1992

D. Breslauer, Z. Galil

Finding all periods and initial palindromes of a string in parallel

iter Science/Department of Algorithmics and Architecture Report CS-R9248 November

et Centrum voor Wiskunde en Informatica van de Stichting Mathematisch Centrum

e Centre for Mathematics and Computer Science of the Mathematical Centre Foundation

| is the research institute of the Stichting Mathematisch Centrurr
founded on February 11, 1946, as a non-profit institution aimin
notion of mathematics, computer science, and their application
1sored by the Dutch Government through the Netherlands orga
scientific research (NWO).

yright © Stichting Mathematisch Centrum, Amsterdam

ig All Periods and Initial Palindromes of a“String in Parallel

Dany Breslauer
cwi
P.O. Box 4079, 1009 AB
Amsterdam, The Netherlands

Zvi Galil

Computer Science Department
Columbia University

New York, NY 10027, U.S.A.

and

Computer Science Department

Tel-Aviv University
Ramat-Aviv 69978, Israel

Abstract
I O(log log n) time CRCW-PRAM algorithm for computing all period lengths of a string is
Previous parallel algorithms compute the period only if it is shorter than half of the length
g- The algorithm can be used to find all initial palindromes of a string in the same time and
rounds. Both algorithms are the fastest possible over a general alphabet. We derive a lower
finding initial palindromes by modifying a known lower bound for finding the period length
[9]. When p processors are available the bounds become O] 21 +loglog 14 p/my 2P)-

ternatics Subject Classification: 68Q10, 68Q20, 68Q25

Jategories: F.1.2, F.2.2

and Phrases: Parallel Algorithms, Lower Bounds, Comparison Model, Strings, Periods in
lindromes.

s work was partially supported by NSF Grant CCR-90-14605. D. Breslauer was partially
sy the IBM Graduate Fellowship while studying at Columbia University and by the European
onsortium for Informatics and Mathematics postdoctoral fellowship.

'ION

has a period S[0..p— 1] of length p if S[i] = S[i+ p] for i = 0.--n —p. The period of
1 as its shortest period. Periodicity properties of strings have been studied extensively -
ctically used almost in all efficient sequential and parallel string matching algorithms.
'is a string that reads the same forward and backward. Formally, a string S[0..k] is
Slé] = S[k — 4] for i = 0..k. A string S[1..n] is said to have an initial pelindrome of
izefix S[0..k — 1] is a palindrome. Palindromes have been studied for centuries as word

more recently have some uses in complexity theory [14].

jorithm is said to be optimal if its time-processor product, that is, the total number
srformed, is equal to that of the fastest sequential algorithm for the same problem.

J09 AB Amsterdam, The Netherlands

2

Note that simple parallel algorithms can compute all periods and all initial palindromes of a string
in constant time using an n?-processor CRCW-PRAM. These algorithms are not optimal since both
problems have linear time sequential algorithms [17, 20]. Our goal in this paper is to design fast
optimal parallel algorithms.

The period length of a string is computed in linear time in a step of Knuth, Morris and Pratt’s
[17] sequential string matching algorithm and in optimal O(loglogn) time on a CRCW-PRAM in
a step of Breslaner and Galil’s [8] parallel string matching algorithm. A recent lower bound that
was discovered by Breslauer and Galil [9] for finding the period length of a string shows that the
O(loglog n) bound is the best possible over a general alphabet, where the only access the algorithm
~ has to the input string is by pairwise symbol comparisons. However, Breslauer and Galil’s [8] parallel
string matching algorithm as well as an O(logn) time optimal string matching algorithm that was
discovered by Vishkin [22] compute the period length p only if p < [%]; knowing the fact that p > 51
is sufficient to obtain efficient string matching algorithms. An earlier string matching algorithm that
was designed by Galil [13] can find all periods and all initial palindromes of a string in O(log n) time
on a n-processor CRCW-PRAM. This algorithm can be made optimal by reducing the number of
processors to TEZ—Ev if the input symbols are drawn from a constant size alphabet. Other parallel string
matching algorithms that are based on the Karp-Miller-Rosenberg [15] sequential string matching
algorithm [10, 16] can also be adopted for these problems but require O(logn) time, n processors,
superlinear space and a restricted alphabet.

In this paper we show that given an optimal paralle] string matching algorithm, one can compute
all periods, including those which are longer than half of the length of the input string, in the same
processor and time bounds of the string matching algorithm. In particular, Breslauer and Galil’s [8]
algorithm can be used to obtain an optimal O(log log n) time CRCW-PRAM algorithm that computes
the period length of a string exactly, even if it is long. This reduction establishes that the task of
computing the period length of a string in parallel is at least as hard as string matching.

To find the initial palindromes, we use a known reduction from the sequential setting [12] to show
how the algorithm that finds all periods of a string can find all initial palindromes in the same time
and processor bounds. We also prove a matching lower bound for this problem under the assumption
of a general alphabet. :

The paper is organized as follows: In Section 2 we overview the algorithms for finding all periods
and initial palindromes. Section 3 contains the details of these algorithms and in Section 4 we prove
the lower bound for finding the initial palindromes.

2 FINDING THE PERIODS

We describe an algorithm that computes all period lengths of a given string S[0..n]. The output of

the algorithm will be a Boolean array P[1..n] such that P[i] = true iffiis a period length of 8[0..n].
One of the major issues in the design of a PRAM algorithms is the assignment of processors to their

tasks. We ignore this issue in this paper and use a general theorem that states that the assignment

can be done.

THEOREM 2.1 (Brent [{]) Any synchronous parallel algorithm of time 1 that consisis of a total of =
elementary operations can be implemented on p processors in [z/p] + ¢ time.

This theorem can be used for example to slow down a constant time p-processor algorithm to work in
time t using p/t processors. We will describe an O(log log n) time algorithm using io_sl_’zﬁ PrOCessors.
Some of the steps in our algorithm are described as constant time steps using n processors.

We will prove the following theorem:

THEOREM 2.2 There ezists an algorithm that computes P[l..n] and takes O(loglog n) time using

EE%G—E processors. If p processors are available the algorithm iakes O([Zp‘—] + loglogpy 1 p/n 2p) time.

3"

CoROLLARY 2.3 The ezact period length of a siring S[0..n] can be computed in the same time and
processor bounds.

Proof: The period length of S[0..n] is the smallest ¢ such that P[4] is true. We use a technique of
Fich, Ragde and Weigderson [11] to compute the minimum of n integers in the range 1..n in constant
time using a n-processor CRCW-PRAM. (By Theorem 2.1 this step can be slowed down to work in
optimal O(loglogn) time or in O(%) time on p processors.) O

COROLLARY 2.4 All initial palindromes of a string S[0..n] can be computed in the same time and
processor bounds.

Proof: Suppose we want to compute all initial palindromes of a string w that does not contain the
symbol $. We present w$w? (where w? is the string w reversed) as input to the algorithm that
computes all periods of a string. Each period of this string corresponds to an initial palindrome of w.
Two copies of the string w$w? are aligned with each other shifted by some offset and the overlapping
parts are identical if and only if the overlapping part is an initial palindrome of w. This reduction
was used by Fischer and Paterson [12]. O

Ezample: The string abaab has an initial palindrome abe. This initial palindrome corresponds to the
period abaab$ba of the string abaab$baaba.

Proof of Theorem 2.2: :

The algorithm will proceed in independent stages which are all computed simultaneously and are
described in the next section. In stage number 5, 0 < 7 < m, the algorithm computes only Pln—1,+
1.n — Ipy1]; where the sequence {I,} is a decreasing sequence defined as lp = n, Iy = 121, and m
is the smallest integer for which I, = 0. Note that each stage is assigned to compute a disjoint part
of the output array P and the entire array is covered.

By breaking the output array into segments that are handled seperately we are able to use periodicity
proprties of strings [18] in each segment. This properties let us represent and manipulate the output
of some string matching problems efficiently. These ideas were successfully applied in several other
parallel algorithms for string problems [1, 2, 5, 6, 7]. _

We denote by T;, the time it takes to compute stage number 7 using P, processors. The number of
operations at stage n will be denoted by O, = T;, P,,. We show later how to implement stage number
n in T;, = O(loglogl,) time and O, = I, opemtlons using Breslauer a.nd Galil’s [8] parallel string
matching algorithm.

Since all stages of our algorithm are executed in parallel the total number of operatlon performed
in all stages is 3., Oy < 3, (%)"n = O(n) and the time is max T, = O(loglogn). By Theorem 2.1
the algorithm can be implemented using E-g;:;? processors in O(loglogn) time.

It remains to show that if the number of available processors is p the algorithm takes O([%] +°

log logr1 +p/n] 2p) time. If p < loglogn then by Theorem 2.1 the algorithm can be slowed down to
work in 0(} time. If —P— loglogn < p < n then the bound above is still O(loglogn). If p > n, then
stage number 7 can be implemented in T, = O(loglogry /] l‘; l,) time using Z1, processors. The

total number of processors used for all stages is 3°, 2l < 237 (2)"n = O(p) and the time is
max Ty, = O(loglog[y /) 2p) O

3 A SINGLE STAGE
In this section we describe a single stage 9, 0 < 7 < m, that computes P[n—1,+1..n—1;; 1] in optimal
O(loglog I;) time. Note that since a period of length p implies that S[0..n — p] = S[p..n], there must
be occurrences of §[0..l,1] starting at each position p Whlch is a period length of §[0..n] and is in
the range computed by this stage.

Stage 7 starts with a call to a string matching algorithm to find all occurrences of S[0..1;44] in
S[n — I, + 1..n]. Let g;, ¢ = 1..r, denote the indices of all these occurrences (all indices are in the

string S[0..n], thus n — I, < q; <n —1ly4).

If there were no occurrences found, the string S[0..n] has no period length in the range computed
by this stage and all entries of P[n — I, + 1..n— Iy 1] can be set to false. Otherwise, we continue with
another call to a string matching algorithm to find all occurrences of §[0..1;41] in 8[0..1;, — 1]. Let p;,
i = 1..k, denote the indices of all these occurrences (note that p; = 0).

If there was only one occurrence of §[0..l;41] in S[n — I, + 1..n], this occurrence can be verified to
be a period length in O(1,) operations. However, if there are r > 1 occurrences, O(rl,) operations
may be needed to verify all of them. Luckily the sequences {p;} and {¢;} have a “nice” structure as
we show in the following lemmas. This structure enables us to proceed efficiently to test which of the
g;’s is actually a period length of S[0..n].

LeMMA 3.1 (Lyndon and Schutzenberger [19]) If a siring of length m has two periods of length p and
q and p+q < m, then it has also a period of length ged(p, q).

LEMMA 3.2 If a string A[1..l] has period length p and occurs only at positions py < p2 < - < pg of
a siring B[l..f%l]], then the p;’s form an arithmetic progression with difference p.

Proof: Assume k > 2. We prove that p = pjyq — p; for i = 1...k — 1. The string A[1..]] has period
of length p and ¢ = piy1 — 2. Since p < ¢ < [4], by Lemma 3.1 it has also a period of length
ged(p, g). But p is the length of the shortest period so p = ged(p, ¢) and p must divide ¢. The string
Blp;..piy1+1—1] has period length p. If ¢ > p then there must be another occurrence of A at position
p; + p of B; a contradiction. O

LEMMA 3.3 The sequences {p;} and {g;} form an arithmetic progression with difference P, where P
is the period length of §[0..5;,14].

Proof: The sequences p; and g; are indices of occurrences of a string of length I;1 + 1 in strings of
length I,. Recall that I,41 = |2I;]. By Lemma 3.2 the p;’s and ¢;’s form an arithmetic progression
with a difference P, the period length of S[0..5;41]. O

The sequences {p; } and {g;} can be represented using three integers (each): the start of the sequence,
the difference, and the length of each sequence. This representation can be easily obtained from the
output of the string matching algorithm in constant time and I, processois.

Some of the ¢;’s can be ruled out of being period lengths of S[0..n] immediately as we show in the

following lemma.
LEMMA 3.4 Ifk < 7, then g; is not a period length of S[0..n] for 1 <i<r—k. -

Proof: Assume that g; is a period length of § and 1 < i < » — k. In this case 8[¢i..n] = §[0..n — g:].
The string S[g;..n] has r — i + 1 > k occurrences of S[0..l;41], which are g, .., g,. But S[0.n—g;] is
of the same length and has only k occurrences of S[0..1;41]; contradiction. O

There might be two reasons why g, + P is not included in the {g:} sequence:

1. If 8[g, + P..N]# S[0.N — g, — P], and N =min(n,q, +P + lq}l) we call it a mismatch.

9. If there is no mismatch then the only reason that g, + P is not in the {¢;} sequence is that
gr + P + lpp1 > n. We call this case an overflow.

LeMMA 3.5 (a mismatch) If S[gr + P..N] # S[0.N — g, — P} then, S[0..n] has at most one period
whose length is in the range computed by this stage. This only possible period length may exist if k < r

and it 18 ¢r_p41-

Proof: By Lemma 3.4 all ¢;, 1 < i < r — k+ 1, are not period lengths. Assume g; is a period
length and i > r — k+ 1, then S[g;..n] = 8[0..n — gi]. Also, since r —i+2 < k and p; = (i—-17P,
Slg;+P..N] = S[ps—it2..N —g;]- By the assumption of a mismaich Slg-+P..N] # S[0..N—g,—P]. So
S[p,_,'+2..l\f—q,~] 75 S[O..Af——q,. -—P] But 8[pf_g+2..p,-_,'+2 +l,1+1] = S[O..lﬂ+1] and also A/'—qr -"P __<_

ly+1; contradiction. O

LeMMa 3.6 (an overflow) If Slg, + P..n] = S[0..n — ¢, — P] then:

a. If k > r then g1, ..,¢, are period lenghts of S[0..n)].

b. If k < r then qy_gy2, .., qr are period lengths of S [0..n]. In this case g,k 41 may also be a period
length of §[0..n].

Proof: Assume S[g, + P..n] = 8[0..n — g, — P]. It is enough to show that g; is a period length of S,
for max(r —k+2,1) <i<r.
By the definitions of the {g;} and {p;} sequences

S[0..pr—i1 + lpy1] = 8[¢i-gr + Ipya] (1)
since both substrings are covered by r — i + 1 occurrences of S[0..1,41]. Also since r —i+2 <k

Spr-itz-Proivz + lypa] = S[0..L;14]. (2)
But 7 — g, — P <ly4, and S[g, + P..n] = §[0..n — ¢, — P]. By taking prefixes of (2)

Slgr +P..n] = Spr—it2..pr—iy2 + 1 — g, — P]. (3)

By combining equalities (1) and (3), we get that §[0..n — ¢;] = S[g;..n]. O
The computation in stage 7 can be summarized as follows:

1. Compute the {g;} and {p;} sequences.
2. f k <, check if g, 141 is a period length of §[0..n].
3. If S[g, + P.N]= 8[0..N — ¢, — P] then,

a. If k > r, then g1, .., ¢, are all period lengths of S[0..n].
b. If k < r, then g, _g42, .., ¢, aze all period lengths of S[0..n].

LEMMA 3.7 Stage number n correctly computes Pln—1, +1.n—1,41]. It takes O(loglogl,) time and
uses O(l,) operations.

Proof: Correctness of the algorithm follows from Lemmas 3.4, 3.5 and 3.6. The two calls to a
string matching algorithm to compute the {g;} and {p;} sequences take O(loglogl,) time and O(l,)
operations if we use Breslauer and Galil’s [8] string matching algorithm. The sequences {g;} and {p;}
can be represented by three integers which can be computed from the output of the string matching
algorithm (which is assumed to be a Boolean vector representing all occurrences) in constant time
and O(l,) operations. Steps 2 and § can also be done in constant time and O(l,)) operations. O

LEMMA 3.8 Stege number 1) can be implemented in O(loglogryyy/n -Zfl,,) time on El, processors if
p2mn.

Proof: The calls to Breslauer and Galil’s [8, 9] string matching algorithm take O(loglogsp/n] 221)
time if p > n and Z1, processors are available for stage number 7. The rest of the work can be done
in constant time since the number of processors is larger than 7,. O

R BOUND

1g 8[0..n], we say that it has an initial palindrome of length k if S[i] = S[k — i — 1] for
1. We modify the lower bound of Breslauer and Galil [9] to a lower bound for determining
ring S[0..n] has an initial palindrome whose length is larger than %. This lower bound
or deciding if the string S8[0..n] has any initial palindrome other than the trivial initial
of length one. Since there are some modifications in the details of that lower bound we
steps of the proof. The missing proofs can be found in the original paper.

[for which the lower bound is proved is similar to Valiant’s parallel comparison tree model
ume the only access the algorithm has to the input string is by comparisons that check
symbols are equal or not. The algorithm is allowed p comparisons in each round, after
proceed to the next round or terminate with the answer. We give a lower bound on the
mber of rounds necessary in the worst case. This lower bound holds even if an algorithm
perform order comparison that can result in a less than, equal or greaier than answers [9].
f a general alphabet a CRCW-PRAM must use comparisons to solve any string problem
it bound holds.

a strategy for an adversary to answer %log logn rounds of comparisons after which it
choice of fixing the input string § in two ways: in one the resulting string has an initial
vhose length is larger than % and in the other it does not have any such initial palindrome.
that any algorithm that claims to compute all initial palindromes in fewer rounds can be

:at an integer k is a possible period length of S[0..n] if we can fix S consistently with
omparisons made in earlier rounds in such a way that k is a period length of §. For such

riod length we need each residue class modulo k to be fixed to the same symbol, thus if

then S[I] = S[j].

at an integer k is a possible initial palindrome of S[0..n] if we can fix S consistently with

:omparisons made in earlier rounds in such a way that § has an initial palindrome of
r such k to be an initial palindrome length we need that if { = k — j — 1 then S[I] = S[j].

sger k to be a period length and an initial palindrome length we need that both conditions

5,if 1 = jmod k or if | = —j—1mod k then S[I] = 8[j]. We call such k a palindromic-period

i+ 7 such that 0 < r < k. That is, » = Imod k. Define ¢,(l) as:

:{r if r < [%]

k—7r—1 otherwise

notation, k is a palindromic-period length of § if for any two indices ! and j that satisfy
i), SlI] = S[j]. If I = jmod k we say that [and j are in the same residue class modulo
— 1modk we say that [and j are in symmetric residue classes modulo k. The function
sgers which are in the same residue class or in symmetric residue classes modulo k to the
We say that such integers are in the same eztended residue class modulo k (this is an
relation on the integers).

rinning of round i the adversary will maintain an integer k; which is a possible palindromic-
h. The adversary answers the comparisons of round ¢ in such a way that some kiyq is
alindromic-period length and few symbols of S are fixed. Let K; = =4 The
ill maintain the following invariants which hold at the beginning of round number i:

sfies %K,‘ <k <K;.

was fixed then for every j such that ¢y, (1) = ¢x.(j), S[j] was fixed to the same symbol.
er words, the entire extended residue class of ! modulo k; was fixed to the same symbol.

ymparison was answered as equal then both symbols compared were fixed to the same

4. If a comparison between positions ! and j was answered as unequal, then

a. land j are in different extended residue classes modulo k;. That is ¢, (1) # éx. (7).
b. if the symbols S[!] and S[j] were fixed, then they were fixed to different values.

5. The number of fixed symbols f; satisfies f; < K;.

Note that invariants 3 and 4 imply consistency of the answers given so far. Invariants 2, 3 and 4 imply
that k; is a possible palindromic-period length: if we fix all symbols in each unfixed extended residue
class modulo k; to a new value, using the same value within an extended residue class but different
values for unrelated residue classes, we obtain a string which is consistent with the comparisons
answered so far and has a palindromic-period length k;. Such a string will have initial palindromes of
all lengths which are integral multiples of k;.

We start at round number one with ky = K; = 1. It is easy to see that the invariants hold initially.
We show how to answer the comparisons of round ¢ and how to choose k;;; so that the invariants still
hold. All multiples of &; in the range % i+1 ... Kiy1 are candidates for the new k;y;. A comparison
S[l} = 8[j] must be answered as equal if / and j are in the same extended residue class modulo k;y,
that is, if ¢g,,(I) = ¢r.;, (7). We say that k;y; forces this comparison.

LEMMA 4.1 Ifp,q, v > 1/%% and are relatively prime, then @ comparison S[s| = Slt] is forced by at
most two of pk;, qk; and rk;.

Proof: A comparison can be forced by some pk; because the indices of the compared symbols are in
the same residue class or because there are in symmetric residue classes.

Assume s and t are in the same residue classes modulo pk; and g¢k;, thus s = ¢tmodpk; and
s = tmodqk;. Then s = tmodpgk;. But pgk; > n and 0 < s,¢ < n what implies that s = ¢
contradiction.

If s and ¢ are in symmetric residue classes modulo pk; and ¢k; then s = —¢ — 1modpk; and

= —t — 1modgk;. Then s +t+ 1= 0modpgk;. But pgk; > 2n and 0 < s, < n; contradiction.

The only remaining case is when s and ¢ are in the same residue class modulo one of pk; or gk; and
in symmetric residue classes modulo the other. In this case we go back to the third candidate rk; and
consider the pairs 7k; and pk;, and rk; and gk;. One of these pairs is in one of the categories above;.
a contradiction to the existence of the third candidate. O

LEMMA 4.2 The number of candidates for ki1 which are prime multiples of k; and satisfy %K;H <
kip1 < Kiy1 is greater than TI%%;'E' Each such candidate salisfies the condition of Lemma 4.1.
LEMMA 4.3 There ezists a candidate for ki1 in the range %K,'H ... K; 1 that forces at most -8-7—‘—%%‘;’5—'—‘
COMPATisons. i

Proof: By Lemma 4.2 there are at least %il'—“;‘é—,; such candidates which are prime multiples of k; and
satisfy the condition of Lemma 4.1. By Lemma 4.1 each of the n comparisons is forced by at most two
of them. So the total number of comparisons forced by all these candidates is at most 2n (at most
2 comparisons forced by each candidate). Thus, there is a candidate that forces at most —%—:—i—‘:—&’i

comparisons. [
LEMMA 4.4 For large enough n and i < }loglogn, 1+ 7?4 "64logn < ¥t .

LEMMA 4.5 Assume the invarianis hold ai the beginning of round i and the adversary chooses ki1
to be a candidate whick forces at most 53%‘—1%33 comparisons. Then the adversary can enswer the

comparisons in round i so that the inverients also hold at the beginning of round i 4+ 1.

8

Proof: By Lemma 4.3 such k;, exists. For each comparison that is forced by k;1 and is of the form
S[l] = Slj] where ¢x;,,(}) = ¢.,,(7) the adversary fixes the symbols in the residue class modulo k44
and its symmetric residue class (the extended residue class) to the same new value (a different value
for different extended residue classes). The adversary answers comparisons between fixed symbols
based on the values they are fixed to. All other comparisons involve symbols that are not in the same
extended residue class modulo k;y; (and at least one unfixed symbol) and are always answered as
unequal.

The extended residue classes form a partition of the set of integers between 0 and n. This partition
is refined when we move from extended residue classes modulo k; to extended residue classes modulo
kiy1. Since k;yq is a multiple of k;, the extended residue classes modulo k; split. This means that if
two indices are in different extended residue classes modulo k;, then they are also in different extended
residue classes modulo k;y; and if two indices are in the same extended residue class modulo ki1,
then they are also in the same extended residue class modulo k;.

We show that the invariants still hold.

1. The candidate we chose for k;y; was in the required range.

9. Extended residue classes which were fixed in earlier rounds split into several extended residue
classes, all are fixed. Any symbol that is fixed at this round causes its entire extended residue
class modulo k;y to be fixed to the same value.

3. Equal answers of earlier rounds are not affected since the symbols involved were fixed to the
same value by the invariants held before. Equal answers of this round are either between symbols
which were fixed before this round to the same value or are within the same extended residue
class modulo k;y; and the entire extended residue class is fixed to the same value.

4. a. Unequal answers of earlier rounds are between different extended residue classes modulo k;.q1
since extended residue classes modulo k; split. Unequal answers of this round are between
different extended residue classes because comparisons within the same extended residue
class modulo k;;; are always answered as equal.

b. Unequal answers to comparisons that involve symbols which were fixed in earlier rounds are
answered according to the symbol values and, therefore, these symbols must have been
fixed to different values. Unequal answers to comparisons that involve symbols which are
fixed at the end of this round and at least one fixed at this round are consistent since a
new value is used for the symbols in each extended residue classes that is fixed.

5. We prove inductively that f;11 < K;y1. We fix at most 1%3?5—'5 residue classes modulo k;yj.

There are k;y1 such classes and each class has at most fﬁiﬂ < ﬁ—% elements. By Lemma 4.4
and simple algebra the number of fixed elements satisfies:

2n 16nK;logn

i < hit+
fin £ fi B Kot
2
n
< K; 1+()6410 n
< n1'4_(i_1)(1 + n** 64 log n)
< n1_4_“ = Kip1.

9

Any comparison-based parallel algorithm for finding the initial palindromes of a siring
comparisons in each round requires } loglogn rounds.

algorithm which finds the initial palindromes of S and let thle adversary described
1e comparisons. After i = loglogn rounds fiy1, kiy1 < pl-am Tl . <
can still fix § to have a palindromic-period length ki1 by fixing the symbols in
residue class modulo k;;; and its symmetric residue class to the same value, and
for each class. In this case any integral multiple of k;;; is also an initial palindrome.
he adversary can fix all unfixed symbols to different values. Note that this choice is
all the comparisons answered so far by invariants 3 and 4, and the string does not have
drome of length larger than %- In fact, in the latter case, the string will not have any
ne except the trivial initial palindrome of length one. Consequently, any algorithm
s in less than % loglogn rounds can be fooled.

i0 gives a lower bound for computing the period length of a string. O

Any comparison-based parallel algorithm for finding the initial palindromes of a siring
comparisons in each round requires at least Q(fg] + loglogps p/n 2p) rounds.

lescribed in this paper uses a string matching procedure as a “black-box” that has a
ttput functionality, without going into its implementation details. By using Breslauer
ring matching algorithm we obtained an optimal O(loglog n) time algorithm which is
: in the case of a general alphabet as implied by a lower bound of Breslauer and Galil
1 if faster optimal string matching algorithms exists in the case of a fixed alphabet. If
m exists it would immediately imply a faster algorithm for finding the periods. Note
‘W-PRAM implementation requires the computation of certain functions such as the
. powers of %— within the time bounds.

JGMENTS

feree for reading this paper carefully and providing many suggestions. We also thank
ico, Roberto Grossi, Kunsoo Park and Laura Toniolo for comments on early versions .

:0 and D. Breslauer. An Optimal O(loglogn) Time Parallel Algorithm for Detecting
in a String. manuscript, 1992.

:0, D. Breslauer, and Z. Galil. Optimal Parallel Algorithms for Periods, Palindromes
. In Proc. 19th International Colloguium on Automata, Languages, and Programming.
tlag, Berlin, Germany, 1992. 296-307.

srson. Palindromes and Anagrams. Dover, New York, 1973.

Evaluation of general arithmetic expressions. J. Assoc. Comput. Mach., 21:201-206,

:. A Parallel String Superprimitivity Test. manuscript, 1992.

t. Efficient String Algorithmics. PhD thesis, Dept. of Computer Science, Columbia
New York, NY, 1992

.. Fast Parallel String Prefix-Matching. manuscript, 1992.

10
[8] D. Breslauer and Z. Galil. An optimal O(log log n) time parallel string ma.tchmg a.lgonthm SIAM
J. Comput., 19(6):1051-1058, 1990.

[9] D. Breslauer and Z. Galil. A Lower Bound for Parallel String Matching. SIAM J. Comput.,”
21(5):856-862, 1092.

[10] M. Crochemore and W. Rytter. Usefulness of the Karp-Miller-Rosenberg algorithm in parallel
computations on strings and arrays. Theoret. Comput. Sci., 88:59-82, 1991.

[11] F. E. Fich, R. L. Ragde, and A. Wigderson. Relations between concurrent-write models of parallel
computation. In Proc. 9rd ACM Symp. on Principles of Distributed Computing, pages 179-189,
1984.

[12] M. J. Fischer and M. S. Paterson. String matching and other products. In R. M. Karp, editor,
Complezity of Computation, pages 113-125. American Mathematical Soclety, Prividence, RI.,
1974.

[13] Z. Galil. Optimal parallel algorithms for string matching. Inform. and Conirol, 67:144-157, 1985.

_ [14] 1. E. Hoperoft and J. D. Ullman. Introduction to Automata Theory, Languages and Computation.
Addison-Wesley, Reading, MA., 1979.

[15] R. M. Karp, R. E. Miller, and A. L. Rosenberg. Rapid identification of repeated patterns in
strings, trees and arrays. In Proc. 4th ACM Symp. on Theory of Computing, pages 125-136,
1972.

[16] Z. Kedem, G. M. Landau, and K. Palem. Optimal parallel suffix-prefix matching algorithm and
applications. manuscript, 1988.

[17] D. E. Knuth, J. H. Morris, and V. R. Pratt. Fast pattern matching in strings. SIAM J. Comput.,
6:322-350, 1977.

[18] M. Lothaire. Combinatorics on Words. Addison-Wesley, Reading, MA., U.5.A., 1983.

[19] R. C. Lyndon and M. P. Schutzenberger. The equation a™ = b"c? in a free group. Michigen
Math. J., 9:289-298, 1962.

[20] G. Manacher. A new Linear-Time “On-Line” Algorithm for Finding the Smallest Initial Palin-
drome of a String. J. Assoc Comput. Mach 22, 1975.

[21] L. G. Valiant. Pa.rallehsm in comparison models. SIAM J. C’omput 4:348-355, 1975.
[22] U. Vishkin. Optimal parallel pattern matching in strings. Inform. end Control, 67:91-113, 1985.

