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Abstract

er is concerned with the problem of deriving efficient operational rules for polling
:cording to a fixed time polling scheme. A fixed time polling scheme specifies the
r of the queues, but also the starting times for each visit. This problem arose from
to efficiently collect files with call records from telecommunication switches.

mple approximation for the mean waiting times in a polling system with a non-cyclic
r of the queues, we present an approach to the problem of minimizing a weighted
le mean waiting times at the various queues. This approach is tested via numerical
1ts that are partly based on actual data for call records.
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STION

sphone subscribers in the Netherlands have received bills stating only the rental
e total cost of telephone calls. These two-monthly bills are based on pulse me-
the switches. The pulses are accumulated and periodically dumped on tape.
.pes are sent by mail to the billing centre, where they are processed.

of 1992 PTT Telecom has gradually introduced itemized billing. Itemization
le total call charges are broken down on the bill into categories such as local,
and international calls, special services such as the special-tariff information
ar telephone charges. It will enable subscribers to obtain a detailed picture of
ade in particular categories.

er this new service the trajectory from switches to the billing system has been
manage the call data, see Figure 1.1. Instead of processing tapes, a newly
liation system collects files with call records from the switches. A call record
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roughly is an electronic set of information concerning a call such as time, duration and the
called party. Further the mediation will unify the different call record formats, that is to say,
make them independent of the switch and store the data until the billing centre requests the
data. Finally in the billing centre the call records are tariffed and the bills are made up.
The set-up of the network: switches - mediation - billing centre will fit within the framework
of a Telecom Management Network (TMN). In general, a TMN provides an organized archi-
tecture interconnecting various types of Operations Systems (OSs) and telecommunications
equipment, using an agreed architecture with standardized interfaces, see [3]. Here in terms
of TMN, the mediation interconnects the Network Elements (switches) and an Operations
System, viz. the billing centre. Besides this OS, the mediation may in the future also inter-
connect other OSs which provide (management) services based on the information contained
in call records. For these OSs one can think of management systems concerned with, e.g.,
traffic analysis, fraud detection, trend analysis and provision of marketing information.

telephone calls

Switch

data files

Mediation

Billing System

X
itemized

telephone bill

Figure 1.1. The trajectory from switches to the billing system.

The effectiveness of the services provided by the different OSs depends heavily on the per-
formance of the data collection process of the mediation. For instance, a large time delay
between making a call and the arrival of the corresponding call record at the billing centre
would make near real-time billing impossible. This time delay consists of the waiting time at
a switch and the transmission time to the billing centre.

In this paper we will consider the time delay in the billing process. In particular we focus on
minimizing the time delay between the generation of files with call records in a switch and
the arrival of these files at the mediation. In order to get data files from a specific switch
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to the mediation, the mediation sets up a communication link with that switch and requests
the data. Since the mediation takes the initiative, we speak of a polling process.

The mediation system that is presently implemented in the network of PTT Telecom only
allows for polling based on a so called fixed time polling (ftp) scheme. That means, the
mediation initiates a polling session according to a schedule with switches and starting times.
The built-in guidelines to determine the ftp schedule are not satisfactory. The first step of
this method consists of determining the polling frequencies, more or less proportional to the
average number of call records created at the switches. From these frequencies one obtains
the starting times by evenly spacing the polling sessions over the day. This set-up clearly does
not lead to an overall minimal time delay since the visits to a switch are scheduled without
taking notice of visits to other switches.

The problem here is to find an ftp scheme that minimizes the mean waiting time. In this pa-
per we study this optimization problem by modelling the network as a single server multiple
queue system. Here the mediation behaves as a server attending the queues, i.e., polling the
switches for data files. It appears that one can apply to this case some theoretical results on
efficient visit orders in periodic polling systems, see [2]. This approach leads to an ftp scheme
which, compared with the ftp scheme currently implemented in the mediation of PTT Tele-
com, reduces the mean waiting time by approximately 70%, see [6]. The developed method
may also have its merits in analyzing and optimizing the performance of time-limited access
protocols in local area networks.

This paper is organized as follows. In section 2 the data collection process of the mediation
is modelled as a queueing theoretic polling system. In section 3 the problem of constructing
an ftp scheme that minimizes the mean total waiting cost per unit of time (under some side-
constraint) is formulated as a mathematical program. Unfortunately this program appears
to be NP-hard. Hence in section 4 a heuristic method is developed to solve the mathematical
program. The accuracy of the heuristics is tested in section 5 by simulation experiments,
partly based on real network data. It is shown that the proposed ftp schemes give good re-
sults compared with some other natural, but less sophisticated, ftp schemes. In addition it is
investigated whether perturbation of the proposed ftp scheme leads to further improvements.
Finally, in section 6 a conclusion is presented.

2 MODELLING OF POLLING CALL RECORDS FROM SWITCHES

In this section the data collection process of the mediation will be modelled as a queueing

theoretic polling system. We first describe the basic polling model.

The basic polling model is a set of n queues @1, ..., @y, served by a single server, S, which vis-

its the queues in cyclic order. The interarrival times of customers arriving at @; are indepen-

dent, identically distributed stochastic variables, their distribution being A;(-), i =1,...,n.
n

The arrival intensity at Q; is A;, ¢ = 1,...,n, and the total arrival intensity is A = ) A;.

=1
Customers arriving at @Q; are called type-i customers. The service times of type-i customers

are independent, identically distributed stochastic variables. Their distribution B;(-) has
first moment B;, ¢ = 1,...,n. The offered traffic load, p;, at @; is defined as p; := \G;,
n

it =1,...,n, and the total offered load, p, as p := 3. p;- When swapping into @;, S incurs
i=1



* period of type 7; switch-over durations (of type 7) are independent stochastic
with mean s;. The interarrival, service, and switch-over processes are indepen-
;ic processes.

ie the server operates according to some service discipline. E.g. the exhaustive
line, i.e., S serves customers until the queue is empty, or the gated service dis-
S serves exactly those customers present at the queue at the beginning of the

ion of the basic cyclic polling system is the polling system with fixed (generally
isit order. This order is described in a table (polling table) in which the number
1t0 @i, my, is at least 1. The size of a table, which is the total number of visits
m= zn: m;.

Is haxz/elrecently received much attention in the queueing literature, partly be-
- applicability in the performance analysis of computer and communication net-
urvey of Takagi [12] contains 455 references, more than half of which appeared
dost of these papers are comeertied with the exact or approximate analysis of
ns. Only recently some studies have been devoted to the issue of optimization
stems, in particular the optimal routing of the server along the queues. The
f the 13-th International Teletraffic Congress contain some reviews of static [1]
amic [13] server routing in polling systems.

describe how the data collection process of the mediation fits into the depicted
work. When a telephone call is established, data is collected by the switch and
0 a call record. Upon completion of the call, the record is transferred to some
mm. Here the records are grouped into switch files. When the file is full, it is
ready for polling by the mediation. The mediation initiates a polling session
. when the prescibed starting time for this switch holds. The starting time is
ftp scheme. During a polling session all the switch files which are closed are
o the mediation.

lon we clearly can define a polling model for a single server visiting queues in
der. Here the mediation is the server S and the queues @1,...,Q, are the
tches onto the mediation. The switches have a storage capacity for files which
r some days. So the queues can in fact be considered to have infinite storage
customers which are served at the queues are the switch files with call records.
{ these files depend on the type of switch involved. For example presently the
switched telephone network contains five different types of switches. Calls on a,
umed to occur according to a Poisson process. Therefore the interarrival time
, that is the time between the completion of two consecutive data files, will
tributed. For large files, the Erlang distribution converges rather quickly to a
distribution. Therefore we here assume that the arrival process of switch files
rministic. The service time of a customer at a queue is in fact the transmission
 file from the corresponding switch to the mediation. This transmission time
e length of a switch file and the (effective) transmission rate. We assume that
nes are almost deterministic. Finally, we also assume an almost deterministic
'ocess. In the present case a switch-over time is the time the mediation needs
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to establish a communication link with the next switch to be polled. The server operates
according to the gated service discipline, as during a polling session all switch files which are
closed are transmitted to the mediation.

Notice that the gated service discipline may conflict with the fixed time aspect of the present
polling scheme. That is, a current polling session may need more time than planned. In the
polling model we assume that in case of a conflict the gated service discipline goes before the
fixed time aspect of the polling scheme, i.e., the long polling session and the next one are
carried out sequentially. In reality, the multitasking aspect of the mediation makes it possible
to continue those long sessions without delaying the next polling session. According to the
ftp scheme the new scheduled session is simply run parallel to the current one. In this case
the mediation polls more data in a shorter time but internally the mediation can not keep up
with the processing of the data files. The net effect is as if the polling sessions were carried
out sequentially.

In reality data collection systems like the mediation system may have a number of communi-
cation ports over which independent polling sessions can be run. In order to avoid complex
modelling we here consider a mediation system with only one communication port.

From the Introduction we recall that we are interested in the problem of constructing an
ftp scheme that minimizes the time delay between the generation of files and the arrival of
these files at the mediation, in particular the mean waiting time of files. To keep down the
conflicts between the gated service discipline and the fixed time aspect of the polling scheme,
we solve the problem under the side-constraint of most rarely exceeding the available visit
times. In fact we shall consider the more general optimization problem of minimizing the
mean total waiting cost per time unit i ciniEW,, where W, denotes the waiting time of
an arbitrary type-i¢ customer and ¢; is ;nlarbitrary positive parameter reflecting the cost of
waiting one unit of time at ¢);. This general case contains the original problem of minimizing
the mean waiting time (take ¢; = ¢). We shall also assume more general distributions of the
interarrival, service, and switch-over times.

3 CONSTRUCTING AN FTP SCHEME I

As stated in the previous section, we are interested in the problem of constructing an ftp
scheme that minimizes the mean total waiting cost per unit of time, under the side-constraint
of most rarely exceeding the available visit times. Starting from rather simple approxima-
tions, we formulate in the present section the problem under consideration as a mathematical
program. In view of its NP-hardness we describe in the next section a heuristic method for
solving the mathematical program. The approach bears resemblance to the approach to a
similar problem in Kruskal [9] for polling systems with deterministic arrival, service, and
switch-over processes, and in Boxma, Levy, & Weststrate [2] for polling systems with a Pois-
son arrival process and general service and switch-over processes.

We first introduce some additional notation. We represent an ftp scheme by a vector pair
(P,T), P € {1,...,n}, T, 2 0, k = 1,...,m. The vector P contains the polling table
associated with the ftp scheme, i.e., the k-th visit is to queue Py, k = 1,...,m. The vector T
contains the extended visit times associated with the ftp scheme, i.e., T} is the time between
the start of the k-th visit and the start of the (k + 1)-th visit, k = 1,...,m, where m + 1 is
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to be understood as 1.

Several further quantities associated with an ftp scheme will also appear to be of interest.
Denote by Uy, the k-th available visit time, i.e., the k-th extended visit time minus the switch-
over time into queue Py, by V, the k-th required visit time, i.e., the time the server needs to
do the work during the k-th visit, and by SCj the k-th subcycle time, i.e., the time between
the start of the k-th visit and the start of the previous visit to queue Py, k = 1,...,m.
Denote by C the cycle time, i.e., the time the server needs to pass through the ftp scheme
once. By the nature of the ftp scheme, Ty, SCy, and C are deterministic, but U and V, are
not, except when respectively the switch-over process and the arrival and service processes
are deterministic, the interarrival time in addition being a divisor of the cycle time.

Of course Ty, Uy, Vi, SCy, and C are closely related. Firstly, the k-th available visit time
Uy, is what remains of the k-th extended visit time Tk, after the switch-over time into queue
P,

Tk=Uk+Spk, k=1,...,m. (3.1)

Secondly, by the nature of the gated servige discipline, the k-th required visit time V, equals
the amount of work that arrives at queue P during the k-th subcycle time SCi, k = 1,...,m.
The k-th subcycle time is composed of the:extended visit times between the start of the k-th
visit and the start of the previous visit to queue P,

SCr =Y huT, k=1,...,m. (3.2)
[=1

Here the matrix H = (hy) is defined: by
. { 1 if Pyaye.., Poo1 # Pe
Kkl =

0 otherwise kii=1,...,m,

i.e., hy indicates whether the I-th extended visit time belongs to the k-th subcycle time:
hyy = 0 iff the k-th subcycle time begins after the start of the [-th visit.
The cycle time is composed of all the extended visit times,

C= iTl ' (3.3)
=1

The cycle time may as well be viewed as consisting of all the subcycle times corresponding
to any Q;,

C= > 8Ci, i=1,...,n. (3.4)
{k:Py=1}
Notice that substituting (3.2) into (3.4) indeed yields (3.3),as Y. hy=1,i=1,...,n,
{k:P=i}
l=1,...,m.

To be able to formulate the problem as a mathematical program, we now express the mean
total waiting cost per unit of time, as well as the side-constraint of most rarely exceeding the
available visit times, in terms of the ftp scheme.

To start with the latter, we may represent the side-constraint by
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Pr{U; < Vi} < ap, k=1,...,m, (3.5)

with a;, ¢ = 1,...,n, prespecified bounds for the probabilities of exceeding the available visit
times. As (3.5) does not really fit into the framework of a mathematical program, we replace
(3.5) by a constraint of the type

EU, Y, > EV,+ Zy, k=1,...,m.
Here Y} and Z; are measures for the variability of respectively Uy and V, such that Pr{Uj <
EU; ~ Y} < vpap, and Pr{V, >EV,+Z;} < (1-vp,)ap,, with0 < 1; < 1,i=1,...,n.

Thus we slightly strengthen (3.5), as Pr{U} > V} > Pr{U; > EU,— Y}, Vi, < EVp+2Z;} =
PI‘{Uk > EU, — Yk} Pr{Vk <EV,+ Zk} =1-ap, +’YPk(1 - ')’Pk)a%:k. From (3.1) we have

EUg =Ty —sp,, k=1,...,m. As V; equals the amount of work that arrives at @p, during
SC, we have EVy = pp SCy, k= 1,...,m. We further take Y, = op.sp., k=1,...,m, and
Zy = €p,pp,SCk, k =1,...,m. Here §; and ¢; are measures for the variability of respectively

the switch-over times into @); and the interarrival and service times at @; such that

Pr{Si > (1 + 52’)31'} < Y04,
> (Al (5T — AP (sCy) (1= B (i1 + €)SC1)) < (1 - w)as,
h=0

with SC; a rough estimate for the subcycle times corresponding to @);, preferably as pes-
simistic as possible from the viewpoint of determining ¢;. Thus we slightly strengthen (3.5)
further as

PI‘{U',rc <EU,~Y} = Pr{Spk > (1 +6Pk)SPk}’
Pr{Vy > EV, + Zy} =Pr{Vy > pp,(1+€p,)SCr},

Pr{Vi >t} < 3 (4 (5Ce) — AGT(5C)) (1- BE (1), t>0,
h=0

particularly for t = pp, (1+€p,)SCy. The latter inequality holds, since A’Ié’; (SC’;C)—A%;H)* (SC%)
is the probability that (h + 1) type-Py customers arrive during SCj, under the pessimistic
assumption that the first customer arrives at the beginning of SCy, and 1 — Bg:fl)*(t) is the
probability that the service of (h + 1) type-P;, customers is not finished within time ¢, ¢ > 0.
Instead of Zy = ep, pp, SC), one might take e.g. Zy = e¢p pp, SCx + (1 +(p,)0p,. Here (;is a
measure for the variability of the service times at @; such that 1 — B;((1+¢)3:) < (1—i)au,
t=1,...,n. The factor (1 + (;)8; would avoid that ¢; — oo in the hypothetic situation that
SC; | 0. If indeed one takes Zy = ep,pp,SCk + (1 + (p,)Bp, instead of Zx = ep pp, SCh,
then everywhere (1 + 6;)s; is to be replaced by (14 6;)s; + (1 + ()G

When the distributions of the interarrival, service, and switch-over times are specified, there
are no serious complications in expressing 6; and ¢; in terms of «;. Nevertheless, in real life
one may rather determine §; and ¢; empirically than make a questionable assumption about
the distributions of the interarrival, service, and switch-over times, needed in expressing 6;
and ¢; in terms of ¢;.

Concluding, we represent the side-constraint of most rarely exceeding the available visit times
by



Ty prk(l-i-Epk)SCk+(1+5pk)3pk, k=1,...,m. (3.6)

Notice that summmg (3. 6) with respect to £ = 1,.. kL using (3.3) and (3.4), yields

C > (p+ 3 ezp,> Cc+ E m;(1 + 6;)s;. Apparently p + E €;p; < 1 is a necesssary con-
=1
dition for the extended v131t times to be all non-negative. In the proof of Lemma 4.1 it will

also appear to be a sufficient condition. In the sequel the condition p + E €;p; < 1is always
i=1

assumed to hold.

We now express the mean total waiting cost per unit of time in terms of the ftp scheme.
Unfortunately a polling system with an ftp scheme is not likely to be amenable to an exact
analysis, except when the arrival, service, and switch-over processes are deterministic. We
therefore feel justified in resorting to approximations for the mean waiting times. The ap-
proximations should be simple enough to lend themselves to optimization purposes. In fact
we feel even further justified in resorting to approximations for the mean waiting times, by
the knowledge that in hardly any polling system the exact expressions for the mean waiting
times are simple enough to lend themselves to optimization purposes. Fortunately we do not
really need to bother about restricting ourselves to simple expressions for the mean waiting
times. As we are primarily concerned with minimizing a weighted sum of the mean waiting
times rather than evaluating the mean waiting times themselves, the approximations do not
need to be very accurate as long as they rightly capture the behavior of the mean waiting
times. E.g., approximations that systematically deviate from the mean waiting times by
some constant additive or multiplicative factor would be perfectly suitable for minimizing a
weighted sum of the mean waiting times.

We now approximate the mean waiting time of an arbitrary type-i customer. We condition
on the event that we are dealing with an arbitrary type-i customer that arrives during the
k-th subcycle time SCj with P, = i, which occurs with probability SCy/C. Further we act
as if the available visit times are never exceeded. The waiting time of an arbitrary type-i
customer that arrives during the k-th subcycle time SCy with P, = 1, is then composed of (i)
the time from its arrival to the start of the next visit to @;, i.e., the residual lifetime RSCy
of SCy at the arrival epoch of the customer and (ii) the time from the start of the next visit
to @; to the start of its service, i.e., the time the server needs to do the work PV, that
arrived at ; during the past lifetime PSCy, of SC}, at the arrival epoch of the customer. As
SCy is deterministic, ERSCy, = %SC’k, EPSC, = %SC’k. Further we use the approximation
EPV, = p;EPSCy, which in fact is exact for a Poisson arrival process.

Concluding, we approximate the mean waiting time of an arbitrary type-i customer by

EW,; ~ 1+”z Y SCZ,  i=1,...n, (3.7)
{k:P,=i}

which yields for the mean total waiting cost per unit of time

ch’\ EW,; ~ ch (14 p:) Z SC’k = Zc}:«k)\pk(l -+ ppk)SC'k. (3.8)
P 2C ¢ (kP 2C
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ssed the mean total waiting cost per unit of time, as well as the side-constraint
" exceeding the available visit times, in terms of the ftp scheme, we are now able
:he problem as a mathematical program.

1 & 1 &
e — Z cidi(1+ p;) Z 5C% = Z cp,Ap (1 + pp,)SCE (3.9)
20 & . 2C &
t==1 {k:szz} k=1
to TkZppk(l—i—Epk)SCk—i-(1+5pk)3pk, k=1,...,m; (3.10)
m
SCk =th1Tl, k= 1,...,m; (3.11)
=1
m
C= ZTI’ (3.12)
=1
mi=\{k: P, =14}>1, i=1,...,m (3.13)
_ 1 if-Pl-!-la"-)Pk-lséPk . .
hkl = { 0 otherwise k',l = 1, ceey Ny (314)
P.e{l1,...,n}, k=1,...,m (3.15)
Ty >0, k=1,...,m. (3.16)

parameter choice problem (I) amounts to the problem of partitioning m — 2
2 sets, such that the sums of the numbers in both sets are as equal as possible,
m to be NP-hard; cf. Lemma 3.1.

; NP-hard.

|

1ggests that there is little hope of solving problem (I) exactly in a reasonable
1e. In the next section we therefore describe a method for solving problem (I)
7.

CTING AN FTP SCHEME II

1s section we formulated the problem under consideration as a mathematical
iew of its NP-hardness we describe in the present section a heuristic method for
wthematical program. The idea is to divide problem (I) into three subproblems,
lewhat easier to handle, viz., successively:

;ion of the visit numbers my, ..., m,.

;ion of the visit order.

;ion of the extended visit times 77, ..., Tnm.
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Ad 1. Determination of the visit numbers.

To simplify the determination of the visit numbers, we forget about the visit order for now.
So we ignore of which extended visit times the k-th subcycle time is composed, but of course
we do not ignore that the subcycle times corresponding to any @; together make up the
cycle time, cf. (3.4). Translated to problem (I), we replace the constraints (3.11), (3.14),
and (3.15) by the constraint (3.4). It is easily verified that in the resulting problem the
optimal subcycle times corresponding to @; are all equal, ¢ = 1,...,n, i.e.,, SC, = C/mp,,
k=1,...,m. Observe that f: :v,zl, under the constraint f: zp, = X, is minimal for z; =

h=1 h=1
X/H, h =1,...,H. Notice that SC, = C/mp,, k = 1,...,m, suggests spacing the visits

to the various queues as evenly as possible, as intuitively is indeed expected to be optimal.
As seen from (3.10) and (3.12), all the optimal extended visit times at @; are then all equal
too, i =1,...,n, ie, Ty = pp (1 +€p,)C/mp, + (1 + 6p,)sp,, k = 1,...,m. Denote by D;
the common value of all these optimal extended visit times at @;, i = 1,...,n. As we forget
about the visit order for now, the ultimate extended visit times at @); will probably deviate
from D;. Remember that because of the constraint (3.10) the extended visit times can not
be determined before the visit order is determined. Nevertheless, D; will probably be a good
indication for the ultimate extended visit times at @;, which will be useful in determining a
good visit order later on. To simplify the determination of the visit numbers even further,
we relax the integrality constraint (3.13) for now too. Concluding, we formulate the problem
of determining the visit numbers as follows.

Problem (II).

— cidi(l + i) C

minimize 4.1

> el (1.1)
. (14¢)C .
subjectto  D; = %;Lz) +(1+6:)s;, i=1,...,m; (4.2)
n 7
C= ZmiDi; (43)
i=1

m; > 0, i=1,...,n. (4.4)
Notice that the objective function as well as the constraints are homogeneous with regard to
(m1,...,mn,C), as is to be expected, since concatenating an ftp scheme several times does
not make any difference. So we know beforehand that the optimal solution contains a positive
scaling factor with regard to (ms,...,m,,C). Using the Lagrangean multiplier technique,

we find that the optimal solution is

Dr = E&SL)C__{_(

14 51')3157 i=1,...,7 (45)

2

R Y Veh(1+pi)(1+6:)s;
cr = = D ; (4.6)
1-p- 21 €iPs

1=
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[e:Ai(1+ p;) .
Ry =——— =1,..., 7. - .
AP i=1,...,n (4.7)

positive scaling factor mentioned above, due to which some freedom remains in
— [m*

mX *
he total number of visits m. One may e.g. choose R such that | —— i | <

n, with [z] denoting the nearest integer to = and 7; prespecified bounds for the
tion of the true, integer visit numbers from the desirable, generally non-integer
. Alternatively, one may choose R such that the cycle time has some desirable
matches e.g. the daily pattern in the actual telecommunication application.

3), and (4.7), the objective function (4.1) takes the value

2
Zi)\i(l + pi)(l -+ 6Z)sz>
(1 ~p— ';1 fipi)

the argumentation preceding the formulation of problem (II), formula (4.8)
ver bound for the value of (3.9) for the optimal solution of problem (I). As far
ination of the visit numbers is concerned, problem (II) may thus be conceived
of problem (I).

(4.8)

Apart from the slack coefficient §;, formula (4.7) agrees with results in Kruskal

g systems with deterministic arrival, service, and switch-over processes, and

vy, & Weststrate [2] for polling systems with a Poisson arrival process and

e and switch-over processes. In the latter paper it has already been argued that

7isit numbers should be quite robust with respect to the distributions of the
ervice, and switch-over times.

O

case that we confine ourselves beforehand to strictly cyclic polling, i.e., m; = 1,
sroblem (II) reduces to

Zn: e hi(l + p;)C (4.9)
i=1 2 ‘
to D; :pi(l—}—fi)c—l-(l-{—éi)si, i=1,...,n; (4.10)
C=> D, (4.11)
i=1
ible and hence optimal solution is
pi(l + &)C* + (1 4 6;)s;, i=1,...,m (4.12)
2. (1+6)s:
=t (4.13)
l—p— 3 €pi

=1

1 (4.13), the objective function (4.9) takes the value



\i(1+ pi)) (ié(l + 5i)3i)
2(1—-p—§:1€iﬂi) '

(4.14)

1e Holder inequality (4.14) can not be smaller than (4.8), as is to be expected,
fine ourselves to strictly cyclic polling. In fact the difference between (4.14) and
rough estimate of the increase in the mean total waiting cost per unit of time,
fine ourselves to strictly cyclic polling.

nination of the visit order.

the determination of the visit order, we assume that the extended visit times at
ual to D, the indication for the extended visit times at @; obtained in (4.5).
» problem (I), we replace the constraint (3.10) by the constraint T}, = D}, . As
e proof of Lemma 3.1 however, the determination of the optimal visit order for
fixed T} = Dp,_ is still NP-hawd. Nevertheless, we rather solve problem (I) for
fixed Ty = D}, approximately than an even further garbled version of problem

B we describe the Golden Ratio procedure, which is an approved method for
visits to the various queues as evenly as possible, c¢f. [7], [8], and [10]. To be

ne X = Z hgi, i.e., X is the number of visits between the start of the k-

the start of the previous visit to queue Py, & = 1,...,m. The Golden Ratio
ms at making the numbers X with P, = ¢ as equal as possible. In fact the
with P, = ¢ are guaranteed to take at most three different values. However,
ifferent values are not guaranteed to be all nearly equal. Moreover, the Golden
ure aims at making the numbers of visits X with P, = ¢ as equal as possible,
e periods between visits SCy with P, = 4, as we should, cf. the argumentation
> formulation of problem (II). In other words, the Golden Ratio procedure aims at
em (I) for T, = 1, k= 1,...,m, instead of T} = Dp., k=1,...,m. Lastly, the
» procedure does not take into account the coeflicients ¢;A;(1+4 p;) in the objective
) to weigh the improvement in the spacing of the visits to one queue against the
in the spacing of the visits to another queue. In appendix C we describe a
sed on extremal splittings, which to some extent meets these objections.
f these procedures is used, it is always worthwhile to make sure that the visit
nal with respect to some neighborhood. One may e.g. attempt to improve the
r interchanging pairs of consecutive visits.

nination of the extended visit times.
- it does not seem to make sense to protract a visit any longer than needed to
de-constraint of most rarely exceeding the available visit times. Remember that
ll most rarely be busy during the extra time. Still for extreme parameter choices
sense to protract a visit. Takee.g. n =101, 6;=0,6; =0,i=1,...,n. The
nt (3.5) then reduces to T > sp,, k = 1,...,m. Take ¢;A; = 10000, c;A; = 1,
), 0101)\101 = 100, 81 = 1, §; = 1, 1= 2, iy 100, S101 = 100. From (47) we then
100R, m; = R, ¢ = 2,...,100, myp; = R, which for R = 1 yields the polling
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table Pp; 1 = 1,4 = 1,...,100, Py_9 = ¢, i = 2,...,100, Pago = 101. It is easily verified
that (3.9) is larger for T}, = sp,, k = 1,...,200, than for Ty;_5 = 2 > sp,_, (protracted
visit), Ty = sp,, k # 2i — 2 for any i = 2,...,100. Nevertheless, for realistic parameter
choices it will seldom really pay off to protract a visit. To facilitate the determination of the
extended visit times, we therefore assume that the side-constraint of most rarely exceeding
the available visit times is satisfied without any slack. Translated to problem (I), we assume
that the constraint (3.10) is satisfied without any slack. Thus determining the extended visit
times amounts to solving a set of linear equations; c¢f. Lemma, 4.1.

Lemma 4.1
The set of linear equations

m
Tk:pPk(l"‘EPk)thlTl+(1+6Pk)3ka k=1,...,m, (4'15)
=1

has a unique solution; this solution is non-negative.

Proof
See appendix D.
O

Remark 4.2 Notice that summing (4.15) with respect to {k : P, = i} yields for the mean
total available visit time at Q; during a cycle Y. Tp — mys; = pi(1 + €)C + m;6;s;, as
{k:P,=1}
> hu=114=1,..,n [ =1,...,m The mean total available visit time may be
{k:Pr=1}
viewed as consisting of (i) p;C, the time needed to satisfy the stability condition and (ii)
€;0;C + m;6;s;, the extra time above p;C needed to satisfy the side-constraint of most rarely
exceeding the available visit times.
O

We finally summarize the method for constructing an ftp scheme as follows.
1. Determination of the visit numbers.
Calculate the desirable visit frequencies

ci/\i(1+£i_)
1+ 6;)s;
preV QFWs (4.16)
5 ¢iAi(1+ p;)
=y (1+65)s;

=

Determine the total number of visits m*.
One may choose m* e.g. such that

. M fi]
n ! fi - "“T;*_—_ '

m* =Y [m*ff], [m*fi] > 1, o <m  i=1,...,n, (4.17)
i=] 1 ,
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with [z] denoting the nearest integer to z and 7; prespecified bounds for the relative deviation
of the true visit frequencies from the desirable visit frequencies.
Alternatively, one may choose m* such that

3 m’ i Veihi(l+pi)(1+ 6i)si
m* =3 [m"f{], [m*fi]12 1, C*= =1 =~ Cp,
= (1_ _ e )g cihil + i)
PTE) &N s

with Cy some desirable value for the cycle time.

Take mf = [m*ff],i=1,...,n.

2. Determination of the visit order.

Construct a polling table P*, using e.g. one of the methods described in the appendices.
Calculate

5 Jeihi (1 + p7) (1 +6)s;
* T aoer o Vot e +8)s, |
D} =pi(1+¢) VIS - + (1 +6;)si, i=1,...,m,
C; z( +pz) 1—;0—216ij
J..":

as indication for the extended visit times at Q;.
8. Determination of the extended visit times.
Solve the set of linear equations

m*

,:=pp;(l+6p’:)2h};lﬂ*+(1+5p;)3pg, k=1,...,m" (4.18)
=1

5 NUMERICAL RESULTS

5.1 Introduction.

In the previous section a method for constructing an ftp scheme has been developed. In this
section the method will be tested by conducting simulation experiments.

Throughout the complete section it is assumed that ¢; equals 1, i.e., the mean waiting time
is minimized. Moreover, the service times and the switch-over times are assumed to be con-
stant, but possibly varying from queue to queue. The interarrival times are assumed to be
almost constant, but also possibly varying from queue to queue. For queue 7, the interarrival
time equals 1/); + WN;, where WN; is normally distributed with mean 0 and standard
deviation 1/(10);). These assumptions reflect reality well, see section 1. We replaced the
side-constraint (3.6) by Ty > pp (1 +¢€p,)SCx + (1 + 6p,)sp, + Bp, for the reason mentioned
above formula (3.6). Consequently, in comparison with section 3 and 4, s; is everywhere
replaced by s; + ;.

For each simulation experiment we need a network configuration and an ftp scheme. Due
to the complexity of the problem the proposed ftp scheme can not be compared with the
real optimum. Instead the proposed ftp scheme is compared with some other natural, but
less sophisticated, ftp schemes. In addition it is investigated whether perturbation of the
proposed ftp scheme leads to further improvements.

In section 5.2 we shall describe two realistic network configurations and the ftp schemes that



15

can be chosen for these two network configurations. Of course one of these ftp schemes will
be the original ftp scheme constructed by the method described in section 4.

In section 5.3 we shall add some theoretical network configurations. The small sizes of these
network configurations allow us to test also ftp schemes in the neighborhood of the original
ftp scheme. Thus the efficiency of the original ftp scheme can be examined.

5.2 Realistic network configurations.

The first realistic network configuration (NC 1) resembles a part of the real situation in the
telecommunications district of Rotterdam. The second realistic network configuration (NC
2) resembles a part of the real situation in the telecommunications district of The Hague.
Both realistic network configurations contain the following data:

- the total number of switches (SwitchNr)

and for each switch:

- the number of subscribers (Subsc),

- the mean number of calls per subscriber per day (Calls),

- the effective transmission rate of the data-communication link between the switch and the
mediation (TrRt),

- the size of a call record (CRSz),

- the size of a file (F1Sz), and

- the switch-over time to the switch (SwOT).

Based on the data mentioned above, \;, 8;, s; and p; can be calculated. The two realistic
network configurations are shown in appendix E and appendix F. For both realistic network
configurations, each of the following three ftp schemes has been tested.

Ftp scheme 1 (FTP 1) is the original ftp scheme constructed by the method described in
section 4. Firstly, values are calculated for all A;, G;, s; and p;. Secondly, the visit frequencies
are computed according to formula (4.16), where §; is set to 0 for all 7, because the switch-over
times are deterministic. Thirdly, the total number of visits m and the visit numbers m; are

calculated according to formula (4.17), where 7; is set to 0.2 for i = 1,...,n. Subsequently,
the polling table is constructed using the Golden Ratio procedure. Lastly, the set of linear
equations (4.18) is solved for ¢; equal to 0.01 for i = 1,...,n.

Ftp scheme 2 (FTP 2) is the same as FTP 1, except that m; is set to 1, implying that m
equals the total number of queues n. This ftp scheme is treated in the previous section as a
special case.

Ftp scheme 3 (FTP 3) is the same as FTP 1, except that m; = Mp;(1+¢;) and all available
visit times have the same length. In comparison with section 3, the k-th available visit time
Uk is a constant U for all k. The extended visit times may vary due to the switch-dependent
switch-over times: D; = U +s;. The constant U is determined from the following equations:

D; > pi(1+¢)C/m;+s;+8;, Di=U+s; and C = i m;Dj. Some straightforward calcu-
=

7
n

> pi(1+¢5)s; +6;
lations show that U > = - . In this case U is chosen equal to the maximum
1—p— '21 €505
j:
over all ¢ of the right-hand side of this expression.
The mean waiting time (in seconds) for the two realistic network configurations and the ftp
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schemes mentioned above is shown in Table 5.1.

NC1 NC 2
FTP 1| 14921.8 | 8055.13
FTP 2 | 15602.0 { 8067.80
FTP 3| 22173.1 | 15331.2

Table 5.1. Mean waiting time for NC 1 and NC 2.

For these two realistic network configurations it is clear that the original ftp scheme (FTP 1)
is the most efficient one with FTP 2 as a close second best. Moreover, it is also obvious that
FTP 3 is the worst: the mean waiting time increases with 49% respectively 90%.

5.8 Theoretical network configurations.

In order to test the original ftp scheme more thoroughly, six theoretical network configura-
tions are added (NC 3 through NC 8). The first three theoretical network configurations
consist of two queues. By means of the first, second and third network configuration, the
effect of varying switch-over times, service times respectively arrival rates can be examined.
The last three theoretical network configurations consist of four queues. By means of these
network configurations, the effect of pairwise variations can be examined. The six theoretical
network configurations are described below in terms of X;, G; and s;.

NC 3: A\ = A2 =0.75; 31 = (o = 0.5; 51 = 0.05; s = 0.45.

NC 4: \; = Ay =0.75; 81 = 0.1; 82 = 0.9; 51 = s2 = 0.25.

NC 5: }\1 = 0.15; /\2 = 1.35; ﬂl = ﬂg = 0.5; 81 = 89 = 0.25.

NC 6: }\1 = )\2 = )\3 = )\4 = 0.375; ,@1 = ,62 = 0.1; ﬂ3 = ﬁ4 = 0.9; 81 = 83 = 0.05;
89 = 84 = 0.45.

NC 7: /\1 = }\2 = 0.075; )\3 = /\4 = 0.675; ,61 = ,32 = ,63 = ﬂ4 = 0.5; 81 = 83 = 0.05;
89 = 84 = 0.45.

NC 8: )\1 = /’\2 = 0.075; )\3 = )«4 = 0.675; ,@1 - ,63 = 0.1; ﬂg = ﬂ4 - 0.9; 81 = 89 = 83 = 84 =
0.25.

Note that the average service time equals 0.5 seconds, the average switch-over time equals
half of the average service time and p equals 0.75 for every theoretical network configuration.
For the theoretical network configurations, each of the following ftp schemes has been tested.
Ftp scheme 1 (FTP 1) is the original ftp scheme constructed by the method described in sec-
tion 5.2, where §; is set to 0, n; is set to 0.05 and ¢; is set to 0.01 for all ¢. Ftp scheme 2 (FTP
2) is the same as FTP 1, except that m; is set to 1, implying that m equals the total number
of queues n. Ftp scheme 3 (FTP 3) is the same as FTP 1, except that m; = Mp;(1 + ;)
and all available visit times have the same length U. The constant U is determined as in
section 5.2. Ftp scheme 4 (FTP 4) is the same as FTP 1, except that the polling table
is constructed using not the Golden Ratio procedure but the procedure based on extremal
splittings. In addition neighboring ftp schemes of FTP 1 are tested; in these ftp schemes the
number of visits to one queue is incremented or decremented by 1. Obviously these changes
are incorporated in the method before the polling table is constructed using the Golden Ratio
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procedure. By introducing these ftp schemes, a part of the neighborhood of FTP 1 can be
examined. For NC 3 through NC 5 and NC 6 through NC 8 we examine respectively 4 and
8 ftp schemes in the neighborhood. These ftp schemes will be denoted as follows: FTP-ji
where i denotes the queue whose number of visits is changed and j is either ‘p’ or ‘m’, where
‘p’ denotes ‘plus’ (m; := m; + 1) and ‘m’ denotes ‘minus’ (m; := m; — 1). In order to get
an idea how accurate the numerical results are, the desired visit frequencies (f;, according to
formula (4.16)) and the realized visit frequencies (r; = m;/m) for FTP 1 are given in Table
5.2 for each theoretical network configuration.

NC 3 NC 4 NC5 NC 3 NC 4 NC5
fi | 0.56789 | 0.59224 | 0.21076 ry | 0.56250 | 0.59375 | 0.21875
fo | 0.43210 | 0.40776 | 0.78924 re | 0.43750 | 0.40625 | C.78125

NC 6 NC7 NC 8 NC 6 NC7 NC 8
fi1 | 0.42524 | 0.12888 | 0.14824 r1 | 0.43750 | 0.12500 | 0.15151
fa | 0.22207 | 0.09807 | 0.08415 ro | 0.21875 | 0.09375 | 0.08080
fa | 0.19179 | 0.43901 | 0.45777 r3 | 0.18750 | 0.43750 | 0.45454
fa | 0.16091 | 0.33404 | 0.30984 rg 1 0.15625 | 0.34375 | 0.31313

Table 5.2. The desired and realized visit frequencies.

In Table 5.3 the mean waiting time (in seconds) for the network configurations NC 3 through
NC 8 and the ftp schemes mentioned above is given. The 95% confidence interval for the

mean waiting time approximately equals the value listed in the table +/- 0.5%.

NC 6 NC7 NC 8

FTP 1 7.03269 | 6.22546 6.43141

NC 3 NC 4 NC5 FTP 2 7.13407 | 7.85229 7.87610
FTP 1 4.16043 4.30180 | 3.65206 FTP 3 41.2442 9.165645 | 32.8741 |
FTP 2 4.01402 | 4.03009 | 4.75128 FTP 4 7.21295 | 6.08788 | 6.29167
FTP 3 4.23011 | 19.1517 4.73148 FTP p1 7.08372 : 6.20071 6.44589
FTP 4 4.07187 4.29875 | 3.58310 FTP ml | 6.98311 | 6.28151 | 6.44138 !
FTP pl | 4.18632 4.34283 | 3.62953 FTP p2 7.01397 | 6.32260 Il 6.44990 i
FTP m1l | 4.04351 4.25356 | 3.67783 FTP m2 | 7.13087 | 6.49027 . 6.53595 ,
FTP p2 | 4.04045 4.41053 | 3.64899 FTP p3 | 7.10979 | 6.29503 i 6.45601 ‘
FTP m2 | 4.21479 4.38801 | 3.65655 FTP m3 @ 7.04688 | 6.19059 i 6.45285

FTP p4 7.15380 | 6.19944 | 6.39432

FTP m4 | 7.46083 | 6.28023 : 6.48928

Table 5.3. Mean waiting time for NC 3, NC 4, NC 5, NC 6, NC 7 and NC 8.

The number printed in boldface indicates the optimum. In all cases FTP 1, FTP 4, and
the neighboring schemes of FTP 1 give very similar results; F'TP 2 is on the average slightly
worse and FTP 3 is generally bad. The low variability of the arrival, service, and switch-over
processes appears to result in a relative insensitivity to the right choice of the visit numbers
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in the neighborhood of the desired visit numbers. Remember that a wrong choice for the
visit numbers may still be compensated for in the determination of the visit times. In most
cases FTP 4 performs slightly better than FTP 1. Apparently in most cases the procedure
based on extremal splittings indeed yields a slightly better polling table than the Golden
Ratio procedure.

The observation that in NC 3 and NC 4 FTP 2 performs slightly better than FTP 1 and
FTP 4, may be explained as follows. As observed in section 4, the visits to the various queues
should be spaced as evenly as possible. For FTP 2 the very nature of cyclic polling allows
the visits to the various queues to be perfectly evenly spaced. For FTP 1 and FTP 4 the
desired visit frequencies in NC 3 and NC 4, c¢f. Table 5.2, do not even allow the visits to
be reasonably evenly spaced. In the derivation of the desired visit frequencies the visits to
the queues were however assumed to be perfectly evenly spaced. The fact that nevertheless
FTP 2 performs only slightly better than FTP 1 and FTP 4, actually supports the approach
used. As Table 5.3 confirms, FTP 2 is likely to outperform FTP 1 and FTP 4 only when the
number of queues is small and the difference in the desired visit numbers not too large.

6 CONCLUSION

In this paper we have examined the problem of deriving efficient operational rules for polling
queues according to an ftp scheme. An approach has been presented to the problem of
minimizing the mean total waiting cost per unit of time by constructing an efficient ftp
scheme, under the side-constraint of most rarely exceeding the available visit times. By
reformulating the side-constraint and by using a simple approximation of the mean waiting
times in a polling system, the problem has been formulated as an NP-hard mathematical
program. A heuristic method for solving this mathematical program has been presented.
Thus we have developed a method for constructing an efficient ftp scheme.

The method has been tested by simulation experiments. It is shown that the proposed
ftp schemes, FTP 1 and FTP 4, give good results compared with some other natural, but
less sophisticated, ftp schemes, FTP 2 and FTP 3. In addition, by perturbation of FTP 1
neighboring ftp schemes have been constructed, partly to further test FTP 1, partly as a first
step in improving the method itself.
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APPENDICES

A Proor or LEMMA 3.1

Lemma 3.1
Problem (I) is NP-hard.

Proof

To prove that problem (I) is NP-hard; we need to show that the decision variant of problem
(I) is NP-complete. A decision proBléih is séid to be NP-complete if (i) it belongs to the
class NP and (ii) every problem iii‘tHe class NP is (polynomially) reducible to it, cf. Garey
& Johnson [4]. For brevity let us refer to the decision variant of problem (I) as the decision
problem TABLE. TABLE reads as follows: given parameters \;, 5;, si, ci, 6;, €, i = 1,...,7,
and an arbitrary number 7, does problem (I) have a solution which is feasible and for which
the value of the objective function is not larger than r?

Obviously TABLE belongs to the class NP. As the notion of reducibility is transitive, it in
fact remains to be shown that some known NP-hard problem is (polynomially) reducible to
TABLE. Here the problem PARTITION turns out to be an appropriate choice as known NP-

hard problem. PARTITION reads as follows: given a set A = {ay, ... ,apt of p integers, does
P
A include a subset B, such that 3 a;= Y a;=13 a?
a;€B a;€EA\B i=1

We now prove that PARTITION is (polynomially) reducible to TastiE: Givéti an instance
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ai,...,ap for PARTITION, construct an instance A;, G;, Si, ¢, 6;, €, 1 = 1,...,n, and r for
TABLE in the following manner.

n=p+1;
B; =0,6; =0,¢; =0, i=1,...,p+1
83 =ai,ci)\i = a3, 1= 1,...,p; (Al)

sp+1 = Licpridpt1 = 4

1 (& 2
=1

We now need to prove that ay,...,a, constitute a ’yes’ instance for PARTITION iff );, G;, si,
¢iy 6, €, 1=1,...,n, and 7 as defined in (A.1), constitute a ’yes’ instance for TABLE.
We first show that a1, ..., a, constitute a ’yes’ instance for PARTITION iff there exists a feasible
P
polling scheme (P, T), such that m; =1, i =1,...,p, mpt1 =2, SC, = % > a; + 1 for both
i=1
k with P, =p+ 1.
P
{=} The set A = {a1,...,a,} includes a subset B, such that 3> a;= Y a;=3 Z
a;€B a;€A\B i=1
Let us say B = {a,...,05,}, A\B = {a;,,,,...,0i,}. Take Pi = p+ 1, Ppyy = iy for
k=1,...,q, Ppyo=p+1, Ppg =i fork=q+1,...,0, Ty =s8p, k=1,...,p+2. Then

p+2 - . g+1 N
SCi= ¥ Thp= 3 a;+1=5>0a;+1,8Ce=3>Te= > a+l=35%a+1l
k=g+2 a;EB i=1 k=1 aiEA\B i=1

P
{«<} Let ussay Po,, = p+1, P, = p+1, k1 < ka. So SCi, = %Eai-{—l, SCk, =
=1

p P p+2
% E a; + 1. Now, using (3.4), C = SCy, + SCk, = >, a; +2 = Y, sp,, while, using
+
(3.3), C kE . Hence_TkZ.st,kz1,...,p+2, implies Ty, = sp,, k = 1,...,p+ 2.
ko—1 P
Take B = {ap, : k1 < k < ko}. Then Y a; = %‘_, T = SCiy — Ty, = %Zai,
a;EB k=ky+1 =1
p+2 k1—-1 1 P
X oai= Y T+ Y Th=8SCk -Tr,=5a
a;EA\B k=ka+1 k=1 i=1

We now show that there exists a feasible polling scheme (P, T'), such that m; = 1,i =1,...,p,

Mpy1 = 2, SC = Elaz + 1 for both k with P, = p+ 1, iff A;, 8, si, ¢i, 05, €, 1 =1,.

and r as defined in (A 1), constitute a ’yes’ instance for problem TABLE.

{=1} As before C = Z a; + 2. So for (P, T) the value of the objective function is
i=1

1 n
E;ci)\i(l'f‘m) Z SC;%‘—‘

{k:P,=i}
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1 P P 2 1 p 2 1 P 2
7P N Zai(zai+2) +8(§Zai+1> =§<Zai+2> =r.
2 (Z a; + 2) i=1 i=1 i=1 i=1

i=1

{«<} Problem (I) with X;, 8;, si, ¢, 65, €, =1,...,n, and 7 as defined in (A.1) has a solution
which is feasible and for which the value of the objective function is not larger than r. Using
the Lagrangean multiplier technique and the argumentation preceding the formulation of
problem (II), it is easily verified that the value of the objective function is not larger than

P
%(gai+2) only for (P,T) with m; = R, i = 1,...,p, Mpt1 = 2R, SC, = C/mp,,

P
C = >~ mya; + mp41, which for R = 1 yields the result that we have in view.

=1

B THE GOLDEN RATIO PROCEDURE
Calculate the numbers g(k) = k¢! mod 1 with ¢! = H(V5-1)~0618034, k= 1,...,m.

2—1 7

Let the numbers g(k) with 3 mj+1 <k < 37 mj correspond to the visits to Q;, i = 1,..., n.
j=1 i=1

Put the numbers g(k), k =1,...,m, in increasing order.

Let the [-th smallest number correspond to the [-th position in Pl=1,...,m.

1—1 z

Formally, Py := 4 for k with 3 mj+1< k< Y7 mj, 7 representing the permutation such
j=1 j=1

that g(k) < g(l) <= (k) < n(l), k,i=1,...,m.

C A PROCEDURE BASED ON EXTREMAL SPLITTINGS

Before we give a detailed description, we first sketch the main motivation behind the proce-
dure. Recall that we contemplate to construct a polling table P that approximately minimizes
(3.9) for fixed m; and fixed T}, = D}‘,k.

On the one hand, as seen from the argumentation preceding the formulation of problem
(II), if the visits to the various queues are perfectly evenly spaced, then the polling table is

optimal. In fact substituting SCy = Y. m;D}/mp, into (3.9) yields a lower bound for the
=1

=.

value of (3.9) for the optimal table. On the Gther hand, if the visits to the various queues
are perfectly evenly spaced, then the polling table obviously satisfies the following property:
between any two consecutive visits to Q; there is exactly one visit to every Q; with m; = mj,
i # j. For brevity let us refer to this property as property (E). The reverse statement does
not hold. Even if the polling table satisfies property (E), then for arbitrary parameter choices
the subcycle times may still be arbitrarily far from equal, and the value of (3.9) may still be
arbitrarily far from minimal. Nevertheless, if the polling table satisfies property (E), then
for reasonable parameter choices the visits are likely to be reasonably evenly spaced, and
the polling table is likely to be reasonably good. We therefore use property (E) as the main
guideline in constructing a polling table.

Let M = {m; : i € {1,...,n}} be the set of visit numbers that ocGf. Let I = {i €
{1,...,n} : m; =7} be the set of the queues with common visit nutber r for 7€ M.
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Suppose that one has already constructed a subtable P of size | P| for all the visits to the
queues i € I(") ... (9 with common visit numbers r1,...,7, € M. Initially, | P| = 0,
{rl, ces ,’I“q} @

If M\{r1,...,7q} # 0, then select a visit number r from M\{ry,...,r;}. Construct a subtable
Q™ of size | Q") | = r x | I(")| for all the visits to the queues i € I (r) by just concatenating r
times an arbitrary sequence of the queues i € (*), Formally, with iy, . ) an arbitrary

g’;z(k by x o) = 45 for j = 1,...,|I(T) Lk=1,...,r

Obviously Q(") satisfies property (E).

Construct subsequently a subtable P of size | P() |=| P | + | Q") |, by inserting
the visits from the subtable Q™ in the subtable P in the following manner. Put the
visits from Q") at positions in P() as evenly spaced as possible, i.e, put the visit at
the k-th position 1n| Q(l") at the (k + d(k))-th position in P(), k = 1,...,] @®) |. Here

P

(k) = (k=) X ram:
Put the visits from P at the remaining positions in P("), i.e., put the visit at the x(I + lo)-
th position in P at the [-th position in P(™) that is not yet occupied by a visit from QM
l=1,...,|P|. Here x(k) = ((k—1)mod | P|) + 1. Choose Iy from {1,...,| P |} such that

the objective function (3.9) properly applied to P(") is minimal. Formally, P,g +)d(k:) = 5:),

k=1,..,1Q0 |, P& = Pygys k= 1,...,] QU |, I = d(k) + 1,...,d(k + 1). Thus

in P(T) the number of visits from P between the k-th and (k + 1)-th visit from Q) equals
P| 1P

dk+1)—d(k =[ X | J—[ —1) x ——|, k=1,...,|Q"|. This distancing is

closely related to extremal splittings of point processes, cf. Hajek [5]. Notice that the internal
visit order from P and Q") is maintained. Hence, by induction, P(") satisfies property (E).
Repeat with P replaced by P(™). Finally | P|=m, {r1,...,7q} = M.

sequence of the queues i € I, Q

k=1,...,] Q" |, with [z] denoting the nearest integer to z.

D Proor oF LEMMA 4.1

Lemma 4.1
The set of linear equations

Tk:PPk(l'*‘ka)zhlel‘i‘(1+6Pk)3Pk7 k=1,...,m, (D.l)
I=1

has a unique solution; this solution is non-negative.

Proof

Define the matrix 4 by Ay = pp, (1 + €p, )hu, k,l = 1,...,m, and the vector b by by =
(14 ép.)sp,, k = 1,...,m. Then the set of linear equations (D.1) may be rewritten as
(I—=AT=b.

As A is a non-negative irreducible matrix, A has a real elgenvalue 1, which is strlctly maximal
in absolute value, cf. Seneta {11} p. 3-4. For y holds r<1}m z A < pu< gllax E Ap, cf.

[11] p. 8. E A=Y, ¥ pp(l+ep)hu=p+ Sepnas Y hu=11=1,...,m
k=1 {=1 {k: Pa=i} =1 {k: Pa=3}




n
€;0;- As b is a non-negative vector, p+ 3. €

olution T'= (I — A)~16 > 0, cf. [11] p. 30.

{ CONFIGURATION 1 (NC 1)

=1

ubsc | Calls | TrRt | CRSz | FiSz | SwOT
2816 31 6700 37 ] 2703 300
3328 3} 6700 68 | 4412 300
3968 3| 6700 68 | 4412 300
4096 3| 6700 68 | 4412 300
2384 316700 68 | 4412 300
6656 3| 6700 68 | 4412 300
4736 3| 6700 68 | 4412 300
7776 31 6700 37 | 2703 300
5120 31 6700 37 | 2703 300
5376 3| 6700 68 | 4412 300
4336 3| 6700 68 | 4412 300
7296 31 6700 37 | 2703 300
7296 3| 6700 37 | 2703 300
3312 3| 6700 37 | 2703 300
8072 3| 6700 68 | 4412 300
2288 3| 6700 68 | 4412 300
4336 31 6700 68 | 4412 300
9216 31 6700 68 | 4412 300
3728 31 6700 68 | 4412 300
1096 3| 6700 68 | 4412 300
J019 3| 6700 68 | 4412 300
1267 31 6700 68 | 4412 300
J019 31 6700 68 | 4412 300

23
hat (I — A)T = b

a




JRK CONFIGURATION 2 (NC 2).

Subsc | Calls | TrRt | CRSz | F1Sz | SwOT
19244 3 | 45000 34| 5882 300
24616 3 | 45000 34 | 14706 300

7680 3 | 45000 34 | 5882 300
26481 31 6700 37| 2703 300
18688 3 | 45000 34 | 5882 300
21760 3 | 45000 34| 5882 300
78035 3 | 45000 34 | 14706 300
15360 3 145000 34 | 5882 300
16000 3 | 45000 34 | 5882 300
16000 3 | 45000 34 | 5882 300
14848 3 | 45000 34 | 5882 300
97824 3 | 45000 34 | 14706 300
26432 3 | 45000 34| 5882 300
17664 3 | 45000 34 | 5882 300
17664 3 | 45000 34| 5882 300

9216 3 1 45000 34 | 5882 300
10240 3| 6700 371 2703 300
15616 3 | 45000 34| 5882 300
13056 3 | 45000 34 | 5882 300

9417 3 1 45000 34 | 5882 300
12544 3 | 45000 34 | 5882 300
43682 3 1 45000 34 | 14706 300
17867 3 | 45000 341 5882 300

7680 3 | 45000 341 5882 300

2048 3 | 45000 34 | 5882 300
14592 31 6700 37| 2703 300

3072 31 6700 37| 2703 300

9728 3 | 45000 34| 5882 300

7168 3| 6700 371 2703 300
14000 31 6700 371 2703 300
18432 3 | 45000 341 5882 300
18686 3 | 45000 34 | 5882 300

9984 3| 6700 371 2703 300




