Optimal sorting in linear arrays with minimum global control

F. Abolhassan, J. Keller, D. Scheerer

Computer Science/Department of Algorithmics and Architecture

CS-R9244 1992

Optimal Sorting in Linear Arrays with Minimum Global Control

Ferri Abolhassan
Computer Science Department

Universitat des Saarlandes, 6600 Saarbriicken, Germany

Jorg Keller
cwi
P.O. Box 4079, 1009 AB Amsterdam, The Netherlands

Dieter Scheerer
Computer Science Department

Universitdt des Saarlandes, 6600 Saarbriicken, Germany

Abstract

We investigate linear sorting arrays with a single global control wire. We show that the lower bound
on the necessary time to sort » numbers in such an array is 2n, in contrast to 3n in arrays without
global control. We present a two—phase sorting algorithm for arrays with a global control wire that
matches the time bound of 2n. As 2n is a lower bound for sorting arrays with sequential input and
output, this implies that further global control cannot lead to any improvements as long as sequential
[/O is assumed. The algorithm needs an array of minimum length [n/2]. The scheme can be easily
extended to eliminate duplicate numbers. One possible application of the algorithm is in packet routing
for algorithms that need presorted inputs.

1991 Mathematics Subject Classification: 68P10, 68Q10, 68Q22, 68Q25

1991 CR Categories: B.6.1, F.1.3, F.2.2

Keywords and Phrases: Sorting, linear array, global control, lower bound, prefix computation

Note: Part of this work was done while the second author was working at the Univ. des Saarlandes,
Saarbriicken, Germany. This work is partially supported by the German Science Foundation (DFG)
under SFB 124 — D4 and by the Dutch Science Foundation (NWO) through NFI Project ALADDIN
under Contract number NF 62-376.

1 INTRODUCTION

Sorting is a very important and often required task. Much effort has been put in research to speed up
sorting by parallel computation. The time to sort n numbers in parallel has been reduced to O(logn)
[2], which is optimal for comparison—based sorting. In many cases however, the numbers to be sorted
are not available all together but are generated sequentially. This leads to a lower bound of O(n) on
the time to sort. A simple network that allows to sort in time O(n) is a linear array.

Linear arrays consist of p array elements or nodes where node 7,0 < 2z < p only is connected to node
i—1(if ¢ > 0) and to node 4+ 1 (if ¢ < p—1). Node ¢ — 1 is called the left neighbour of 7, ¢ + 1 is
called the right neighbour. The links are bidirectional. All inputs are sent to node 0, all outputs come
from there. Each node takes its decisions depending on its own state and the informations sent by its

neighbours. The only global control consists of informing all nodes that the last input has reached
node 0. This definition of the linear array is the same as in [3] except for the global wire.

The time to sort on a linear array with global control is at least 2n steps because n numbers have to
be put into the network sequentially, and the sorted sequence has to be put out of the network again.
Without the global information about the end of the input phase, the lower bound is 3n [3]. Input of
n numbers takes time n. Forwarding information about the end of the input phase to all nodes takes
time n as well, and output of n numbers takes the last n steps.

Each node in the array contains at least two registers as it must be able to store and compare two
numbers. Therefore one needs an array of length at least p = [n/2] to sort n numbers. The algorithm
presented in [3] needs arrays of length n. The nodes in both algorithm are similar. Each step of a
node consists of comparing two numbers, accepting an input and sending one number.

To our knowledge all other work on networks with global information transmit deals with busses.
These are global links that allow to broadcast one data word per clock tick. That model therefore
is more powerful but also more expensive than the single global control wire that we use, because in
networks with n nodes the word size normally is considered to be at least log n. These networks also
do not take care of input and output, all data is assumed to be in that network at system start.

A typical example is [5] (see also the references therein). There an exact bound of ©(2n/3) is
derived for sorting n numbers on a linear array of size n with an additional bus.

In section 2 we will present an algorithm to sort n numbers on a linear array. In section 3 we will
show that the required length of the array is minimum, we will prove the correctness and we will
show that the algorithm runs in minimum time. The fact that the runtime of the algorithm matches
the lower bound also implies that further extension of global control cannot lead to any runtime
improvements as long as sequential input and output is assumed. In section 4 we describe how the
algorithm can be extended to eliminate duplicate numbers without performance loss and how it can
be used for prefix computations. Section 5 contains some concluding remarks.

2 ALGORITHM

The algorithm works in two phases. Phase 1 lasts until the last number has entered the array. In this
phase each node receives numbers from its left neighbour and sends numbers to its right neighbour.
Phase 2 lasts until the last number of the sorted sequence has left the array. In this phase the direction
of the links are opposite to the direction in phase 1.

Each node is able to store two numbers, to compare them and to send and receive one number
across different links in one cycle.

In phase 1 each node works as follows. If a node contains less than two numbers, it stores an
incoming number from the left neighbour in a free register. If a node contains two numbers, it
compares them and sends the larger one to the right neighbour. An incoming number is stored in the
register that gets free because its content is sent to the right.

In phase 2 each node works as follows. If a node contains two numbers, it compares them and sends
the smaller one to the left. If it contains one number it sends it to the left. Incoming numbers from
the right are stored in a free (or getting free) register.

We illustrate the algorithm with two examples for n = 6. Figure 1 shows the array after the end
of each step. Numbers that have been moved are placed in a box. In the first example the input
sequence is in unsorted order, after phase 1 the numbers are already sorted. In the second example
the input is almost sorted, the numbers are not sorted after phase 1.

Phase 1

215364

21536

2153

215

21

Phase 2

12

123

1234

12345

123456

Example 1

—»

—»

—> —»
4

6]

4 6]

6

3
| Bl 6]
3 4

1 6
4
3] | | [8] || 6
2 4

3 5

6]
<— f—|
4 6

5

6]

647 r—]

FIGURE 1. Sorting on a linear array for 6 numbers

Phase 1

546321

54632

5463

546

54

Phase 2

12

123

1234

12345

123456

Example 2
—» —»
1
1
1 2
[6]
1 2
[6]
1 2 3
[6]
[
5 4 6
[||
5 4
6
5
@ le—| le—{
5
6

3 CORRECTNESS AND OPTIMALITY
3.1 Runtime

We show that the algorithm runs in time exactly 2n by proving the following claim.

CraiM 1 A node can always send a number to its appropriate neighbour (right in phase 1, left in
phase 2).

It follows that both phases are not delayed and take time n each.

Proof of Claim 1: A node z could be unable to send a number to its neighbour only in case that
this neighbour contains two numbers and itself is unable to send one of them because of the same
reason. We will call this situation A.

In phase 1 situation A would by induction include that all nodes y > = would contain two numbers
and were unable to send. It follows that there must be a node z < z that contains less than two
numbers, as otherwise phase 1 would have ended, because n/2 nodes contain two numbers each. Node
z must have contained two numbers some time before because otherwise it never would have sent
anything to nodes right of it. It is an easy induction that a node that contains two numbers at one
time in phase 1 will keep to contain two numbers until phase 1 ends!. So situation A cannot happen.

In phase 1 situation A would include that all nodes y < z would contain two numbers and would
be unable to send. This cannot happen as node 0 always is able to output.]

3.2 Correctness

We show the correctness of the algorithm by proving the following two claims. We assume that the
numbers we sort are integers that can be ordered by the usual < relation such that we can refer to
the i-th smallest number (1 < i < n).

CLAIM 2 After the end of phase 1, the i-th smallest number (1 < i < n) resides in node j < i.
CraIM 3 After t steps of phase 2, the i-th smallest number (i > t) resides in node 7 <1 —t.

Claim 2 is necessary to prove claim 3. Claim 3 leads to the following corollary which states the
correctness.

COROLLARY 4 After t steps of phase 2, the (t +1)-th smallest number resides in node 0 and therefore
leaves the array in the next step.

Proof of Claim 2: We prove the claim by an induction on i. The claim holds for ¢ = 1 because
the smallest number will never be moved from node 0. An element is only sent to the right because
it is the larger one in a comparison.

Assume the claim holds for ¢« < k. If the k-th smallest number resides in node 7 > k, then it has
been sent there because of a comparison with a number k' < k in node j —1 > k — 1. Then number
k' < k would reside in node j — 1 > k' which contradicts the assumption. Therefore the claim holds
for k£ as well. [

Proof of Claim 3: We prove the claim by an induction on t. The claim holds for t = 0 because
of claim 2.

Assume the claim holds for ¢ < k. If after k& steps of phase 2, the i-th smallest number resides in
node j > i—k, then there are only two possibilities because of claim 1. Either this number was sent to
node j in step k and therefore it resided in node 7+ 1 > ¢ — (k — 1) after step k£ — 1, which contradicts
the assumption, or this number resided in node j after step k — 1 as well. This means that during step
k a number ¢/ < 7 was sent from node j to j — 1. Element i’ must have resided in node j > ¢ — (k—1)
after step k — 1 which contradicts the assumption. Therefore the claim holds for k& as well. [

11t could contain one number only if it sends one of two numbers but does not receive another.

3.8 Number of Nodes

We want to show that at most n' = [n/2] nodes are necessary. We need to prove this only for phase
1, because in phase 2, nodes send numbers only to their left neighbour. The bound n' follows directly
from claim 5.

CLAIM 5 After t > 2 steps of phase 1 exactly the nodes 0, ..., [t/2] — 1 contain two numbers.

Proof of Claim 5: We prove the claim by induction on t. The claim holds certainly for t = 2. We
assume the claim holds for t' < ¢. If ¢ is even, then from step ¢ — 2 on, node =z = [t/2| — 2 contains
two numbers. In the following two steps each of the nodes 0, ...,z sends one number per step. As
they also receive one number per step, they still contain two numbers each. These are the first steps
in which node x sends numbers. Then node = + 1 contains two numbers for the first time at the end
of step t. A similar argument holds for an odd ¢. [

4 EXTENSIONS
4.1 FElimination of Duplicates

Until now we assumed that all n input numbers are distinct. If the same number can appear multiple
times, we want to be able to eliminate duplicates which means that the sorted sequence consists of
distinct numbers. If two equal numbers are compared in a node, we send one of them and keep the
other one. The strategy to select one of the numbers does not matter here. However if we use the
elimination strategy to support more complex operations, we might need to fix it (see subsection 4.2).

If the sorted sequence leaves the array, duplicates follow each other immediately. We extend node
0 by an additional register and a comparator. Instead of leaving the array immediately, the output
first enters the additional register. In the next step the content of the additional register is compared
with the next output. If both are different, the content of the register leaves the array and the next
output enters the register. If both are equal, the register content is thrown away and the next output
enters the register.

The time to sort n numbers is increased by one step, the array is extended by one register and one
comparator, which is less than one node.

It would also be possible to eliminate duplicates during sorting. But this method allows to support
more complex operations as the next section shows.

4.2 Prefix Computations

The extension to eliminate duplicates can also be used to perform prefix computations. We assume
that we want to sort packets instead of integers. A packet consists of a key and a piece of data. We
will denote packets by (key, data) . We sort packets by their keys. In case that a number of packets
(key;,data;) , 0 < i < I, have identical keys (i.e. VO < 4,5 < I : key; = key;), we want to perform a
prefix operation with an assoziative operator @ on their data pieces:

In the sorted sequence, the i-th packet shall carry a new data piece data) := ®jc1 j<idata;.

In order to do this we first have to specify the strategy which of two packets with identical keys
should be sent if they meet in a node. In phase 1, we will send the packet that arrived later (i.e. it
has a higher position in the input stream). If in phase 2 two packets with identical keys are compared
we send the one that arrived earlier which means that it has a lower position in the input stream.

Packets with identical keys now follow each other immediately in the sorted sequence and they are
sorted by their positions in the input sequence. In order to implement the prefix operation we have
to extend node 0 by an additional register and a comparator (just as for duplicate elimination) and a
unit to perform a @ b.

If now a packet (key, data!) waits in the additional register and its successor (key, data; 1) is ready
to leave the sorting array, we send the first packet, replace data;i; by data], , = data; ® data;y,
and put the packet (key,data},) in the additional register. It follows by an easy induction that this

implements the prefix operation. The runtime of the algorithm is increased by one step, the array is
extended by one register, one comparator and one ®—unit.

5 CONCLUSIONS

We presented an algorithm to sort » numbers in a linear array. The two—phase algorithm uses a global
wire to inform all nodes about the end of phase 1. This reduces the lower bound on runtime from 3n
to 2n steps. The runtime of the algorithm matches the lower bound. The algorithm needs an array
of minimum length [n/2]. The addition of one global wire thus leads to a speedup of 1.5. Therefore
this seems to be worthwhile to be implemented. Furthermore 2n is a lower bound for sequential input
and output. Therefore, more than one global wire cannot lead to any further advantage.

The algorithm can be extended to eliminate duplicate numbers and to support more complex
operations like prefix computations. The runtime is only increased by one step, only node 0 of the
array is extended.

The algorithm has applications in packet routing networks. Some routing algorithms for butterfly
networks assume that the packets that enter the network by one input are sorted by their destination
addresses [4, 6]. As normally a stream of packets is not sorted by destination, it has to be sorted
before the packets enter the network. As the packets arrive sequentially, a linear sorting array can be
used. As network latency always is a critical parameter in any architecture, the presorting should be
fast. The abililty to eliminate duplicates can be used in combining networks. The ability to perform
prefix computations allows for support of parallel prefix computations during routing [6]. In this
surrounding the algorithm is used to implement a sorting chip for a parallel machine architecture [1].

ACKNOWLEDGEMENTS

The authors want to thank Werner Massonne for helpful discussions.

REFERENCES

[1] Ferri Abolhassan, Jorg Keller, and Wolfgang J. Paul. On the cost—effectiveness of PRAMs. In
Proceedings of the 3rd IEEFE Symposium on Parallel and Distributed Processing, pages 2-9. IEEE,
December 1991.

[2] M. Ajtai, J. Komlés, and E. Szemerédi. An O(nlogn) sorting network. In Proceedings of the 15th
ACM Annual Symposium on Theory of Computing, pages 1-9, New York, 1983. ACM.

[3] F. Thomson Leighton. Introduction to Parallel Algorithms and Architectures: Arrays, Trees,
Hypercubes. Morgan Kaufmann Publishers, 1992.

4] F.T. Leighton, Bruce Maggs, and Satish Rao. Universal packet routing algorithms. In Proceedings
g g8 g alg
of the 29th Annual IEEE Symposium on Foundations of Computer Science, pages 256-269, 1988.

[6] Joseph Y.-T. Leung and Sunil M. Shende. Packet routing on square meshes with row and column
buses. In Proceedings of the 3rd IEEE Symposium on Parallel and Distributed Processing, pages
834-837. IEEE, December 1991.

[6] Abhiram G. Ranade. How to emulate shared memory. In Proceedings of the 28th Annual IEEE
Symposium on Foundations of Computer Science, pages 185-194, 1987.

