contradictory if u2, and ug, are values in v, while ui‘*’r and u;in'"’ , 78>0,
are values in v,. Two contradictory views cannot be snapshots under the same serialization.

LeEMMA 6: If v and v;? are views returned as snapshots (where i is not necessarily different from 7)
then they are not contradictory.

Proof: Assume by way of contradiction that ul, and uf are values in v} while u¢+" and g *,
7,8 > 0, are values in v}’. Without loss of generality assume that t(es?) < t(es;?). Hence Lemma, 5

implies that at least one of the indices of Uy returned by es;? (there are 7 such indices) is at least ¢, a

contradiction. I

The following lemma shows that every action is serialized within its execution interval:
LEMMA 7: Every action is serialized within its execution interval.

Proof: By Definition 3 and Definition 4 every scan and update are serialized no later then their
last elementary action. We have to show that they are not serialized before their first elementary read
action. We start with scan actions. Let S be an arbitrary scan action, if S? is serialized at es} then
we are done. Assume S7 is serialized by w;’ In this case s¢[j].count < b, hence start(S?) < t('w;?),
otherwise in 72[5], S; reads ul,

We continue with update actions: Assume by way of contradiction that U is serialized before r¥[1].
In this case there is a scan action 8% which returns u?, and 8 is serialized before r¢[1]. The value u?
is written for the first time in action wy, since it is included in s;? we can conclude that {(wf) < t(es;?)
hence S]’-’ is not serialized at es;?. Let w§ be the elementary write action by which SJ’? is serialized, by
Definition 3 w§ occurs before 7¢[1]. Therefore uj, belongs to vf. Since u¢ appears in the view of S']l-’)
uj, should be in the view of SJ'? as well, a contradiction to the definition of U¥. O

To complete the correctness proof, we show that the scan protocol returns snapshots:
LEMMA 8: If S? is serialized at ¢ then s{ is the snapshot at ¢.

Proof: ~ We show that if uf belongs to s? then HUE) < 1(S§) < t(Ug*). Clearly t(Uf) < t(S%);
assume by way of contradiction that t(US*!) < £(5¢). By Definition 3 we get that #(S%) < t(wth),
thus (U < t(wit!). Definition 4 implies that Uf*! is serialized by some scan action S]'? where
st[k).count = c+ 1. Since s¢[k].count = ¢ Lemma, 6 implies that s? dominates s¢. Since S']l-’ returns
the value of uf*! it is clear that twit) < t(es?). Hence 52 is not serialized at es? but by some
elementary write action w¢, where the count of s?[m] is smaller then d. Since s? dominates s¢ we
get that the count of s?[m] is also smaller then d. Therefore Sf should be serialized also by UZ.
Since ui*! € s¢ we get that v is dominated by v?, which implies that #(S¢) < t(8}). Since Ugt is
serialized by S? we get t(S¢) < t(US*!) < t(S}), contradiction. O

5 LINEAR SOLUTIONS

A snapshot system is unbalanced if the number of either updaters or scanners is not greater then the
square root of the total number of processors. We are now ready to prove the existence of linear-time
protocols for unbalanced snapshot systems:

There exist linear time snapshot solutions for every unbalanced system.

ing the solution of Afek et al in [AAD90] as the elementary solution we obtain linear
unbalanced systems: Recall that the complexity of both protocols in this solution is
n = w=r. If w < /r then the first solution yields an update protocol whose complexity
the complexities of the basic protocols, that is O(w?) = O(n) while the complexity of the
is w. If r < 4/w then the second solution yields an update protocol whose complexity
e complexity of the scan protocol is O(r?) = O(n). O
rst method we improve the protocol of [AAD90] with no dependence on the ratio between
scanners’ as follows: It is not hard to see that the real requirement from the updater
at a scan is executed between every two update actions (and not necessarily before the
refore, our first method can be used as follows: The update protocol begins with writing
unt) pair, continues with the scan protocol of [AAD90], and ends by writing its results;
ocol is now replaced by ours. The complexities of the protocols obtained from applying
to the solution of [AAD90] are not comparable. The first method yields a solution whose
O(w?) for an update operation and w for a scan operation. The second method yields
ose complexity is w for an update operation and w + O(r?) for a scan operation.

GEMENTS
ul to Jap Henk Hoepman for his carful reading of the manuscript.

I. Anderson, Composite Registers, Proceedings of the 9th Annual ACM Sympossium on
Principles of Distributed Computing, 1990, pp. 15-29.

Y. Afek, H. Attiya, D. Dolev, E. Gafni, M. Merritt, and N. Shavit, Atomic Snapshots
f Shared Memory, Proceedings of the 9th Annual ACM Sympossium on Principles of
Distributed Computing, 1990, pp. 1-13.

J. Aspned and M. Herlihy, Wait-free Data Structures in the Asynchronous PRAAM
Model, Proceedings of the 2nd Annual Symposium on Paarallel Algorithms and Architec-
tures, 1990, pp. 340-349.

1. Attiya, M. Herlihy amd O. Rachman, “Efficient Atomic Snapshots Using Lattice
Agreement,” preprint.

J. Dwork M. Herlihy, S. Plotkin, O. Waarts, Time-Lapse Snapshots, Proceedings of the
Ist Israeli Symposium on Theory of Computing and Systems, Haifa Israel May 1992, (D.
Dolev Z. Galil and M. Rodeh, eds.) pp. 154-170,Lecture Notes in Computer Science #601,
Springer-Verlag, 1992.

L.M. Kirousis, P. Spirakis and P. Tsigas, “Reading Many variables in One Atomic Op-
sration: Solutions with Linear or Sublinear Complexity,” proceedings of the 5th Interna-
tional Workshopn on Distributed Algorithms and Graphs, Delphy, Greece, October 1991,
‘S. Toueg, P. Spirakis and L. Kirousis, eds.) pp. 229-241, Lecture Notes in Computer
Science #579, Springer-Verlag, 1992.

ser of updaters is O(n) then the improvement of the updaters protocol is only by a constant.

