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Abstract
We consider multi-server queues in which arriving customers can be assigned to different servers. For three
models the optimality of assigning customers to the server with smallest workload, FCFS, is obtained. In the
first two models isolated queues are studied, their difference being that in the first the cost functions are related
to the workload, while in the second the departure processes are compared. The third model is concerned with

networks of multi-server queues.
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1. INTRODUCTION

In this paper we study assignment policies for multi-server queues. On arrival a customer has to
be assigned to one of m servers, knowing the workload of each server, but not the service time
of the arriving customer (which is a random variable drawn from the same distribution for each
arrival). Each server itself works in a FIFO fashion. An alternative way to look at the system is to
consider it consisting of m parallel queues, each with a single server, in which each customer has
to be assigned to a queue.

This system has been studied for two different types of objective functions, either dealing with
the workload in the system or with the departure process. For the first type of objective it was
shown by Foss [4], Daley [2] and Wolff [14] (for a smaller class of policies) that sending each arriving
customer to the server with the smallest amount of work minimizes the workload in a Schur convex
sense. This policy is equivalent to FCFS or, when seeing the model as m parallel single-server
queues, to the Smallest Workload Policy (SWP). This result holds for each point in time ¢, but
not jointly over all ¢: it is not a pathwise result. In fact it is possible to construct a model for
which it is impossible to combine the sample paths in such a way that the trajectories under FCFS
have less workload than the corresponding trajectories under the alternative policy for each ¢. This
counterexample and a simple proof of the result of [2] and [4] using backward induction will be the

subject of section 2.



In section 3 we will consider the departure process of a multi-server queue. Wolff [13] shows that
FCFS gives a pathwise earlier departure process than any other assignment policy. However, due to
his construction, the alternative policy is not allowed to depend on the workloads, thus restricting
the class of alternative policies. Theorem 2 of Foss [3] states a more general result, namely that
any increasing function of the departure times is minimized by FCFS, for all assignment policies.
From this the pathwise optimality of FCFS follows directly. However, Foss does not supply a full
proof. We will give one here using a simple coupling argument. We will also prove the following
monotonicity property of FCFS: when customers arrive earlier at a queue, they depart earlier from
that queue.

In section 4 we will use the monotonicity and the optimality of FCFS to prove that in a network
of multi-server queues with static routing between the queues (that is, the decision on where to
route the nth customer departing from station j is taken in advance and does not depend on the
state of the system at the time of the transition) FCFS should be used in each station to get earlier
customer streams throughout the network. This is a surprising result; for many models for which
there is a simple policy for an isolated center, there are no general network results. For example,
in the model where there is no information on the workloads, but just on the number of customers
at the different servers, shortest queue routing is only optimal in centers without feedback to the
network (Hordijk & Koole [6]); even for tandem models it can be shown that in general shortest
queue routing is not optimal in all but the last node (Hordijk & Koole [5]). This is done by
showing that shortest queue routing, in contrast with FCFS, is not monotone: earlier arrivals do
not necessarily give earlier departures.

Many papers address optimization problems for G|G|m queues. In the class of problems which
contains the model studied here, each arriving customer has to be sent to a server at the moment
of its arrival. A good way to think of these types of models is to consider each server to have its
own queue. For different information structures the optimal policy has been obtained, often with
additional constraints on the service times, like increasing hazard rates. If there is no information on
the state of the queues, cyclic routing is optimal (proposition 8.3.4 in Walrand [12]). The case where
the queue lengths are known has already been referred to; shortest queue routing is optimal (e.g.,
proposition 8.3.2 in [12]). The case where the workloads are available is the subject of the present
paper. Also models with delayed queue length information have been studied (Kuri & Kumar [8],
Koole [7]). Another class of problems are those in which the controller selects amongst the available
customers those to work on (either preemptively or non-preemptively), without knowing their actual
service times. Righter & Shanthikumar [10] and Liu & Towsley [9] are two recent references. When
the service times are known to the controller or when the customers arrive in different classes we

have (deterministic or stochastic) scheduling problems. These have also been studied extensively.



2. MINIMIZING WORKLOADS

In this section we will show that FCFS minimizes each weak Schur convex cost function stochasti-
cally at any time ¢, but first we formally introduce the model and our notation.

Customers arrive at times 0 = ¢; < ¢, < ---. (This can be seen as a realization of a general
arrival process T; t; = 0 is taken merely for convenience.) Assume there are k arrivals before ¢.
It will prove to be convenient to number the interarrival times from ¢ backwards: 79 = ¢t — g,
Tn = th—pnt1 — tg—n for 1 < m < k — 1. Let the amount of work done by a busy server in an
interarrival time be w,, = ¢7,,, where ¢ is the speed of the servers. With z = (2, ..., 2,,) we denote
the vector of workloads, z € IR, and P is the distribution function of the service times. Further

we define e = (1,...,1) and e¢; = (0,...,0,1,0,...,0), with the 1 in the jth position. Define

v;“"l = min /oo'v" o dP(s 2.1
. { 0 (z+sej —upe)t ()} ( )

J

for n = 0,...,k. Let v2 be the costs associated with state z if it is reached at ¢. Then v? are
the expected minimal costs starting at fx_,11, just before the arrival, with initial state . From
the order of minimization and integration it follows that the decision is taken without knowing the

actual service time of the arriving customer. We have the following relations between the v}.

2.1. Lemma. If

/vg+sejldP(s) < /'Ug-|-se,»2 dP(s) forz;, < zj,, (2.2)
Vg < Vi, fors > 0 (2.3)

and
vy = Uga for * a permutation of (2.4)

hold for n = 0, then they hold for all n.

The proof of lemma 2.1 starts with showing that

/v&na:—l—seil —u,,e)+dP(s) S /vinm—}—seiz —u,,e)+dP(‘s) for T35 S Z 5, (25)

follows from the inequalities. This shows that assigning to the server with smallest workload is

optimal. Thus the lemma gives conditions on v°, the cost function, for FCFS to be optimal.

Proof of lemma 2.1. By induction. We show that (2.5) holds for all © = u,,. First assume that

zj, —u > 0. This means that (z + se; — ue)™ = (¢ — ue)t + se; for j = j; and j = j». Then we

1

have
n n (2.2)
/v(a:—|—35j1 —ue)+dP(S) = /v(m—ue)++35j1 dP('S) <
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/’Uzl:zs—uez)‘*'—I—sei2 dP(S) = /vzlm—}—seiz—ue)‘*'dp(s)'

Now assume that z;, —u < 0, but z;, — u > 0. By (2.3), monotonicity, we have v

(z+se;, —ue)* <
n .
Vlo—ue)t +ae;, This gives

(2.2)
/vzla:+35j1—ue)+dp(s) < /vzlm—ue)‘*‘—l—seil dP('S) <
/’UZL:B—ue)‘*'—I—sei2 dP(S) = /vzlm—}—seiz—ue)‘*'dp(s)'

Finally assume that z;, — u < 0. We can rewrite (z 4 sej, — ue)’ as (z — ue)™ + s*e;, with

= (s—u+z;,)". Note that s* < s. Because (z + sej, — ue)t < (z — ue)t + s*e;, we have, by

S
(23)’ vzla:—|—sej1 —ue)t < vzlm—ue)+—|—s‘6jl - Thus

/’UZL:I:—I—.‘mj1 —ue)+dP(s) S /vzlm—ue)"'—}—s‘eil dP(S) =

/v&na:—ue)‘*'—l—s‘eizdp(s) = /vzl:v—}—seiz—ue)‘*‘dp(’s)'

Having shown that assigning according to FCFS is optimal, the inequalities will follow quite easily.

Consider (2.2). Let j* be the optimal assignment in z + sej,. If j* = j;, then

/ min / ) (" )}dp / / Vst se,, 4ue, —une)t AP(W)AP(s) =

i b dP dP(s).
/ Hblll { / v(m-l-SEjz +ue; —une)t (u)} (S)
If j* # j1, then

/mln /v(m—l—se“—l—uej — Uy, e)+dP( )}dP //,U(m—l—se“—l—ue]-x — Uy, e)+dP( )dP( )

// (17+8512+u5]t — Uy, e)+dP( )dP /mm /v(m—l—seu—l—ue,—u e)+dP( )}dP( )

the second inequality by the optimality of the SWP as shown above.

Concerning (2.3), if j* is the optimal action in z 4 se;,, we have

- {/ n dP( )}</ " aP(u) %)
IIllel V(e+ue; —upe)t u)r > v(m—l—uej: —upe)t u) =

/ Zlm+se,1+ue1t —Uy, e)+dP( ) m.in{/vzla:—}—se_n+u5j—une)+dP(u)}'

J

Equation (2.4), symmetry, is trivial to prove.



For the model with exponential service times and policies based on the numbers of customers
instead of workloads similar inequalities as in lemma 2.1 exist (equations (4.3) to (4.5) in [6]).

Equation (2.2) without the integration, i.e. Wotse;, < Watse;, for all s, is not true; this
means that it is essential that the controller does not know the actual service times of the arriving
customers. To construct an example illustrating this, take m = 2, ug = 2 and v?ml’mz) =z + @4,
which indeed satisfies the conditions of lemma 2.1. Let the service time be equal to 2 a.s. Then it
is easily seen that, if we take z = (0,1),¢t =1, j; = 1 and j, = 2, then 'v;HEH = 'v(ll’l) =1>0=
ooy = Vhiae,,-

By considering v* we have the following.

2.2. Theorem. FCFS minimizes the costs at t for all initial states and for all cost functions

satisfying (2.2) to (2.4).

In [6] it is shown that all cost functions satisfying the equations (4.3) to (4.5) are exactly the
weak Schur convex functions. Although the cost functions considered here are functions of IR,
it is readily seen that again all Schur convex functions satisfy the inequalities. If we require the
inequalities to hold for all service time distributions P, then the Schur convex functions are exactly
the allowable cost functions. Examples of weak Schur convex functions are max;{z;} and ) ;%5
If ¢, is Schur convex, then so is I{cz>s} for all s, meaning that each Schur convex cost function is
not only minimized by FCFS in expectation, but also stochastically. Note that the statement in
the penultimate paragraph of p. 304 in Daley [2], on the functions that respect weak majorization,
is not correct: for example indicator functions of allowable cost functions are in general not convex.

We can generalize the model slightly by allowing all servers to go jointly on vacation or to
have partial availability of all servers. This could be done by taking u,, = ¢,, where ¢, is the total
availability of each server between t;_, and tx_,+1. Of course the servers should, at all times, all
have the same availability.

For the model with exponential service times and decisions based on the numbers of customers
at the servers it is well known that shortest queue routing is pathwise optimal (e.g. Walrand [12]).
Here however we have the striking result that FCFS minimizes the total workload stochastically but
not pathwise. To construct a counterexample to the pathwise optimality, take a model with initial
workload = (1,2) and speed ¢ = 1. For the service time S we have IP(S = 1) = P(§ = 2) = .
The first customer arrives at ¢t; = 0, the second at t, = 1. No more arrivals occur before 4, i.e.
t3 > 4. When we fix the policy used, there are 4 different realizations up to time 3, each with
probability i. To get a pathwise ordering, we have to combine the realizations for FCFS and an
arbitrary policy R such that FCFS is better for all £. Take R such that we start with assigning
to the longest queue, but the second customer is assigned to the shortest. Denote with s; (3;) the
service time of the sth arriving customer in the model that uses FCFS (R). At ¢ = 1 the amount of

work is 1 4 s; + s3 (1 + 31 + 32). Therefore we have to couple s; = s, = 1 with §; = 5, = 1. Now
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we show that if 3, = 1 and 3, = 2, then there is no choice of s; and s, which is pathwise better.
Take first sy = 1 and s, = 2. Then, at ¢t = 3, the system ruled by R is empty, but not the model
under FCFS. For both eventualities with s; = 2 we have that the amount of work just after the
first arrival is larger under FCFS.

Related counterexamples can be found in Stoyan [11] and Asmussen [1]. Both show for a fixed
coupling that FCFS is not better at all ¢: Stoyan [11] couples the service times under FCFS and an
alternative policy in order of arrival (which is equivalent to s; = §; and s, = 3, in our example),
while Asmussen (in problem 1.1 of chapter 11 of [1]) couples the service times in the order in which

they enter service (which is equivalent to s; = 3, and s, = §;).

3. MINIMIZING DEPARTURE TIMES

In this section we will consider the departure processes of multi-server queues. To do so we need
to be able to compare arrival and departure processes. We will use the definitions given in Hordijk
& Koole [5]. We see an arrival process T = {T),,n € IN} as a sequence of arrival times, where T,
is the time of the nth arrival. (When there are less than k arrivals T,, = oo for n > k.) For arrival
processes T = {T,n € N} and T = {T,,n € IN} we say that T is pathwise earlier than T (written
as T <, T’) if they can be coupled such that, for coupled realizations t; <ty < ---and#; <# < ---
of T and T, we have t,, < i, for all n. Note that we do not just couple the times of the nth arrival,
but we assume that all arrival times are coupled jointly. We use a similar definition and notation
for departure processes. The main purpose of this section is to show that earlier arrivals give earlier
departures when comparing two centers in which in both FCFS is used, and that, for the same
arrival process, FCFS gives earlier departures than an arbitrary (allowable) policy R. Throughout

we will assume that ¢ = 1, i.e. the servers are working at unit speed.

Consider two multi-server queues, with arrival processes T and T, with T <p T. Furthermore,

these queues have initial work W = (Wi,...,W,,) and W = (W, ..., W,,) which can be coupled
such that for coupled realizations of the workloads w and w we have wy;) < w; for all j, with =
a permutation, and for the realizations of the departures u,, and 4, due to the initially available
customers we have u,, < 4, for all n. Thus the model with arrivals 7" has less initial work, and the
initial customers leave earlier. Assume that in both queues FCFS is used. We have the following

for the departure processes U and U (belonging to T' and T respectively).

3.1. Theorem. U <, U.

Proof. Take two coupled realizations of the arrival processes t,, and £,. Take realizations of the
initial work as described in the definition. We make the coupling complete by giving the nth

arriving customer in both queues the same service time s,. Let r, be the moment at which the
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nth customer joins a server. We use the same recursion for r,, and w,, as used in Wolff [13]:
u, = nth order statistic of {r; + s; | i < n + m}

7, = max{t,, Un_m}

If we assume wy < - < w,y,, we take u, = Wypyp if —m+ 1 < n < 0. We have similar definitions
for the model with later arrivals.

Now we show that the departures due to the customers not initially available are earlier for
the model with earlier arrivals. By superposition of these departures with the departures of the
customers initially available we prove our result.

We use induction on the number of departures. As induction basis we have r, < 7, for
n < m, because u, < i, for n < 0. Take n > m. Assume that r, < 7 for 1 < k < m. Then
Uk—mt1 < Uk—m+1, and thus rgy < Fryq1. Thus as a by-product of the induction we get u,, < @y,

for all n, which gives the ordering of the departures. o

In the proof of the optimality of FCFS we will take T = T, but with possibly different initial
loads. For the network models of section 4 we need the result on different arrival processes.

We can generalize our result slightly by assuming that the arrival processes are ordered just
up to t. In this case it is easy to see that the departure processes are also ordered up to .

Now we will consider two centers with the same arrival process T', but with different assignment
policies. One model is governed by FCFS with departure process V; the other has assignment policy
R and departure process V. Of course R falls into the class of policies specified in the previous
section; specifically it is not allowed to depend on the current and future service times.

The following theorem is referred to in the introduction for stating a result similar to that of

theorem 2 of Foss [3].
3.2. Theorem. V <, V.

Proof. We will prove the result by fixing an arbitrary horizon ¢, and showing that the departures
up to t will be earlier under FCFS. Fix a realization of the arrival process and let ¢;,...,%; be
the arrivals up to t. We will compare 2 policies R; and R,;. Under R; the service time of the nth
arriving customer is s,. Assume that it is pathwise optimal to use FCFS from arrival £* onward to
arrival k. Suppose that R; uses FCFS from k* on, but does not use FCFS at arrival k* — 1. First
we construct R, such that R, is pathwise better than R; and uses FCFS at arrival £* — 1. Using
induction we then obtain that FCFS should be used also for arrival £* — 1 up to k.

Let us define R,. Assume that R; assigns the (k* — 1)th customer to queue j; (which is not
the queue with the smallest workload), and the k*th customer to queue j» (by induction, according

to FCFS). Now R, assigns customer 1,...,k* — 2 the same as R;, assigns customer k* — 1 to j,
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and k* to j;, and uses FCFS afterwards (which gives possibly different assignments than under
Ry). The coupling of the service times will be different for different customers and realizations.
The k* — 2 first arriving customers under R, have the same service times as the £* — 2 first arriving
customers under R;. Let w™ (@™) denote the workload at the nth arrival under R; (R2). Note
that w* —! = &% 1. Let 7 = tps — tge_q. If w;?:_l > 7, then we assign sp« at tx«_; to queue j,

~1 < 7, then we assign in the same order as for R;. Let w*

and sg-_; at tx= to queue j;. If w;f
(w*) be the workload just after the k*th arrival. Then it is easily seen that w* < @* (possibly after
exchanging j; and j,) and that departures occur earlier in w*. Now we can use theorem 3.1 with

initial load w* and w* to conclude the proof. o

3.3. Remark. When looking at the proof, we see that the only customers that matter are
customers k* — 1 and k*, and they are coupled such that the customers being served first have the
same service times: service times are “distributed” in order of commencement of service. When
repeating this argument, resulting in the coupling of FCFS and an arbitrary policy R, we see that
all service times are handed out in the order at which customers start service. The same coupling
is clearly used in Wolff [13,14], but also, like here, implicitly in Foss [3], Daley [2] and in the proof

of lemma 2.1.

3.4. Remark. At first sight this proof seems to work also for the workload model, what would be
in contradiction with the counterexample of the previous section. However, problems arise when
tgx—1 < t < tp+; in that case the coupling should always be in order of arrival. Thus, to show
optimality of FCFS for cost functions related to workloads, the coupling has to depend on ¢. This
idea is used in Wolff [14].

Instead of looking at the departure processes we can also consider the sojourn times of the
customers. It is clear that the sojourn time of the nth arriving customer is not minimized by FCFS:
if the n — 1 customers arriving earlier do not join the server with the smallest workload, then the
waiting and sojourn times of the nth arriving customer, who does join the server with the smallest
workload, are minimized. Thus, to lower the sojourn time of the nth customer the sojourn times of
previously arriving customers will be increased. This motivates us to consider the summed sojourn
times of the first n customers. To do so, we first look at the number of customers in the system
at t. As this number is equal to the number of arrivals by ¢ minus the number of departures, we

derive the following directly from theorem 3.2.
3.5. Corollary. The number of customers in a multi-server queue is pathwise minimized by FCFS.

Now we are ready to consider the sojourn times of the n first arriving customers. First observe
that the arrivals after the nth do not influence the sojourn times of the first n, as each server

operates in a FIFO manner. Thus we can omit all arrivals after the nth. Now it is easily seen that
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the total sojourn time is equal to the integral of the number of customers over time. By dividing

by n, and letting » — oo, we can also consider the average sojourn time.

3.6. Corollary. The total sojourn time of the first n customers and the average sojourn time (if

it exists) are stochastically minimized by FCFS.

By this corollary it follows directly that the expected average sojourn time is also minimized
by FCFS.

Instead of looking at sojourn times, we can also consider waiting times. From corollary 3.6 it
does not follow that FCFS minimizes the total waiting time of the first n customers stochastically,
although it follows that the total expected waiting time is minimized by FCFS. However, we can
repeat the proof of theorem 3.2 with the summed waiting times as objective, from which we conclude

that FCFS also minimizes the total waiting time of the first n customers stochastically.

4. NETWORKS OF MULTI-SERVER QUEUES

The results of the previous section can be combined as follows. Suppose we have two queues with
arrival processes T and T, of which T is earlier up to ¢, which are operated by FCFS and an
arbitrary R respectively. Then, by first comparing two queues operated by FCFS with arrivals T’
and T, and then using the optimality of FCFS, we have that the departures from the first queue
are earlier up to ¢; the coupling used to derive this is in order of commencement of service (which
is independent of ).

In this section we consider a network of ¢ queues, where routing between the queues is according
to static rules. We call an assignment rule (for the departure process of queue i) static if it is
defined by a sequence of random variables {II,,,n € IN}, where II,, = j corresponds to routing the
nth departing customer (from queue z) to queue j. The routing probabilities are stochastically
independent of all queue lengths and arrival times, but need not be independent themselves. If
all II,, are equally distributed and independent, we have random routing (like in standard Jackson
networks). Another example is cyclic assignment, by taking IP(Il,,;1 = j+ 1(modm) |II, = j) =1
for all n > 1, and II; arbitrary.

The queues themselves can be of different types. There can be multi-server queues like we
have studied in the previous sections, or queues of other types, as long as they satisfy the optimal-
ity /monotonicity property described for FCFS in the first paragraph of this section.

The model can be open, closed or a mixture of these. Let R be an arbitrary policy for the
whole network, based on total information. Let T'(¢,7) be the departure process from queue 7
consisting of the customers routed to queue j, using FCFS (or, more general, the locally optimal
policy R*) in each center. The streams under the alternative policy R are denoted with T(z,])

Outside arrivals are assumed to be coming from center 0. Note that R is allowed to depend on the
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state of the whole system, that is, it uses global information. The following theorem states that all

arrival processes are earlier if the policy which is optimal in case only local information is available

(like FCFS) is used in each queue.
4.1. Theorem. T'(%,j) <, T(z,]) for all 7 and j.

Proof. Due to the (possible) feedback in the network, arrival times depend on prior departure
times. Therefore we cannot just consider the arrival and departure processes consecutively as we
could have done for tandem systems. For general networks we have to use induction on the events
in the whole system.

We couple the networks, one using FCFS (R*) and one using R, by constructing 7*(¢,7) and
T*(i,7) with T*(%,4) 4 T(i,7) and T*(%,7) 4 T(4,7) for all 4 and j. The routing is coupled by
letting the nth customer that leaves center 7 go to the same center in both networks. Note that, by
taking ¢ = 0, we have T%(0,j) = T*(O,j). The service times are coupled for each queue separately,
such that the departures are earlier under FCFS. Now consider a realization.

Events in the networks with streams 7* and T'* occur at points t; <ty < ---and#; <ty < ---.
Each event consists of a transition of a customer from one center to another. Transitions from center
i to center j occur at #;(7,5) < t2(3,7) < --- and #;(4,5) < £2(4,5) < - - -. (If 2 or more events occur
at the same time, we assume that they are logically ordered. For example, if a customer arrives at
a center, receives 0 processing time and leaves again, we assume that the arrival occurs before the
departure.) We will use the fact that if the arrivals up to T" at a certain center are earlier in the FCFS
model, then also the departures up to T are earlier. The proof uses induction on the number of
events in the network operated by R. Choose n*. Define n}; as follows: fn:j (1,§) < fpe < fn:j+1(i, 7)-
Suppose

t1(3,7) < f1(3,j) for all I = 1,.. N O

7 and j.

Consider transition n* + 1 in the network operated by R. Suppose that a customer moves from
center ¢* to center j* at this transition. Consider center ¢*. By the induction hypothesis for j = ¢*,
the arrivals at i* before £, are earlier under FCFS. Because there are no arrivals at center ¢*
between t,« and En‘-}—l in the network operated by R, also the arrivals before En‘—l—l are earlier
under FCFS. By the optimality and monotonicity of FCFS, the departures are also earlier, and

thus £, 41 < fny‘ . +1, completing the induction step. o
i*5 i*5

An example of the type of center which also has the monotonicity /optimality property is the
single-server queue studied by Righter & Shanthikumar [10]. They show that in the case of service
time distributions with increasing likelihood ratios, the departures are earlier if the customers are
served non-preemptively.

Besides controllable centers we can also add queues which have just a single policy, but for

which the monotonicity property holds. Examples of these are G|G|co queues and G|G|1 queues
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with FIFO discipline.

Our results can be summarized as follows.

4.2. Corollary. In a closed network, FCFS (R*) maximizes the throughput at each queue. In an

open network, FCFS (R*) minimizes the number of customers in the system.

For their model Righter & Shanthikumar [10] formulate a similar network result.

As for the isolated centers of the previous section we can look at waiting times. Unfortunately,
the situation is more complex for networks. Due to the different routes customers can choose in the
network, a customer can have influence on the waiting times of customers who had arrived earlier.
Thus we cannot restrict the arrival process to the first n customers as we did for the isolated queue.
However, by looking at the numbers of customers in the system for all ¢, we have the following

corollary.

4.3. Corollary. In an open network, FCFS minimizes the expected average sojourn and waiting

times of the customers.
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