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Abstract

We investigate a new research area: we are interested in the ultimate thermodynamic cost of computing
from z to y. Other than its fundamental importance, such research has implications for future minia-
turization of VLSI chips reducing the energy dissipation below kT (thermal noise), and the similarity
distance problem in pattern recognition.

It turns out that the theory of thermodynamic cost of computation can be axiomatically developed.
Our fundamental theorem connects physics to mathematics, providing the key that makes such a
theory possible. It establishes optimal upper and lower bounds on the ultimate thermodynamic cost
of computation.

By computing longer and longer, the amount of dissipated energy gets closer to these limits. In fact,
one can trade time for energy: there is a provable time-energy trade-off hierarchy. The fundamental
theorem also induces a thermodynamic distance metric. The topological properties of this metric show
that neighborhoods are sparse, and get even sparser if they are centered on random elements. The
proofs use Symmetry of Information in a basic way.

These notions also find an application in pattern recognition. People have been looking without success
for an objective notion of cognitive distance to account for the intuitive notion of ‘similarity’ of pictures.
Thermodynamic considerations lead to a recursively invariant notion of cognitive distances. [t turns
out that the thermodynamic distance is a universal cognitive distance which discovers all effective
features used by any cognitive distance whatsoever.

In pattern recognition, a fundamental question is to define a mathematical concept of ‘similarity’ or
‘picture distance' between two pictures. This is a question about cognition. No proper objective stan-
dard has been found. For example, Hamming distance is way off between postive and negative prints
of the same image: in this case, Hamming distance is the largest, while the pictures are cognitively
close to human eyes. :

Intuitively, the cognitive distance between two objects corresponds to the amount of work involved
in transforming one object into the other one—by either brain or by machine. We show that any
effectively defined distance is a cognitive distance.
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1 INTRODUCTION

Computers can be regarded as engines that dissipate energy in order to process information. The
ultimate limits of miniaturization of computing devices, and therefore the speed of computation, are
governed by unavoidable heat increase through energy dissipation. Such limits have already been
reached by current high density electronic chips [19]. Therefore, the question of how to reduce the
energy dissipation of computation determines future advances in computing power. Extrapolations of
current trends suggest that reduction of the energy dissipation per logic operation below kT (thermic
noise) becomes a relevant issue within 20 years. This requires the use of reversible logic for fundamen-
tal thermodynamic reasons. In [21] two methods to implement such reversible computations using
electronic switching devices in conventional technologies (like nMOS, CMOS, and Charge Coupled
Devices) are proposed. We develop a mathematical framework for the theory of thermodynamics of
computation, in particular for the ultimate limits on energy dissipation.

In the early fifties, J. von Neumann [24] thought that a computer operating at temperature T' must
dissipate at least kT'In 2 Joule per elementary bit operation (about 3 x 102! J at room temperature),
where k is Boltzmann’s constant. Around 1960, R. Landauer [15] more thoroughly analyzed this
question and concluded that it is only ‘logically irreversible’ operations that must dissipate energy.
An operation is logically reversible if its inputs can always be deduced from the outputs. Erasure
of information is not reversible. Erasing each bit costs £T'In2 energy, when computer operates at
temperature T. Solidly based on principles of physics, we develop a mathematical theory of the
thermodynamic cost of computation.

e Firstly, the minimum thermodynamic cost of a computation is the sum of the energy involved
in the providing (inverse erasure) the extra bits required in the course of a computation plus the
destroying (erasure, [5]) of the generated garbage bits. This corresponds to the nonreversible part of
the computation, and according to Landauer’s principle only this nonreversible part of computation
dissipates heat. We axiomatize this in terms of effective computations. Qur “Fundamental Theorem”
gives tight upper and lower bounds on the ultimate limits of the thermodynamic cost of effective
computations, and makes a full theory of thermodynamics of computation possible.

® It has been stated before on the evidence of physical analogies that slow computations may dissi-
pate less energy—Ilike slower moving billiard balls in water generate less friction, [5]. We mathemati-
cally prove this statement to be true: there is a proper time-energy trade-off hierarchy of diminishing
energy costs using increasing time of computation. Essentially, like in real life, garbage (like disposable
information) needs to be compressed before it is destroyed, and this costs time.

o An effective distance is a distance which can be computed by a Turing machine. To compute an
effective distance we have to spend some minimal thermodynamic cost, the effective thermodynamic
distance. Thermodynamic distance is symmetric and induces a distance metric. We analyze the
topological properties of this metric. This topology is sparse: each d-ball contains at most 2¢ elements.
(Compare this with a 1-ball around each z € {0,1}" contains n elements in {0,1}" for Hamming
distance.) The more random an object is, the less elements of the same size there are in a d-ball
around it; if it is completely random then this number of elements is about 24/2. Finally, in each
set of size d almost all pairs of elements have distance 2d (which is also the maximum if the set is
recursively enumerable).

e Given two pictures, are they similar? Answering such question is the goal of pattern recognition.
Whatever we mean by picture similarity or picture distance is the first fundamental question that must
be dealt with in pattern recognition. For example, Hamming distance is way off between positive and
negative prints of the same image: in this case, Hamming distance is the largest, while the pictures
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FIGURE 1. Implementing reversible AND gate and NOT gate

are cognitively close to human eyes.

This is a question about cognition. Up till now no objective measure for cognitive distance has
been found [25]. Intuitively, the minimal cognitive distance between two objects corresponds to the
minimal amount of work involved in transforming one object into the other—by brain or computer.

The thermodynamic cost measure readily induces a mathematical theory for a recursively invariant
notion of cognitive distance that was seemingly undefinable for the long history of pattern recognition.
We show that the class of cognitive distances contains a universal cognitive distance, which turns out
to be the thermodynamic distance. This universal cognitive distance minorizes all cognitive distances:
if two pictures are d-close under some cognitive distance, then they are O(d)-close under this universal
cognitive distance. That is, it discovers all effective feature similarities between two objects.

Because of space limitation, almost all proofs are moved to the Appendix.

1.1 Physical Background

Briefly, Landauer’s line of reasoning ran as follows. Distinct logical states of a computer must be
represented by distinct physical states of the computer hardware. Suppose n bits are erased, i.e.,
reset to zeroes. Before the erasure operation, these n bits could be in any of the 27 possible states.
After the erasure, they are compressed to just one unique state. But, in order to compress the
computer’s logical state, one must in fact compress its physical state, hence lower the entropy of the
hardware. According to the second law, such decrease of entropy of the hardware must dissipate
energy.

As an example, consider an ideal computer using elastic frictionless billiard-balls (like molecules).
The presence of a ball represents a 1 and no ball represents a 0. The ballistic computer contains mirrors
to reflect the balls at some positions. All collisions are perfectly elastic. Between the collisions, the
balls travel in straight lines with constant speed, by Newton’s first law.

To start the computation, if an input bit is 1 we fire a ball, if an input bit is 0, we do not fire a
ball. All input balls are fired simultaneously. Figure 1 implements an AND gate for input A and B.
If we set B=1, then we also have a NOT gate for A (and setting A=1 gives a NOT gate for B).

We will also need the constructions in Figure 2 using mirrors to deflect a ball’s path, shift a path,
delay the ball’s motion without changing its final direction, and allow two lines to cross.

It is possible to emulate any computation using the above gadgets. Soppose the setup let all the
balls simultaneously reach the output end. After we observe the output, we can simply reflect back
all the output balls, including the many ‘garbage balls’, to reverse the computation. The billiard balls
will then come out of the ballistic computer exactly where we sent them in, with the same speed.
Then the kinetic energy can be absorbed by the device that kicked the balls in. Then the device is

ready for a next round of dissipationless action. A scheme for a ballistic ball computer is shown in
Figure 3.
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FIGURE 2. Controlling billiard balls’ movements

FIGURE 3. A billiard ball computer



Suppose we introduce a soft-pad in the device which stops incoming balls dead. If we funnel the
garbage balls to the soft-pad, then the computation becomes irreversible because the information
represented by the garbage balls is erased. This erasure causes energy dissipation by converting the
kinetic energy of the balls to heat.

1.2 Related Work

There is a large body of proposals for effective physical realization of (almost) energy free reversible
computing. Among others, this has been analyzed with respect to bistable magnetic devises for
reversible copying/canceling of records in [15] and Brownian computers [12], for Turing machines
and Brownian enzymatic computers [3, 4, 6], with respect to reversible Boolean circuits by [9], for
molecular (billiard ball) computers by [23], Brownian computing using Josephson devices in [17],
quantum mechanic computers in [1, 2, 18] and notably by R. Feynman [7, 8]. All these models
seem mutually simulatable. For background information, see [5]. Implementations in current solid
state technologies (nMOS, CMOS, CCD) of two methods of using switches to implement reversible
computations are presented in [21]. We note that conventional approaches in circuits assume that
dissipation occurs when a wire switches from one logic state to another. In [13] a theory based on this
assumption is developed and design techniques are presented to reduce this type of dissipation.

In the last three decades there have been many partial precursors and isolated results to the complete
mathematical theory developed in this paper. However, it is the formulation of our Fundamental
Theorem E(z,y) =~ K(z|y) + K(y|z) that provides the key to the theory of thermodynamics of
computation. Technically, this theorem is also nontrivially stronger than, and implies all, previous
results on this issue which are comparable. Informally, F(z,y) is the optimal thermodynamic cost of
computing y from z, and K(z|y) is the length of the shortest effective description of z given y.

At least in [5] Kolmogorov complexity was used in the analysis of reversible computing. In [20]
a Kolmogorov complexity based metric for picture similarity was proposed (which is too complex),
without clear justification or further results. One of us, stimulated by that paper, proposed (but did
not publish) the proper definition K(z|y) + K(y|z) of universal cognitive measure (presented in this
paper) in 1988, but did not obtain any further results on it. With respect to cognitive distance, we are
not aware of further comparable work: all previous work involves ad hoc approaches, and no objective
measure has been proposed [25].

The closest in spirit, and most important stimulation, is the work of W. Zurek [27]. Since he
does not provide a formal model, and charges costs in different ways in different places, we need to
interpret his work in our model to obtain a proper comparison with our results. He established that the
ultimate thermodynamic cost of erasure of a record z, provided the shortest program of length K ()
for z is given, has an upper bound of K(z) (units of ¥T'In2). Since we charge both for the provided
bits and for the erased bits, this says E(z,¢) < 2K(z). Moreover, he gives a lower bound on the
thermodynamic cost of computing y from z of K(z|y). In our terminology this is E(z,y) > K(z|y).
He gives a thermodynamic distance assuming that K(z|y)+ K(y|z) bits are provided, which also have
to be erased. This shows E(z,y) < 2K(z|y) + 2K (y|z) (his information metric).

2 THERMODYNAMICS OF COMPUTATION

Many physical realizations of reversible computing devices, dissipating almost no energy in theory,
have been proposed (see references in Section 1.2). For example, one basic issue is that almost energy
free copying of records, and cancelling of one record with respect to an identical record provided it is
known that they are identical, is physically realizable. Such operations are logically reversible, and
their energy dissipation free execution gives substance to the idea that logically reversible computations
can be performed with zero energy dissipation.

According to currently accepted physical viewpoints that the unavoidable thermodynamic cost,
incurred by a computation which replaces input z by output y, is at least the number of irreversibly
erased bits, each unit counted as kT 1n 2.



Complementary to this idea, if such a computation uses initially irreversibly provided bits apart
from input z, then they must be accounted the same cost as that for irreversible erasure. Namely,
providing extra records from external media can be viewed as irreversible inverse erasure: to get rid of
them we have to irreversibly erase them. Because of the reversibility of the computation, we can also
argue by symmetry. Namely, suppose we run a reversible computation starting when memory contains
input z and additional record p, and ending with memory containing output y and additional garbage
bits g. Then p is irreversibly provided, and g is irreversibly deleted. But if we run the computation
backward, then the roles of z,p and y, ¢ are simply interchanged.

Should we charge for the input z or the output y? We do not actually know where the input
comes from, nor where the the output goes to. Suppose we cut a computation into two consecutive
segments. If the output of one computation segment is the input of another computation segment,
then the thermodynamic cost of the composition does not contain costs related to these intermediate
data. Thus, we want to measure the cost of irreversible steps of a computation. We can view any
computation as consisting of a sequence of reversible and irreversible operation executions. We want
the irreversibility cost to reflect all nonreversible parts of the computation.

Thus, we consider the following axioms as the codification of abundant concrete evidence in the
form of a formal basis on which to develop a theory of computation thermodynamics in the manner
of statistical mechanics or thermodynamics.

Axiom 1 Reversible computations do not incur any thermodynamic cost.
Axiom 2 Irreversibly provided and irreversibly deleted bits in a computation incur unit cost each.

Axiom 3 In a reversible computation which replaces input z by output y, the input z is not irre-
versibly provided and the output y is not irreversibly deleted.

Axiom 4 All physical computations are effective.

We emphasize that the first three axioms are solidly based on principles of physics. Axiom 4 is simply
a form of Church’s Thesis: the notion of physical computation coincides with effective computation
which coincides with the formal notion of Turing machines computation.

We will be talking about the ultimate limits of energy dissipation by computation. Since these limits
will be expressed in the number of bits in the irreversibly provided records and the irreversibly erased
records, by Axioms 1-3, we consider compactification of records. Rather as in analogy of garbage
collection by a garbage truck: the cost is less if we compact the garbage before we throw it away.

The ultimate compactification which can be effectively exploited is expressed in terms of Kolmogorov
complexity. This is a recursively invariant concept, and to express the ultimate limits no other
notion will do. Consequently, this mundane matter of energy dissipation of physical computation is
unavoidably linked to, and expressed in, the pristine theoretical notien of Kolmogorov complexity.

2.1 The Invariant Notion of Thermodynamic Cost

We need the following notion. The Kolmogorov complexity, [14, 28, 16], of = is the length of the
shortest effective description of z. Formally, this can be defined as follows. Let z,y,z € N, where
N denotes the natural numbers and we identify A and {0,1}* according to the correspondence
(0,¢€),(1,0),(2,1),(3,00),(4,01),.... Hence, the length |z| of z is the number of bits in the binary
string . Let T3,T5,... be a standard enumeration of all Turing machines, let ¢1,¢2,... be the
enumeration of corresponding partial recursive functions. So T} computes ¢;. Let |T;| be the length

of the self-delimiting code of T;. Let < - > be a standard invertible effective bijection from A" x A to
N.

Definition 1 The Kolmogorov complexity of « given y (for free) is
K(zly) = min{|p| +|T3| : gi(< p,y >) = z,p € {0, 1}", 5 e N'}.



Axioms 1-4 leads to the definition of the thermodynamic cost of a computation as the number of bits
we added plus the number of bits we erased in computing one string from another. Let R, Rs,...bea
standard enumeration of reversible Turing machines, [3], and let ¥ = 1)1, 3, ... be the corresponding
standard enumeration of partial recursive functions.

Definition 2 Let 1 be a function computed by a reversible Turing machine. The thermodynamic cost
Ey(z,y) of computing y from x is

Ey(z,y) = min{|p| + || : ¥(< z,p >) =< y,¢ >}

We denote the class of all such cost functions by £.

We call an element of £ a universal thermodynamic cost function, if for all ¥ € ¥,

E¢0(:c,y) < E¢(m,y) + ¢y,

for all z and y, where ¢y is a constant which depends on % but not on z or y. Standard arguments
from the theory of Turing machines show the following.

Lemma 1 There is a universal thermodynamic cost function in £. Denote it by 1.

Proof. In [3] a universal reversible Turing machine U is constructed. The function < is the
function computed by U. O

Two such universal (or optimal) functions vy and ) will assign the same thermodynamic cost to
a computation apart from an additive constant term ¢ which is independent of ¢ and y. We select a
reference universal function )y and define the thermodynamic cost E(z,y) of computing y from x as

E(.’D, y) = E't/)o (23, y)

In physical terms this cost is in units of £7'1n 2, where k is Boltzmann’s constant, T is the absolute
temperature in degrees Kelvin, and In is the natural logarithm.
Because the computation is reversible, this definition is symmetric: we have E(z,y) = E(y, z).

2.2 Ultimate Thermodynamic Cost of Computing y from x

Now let us consider a general computation which outputs string y from input string z. We want to
know the minimum thermodynamic cost for such computation. This leads to the following theorem,
which forms the basis of our theory.

Theorem 1 (Fundamental theorem) Up to an additive logarithmic term?,
E(z,y) = K(z|y) + K(y|x).
Proof. 'We prove first an upper bound and then a lower bound.

Claim 1 E(z,y) < K(ylz) + K(zly) + 2[K(K (yl=)|y) + K (K (z]y)|=)]-

1Which is O(min{K (K (y|z)|y), K (K(z|y)|z)}) = O(log min{K (y|z), K(z|y)}). It has been shown, [10], that for
some z of each length n we have

logn —loglogn < K(K(z)|z),
and for all = of length n we have

K(K(z)|z) < logn + 2loglogn.



Proof. We start out the computation with programs p, ¢,r. Program p computes y from z and
lp| = K(y|z). Program g computes the value K(zl|y) from z and |¢| = K(K(z|y)|z). Program r
computes the value K(y|z) from y and |r| = K(K(y|z)|ly). The computation is as follows.

1. Use p to compute y from z producing garbage bits g(z, y).

2. Copy ¥, and use one copy of y and g(z, y) to reverse the computation to z and p. Now we have
P47 Y.

3. Copy z, and use one copy of z and ¢ to compute K(z|y) plus garbage bits.

4. Use z,y, K(z|y) to dovetail the running of all programs of length K(z|y) to find s, a shortest
program to compute z from y. Doing this, we produce more garbage bits.

5. Copy s, and reverse the computations in Steps 4, 3, canceling the extra copies and all garbage
bits. Now we have p,¢,1,s,2,¥.

6. Copy vy, and use this copy to compute the value K(y|z) from r and y producing garbage bits.

7. Use z,y, K(y|z), to dovetail the running of all programs of length K(y|z) to obtain a copy of p,
the shortest program to compute y from z, producing more garbage bits.

8. Delete a copy of p and reverse the computation of Steps 7, 6 cancelling the superfluous copy of
y and all garbage bits. Now we are left with z,y,7,s,q.

9. Compute from y and s a copy of z and cancel a copy of z. Reverse the computation. Now we
have y,r, s, q.

10. Erase s, 7,q.

We started out with additional shortest programs p, ¢, apart from z. We have thermodynamically
erased the shortest programs s, ¢, 7, where |s| = K(zl|y), leaving only y. This proves the claim. O

Note that all bits supplied in the beginning to the computation, apart from input x, as well as all
bits thermodynamically erased at the end of the computation, are random bits. This is because we
supply and delete only shortest programs, and a shortest program p satisfies K(p) > |p|, that is, it is
maximally random.

Claim 2 E(z,y) > K(y|z) + K(z|y).

Proof. To compute y from x we must be given a program to do so to start out with. By definition
the shortest such program has length K(y|z).

Assume the computation from z to y produces g(z,y) garbage bits. Since the computation is
reversible we can compute  from y and g(z,y). Consequently, |g(z,y)| > K(z|y) by definition [27].
To end the computation with y alone we therefore must thermodynamically erase g(z,y) which is at
least K(z|y) bits. O

Together Claims 1, 2 prove the theorem.
O

Erasing a record x is actually a computation from z to the empty string €. Hence its thermodynamic
cost is E(z, €), and given by a corollary to Theorem 1.

Corollary 1 Up to a logarithmic additive term, the thermodynamic cost of erasure is E(z,¢) = K(z).
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ise a record z, Corollary 1 actually requires us to have, apart from z, a program
K(z)|z) for computing K(z), given z. The precise bounds are K(z) < E(z,¢) <
z)|z). This optimum is not effective, it requires that p be given in some way. But we
ne method as in the proof of Theorem 1, by compressing = using some time t. Let
mgth of a shortest program z; which can be constructed from z in t steps.

Chermodynamic cost of effective erasure) Ift is a time bound such that K(t|z) =
ing an n bit record x can be done at thermodynamic cost K*(z) bits,

pression methods are given in [22, 26, 11]. For example [11], if L is a context-free
each z in L can be compressed logarithmically in polynomial time. Note that ther-
# in this way introduces another interesting measure on languages. Languages that
lergy can be accepted faster, theoretically, than those languages that dissipate a lot of
slows down the computation).

L lower bound on the thermodynamic cost of erasure is given by:

'1_131010 K'(z) = K().

'y spending more time we can reduce the thermodynamic cost of erasure of z} to its
um. In the limit we spend the optimal value K(z) by erasing z*, since lim; ,oc z} = z*.
1e existence of a tradeoff hierarchy between time and energy. The longer one computes,
one spends. This can be formally proved.

be the minimum energy computing from z to ¥ in time ¢. Formally,

= prglég,{lp! + gl : Yo(< z,p >) =< y,¢ > in < t(|z]) steps}.

inergy-time tradeoff hierarchy) For each y and each large n and b > 3n/b +
18 a string = of length n, and t;(n) < t3(n) < ... < tp(n), where m = n/b, such

> E%(z,y) > ...> E'™(z,y).

Theorem 3 gives a time-energy tradeoff hierarchy for erasure.

ys Have Less Neighbors, Thermodynamically

ty of E(z,y) is its symmetry: E(z,y) = E(y, z).

rified that £ : ' X N/ — N is a distance function. Up to a logarithmic additive term
' > 0 with equality only for z = y; E(z,y) = E(y, z); and E(z, z) < E(=z,y) + E(y, ).

We call E(xz,y) the thermodynamic distance between z and y.

icts = have sparsely populated neighborhoods. Indeed, the following Theorem 4 says
sth n has complexity K(z) > n, then there are at most 2%/? elements y of length n
ynamic distance d.

adom a string is, the less number of strings of same length are nearby. In fact, an
»e compressible by d bits so that K(z) < n — d before there can be 2¢ elements y of
thermodynamic distance d.

‘opology of Randomness) Let z,y € AN have length n. For each x the number of
(z,y) < d is 2* with




d— K(z)
2
) < d. Forn— K(z) > d we have a = d+ O(logn).

+ O(logn),

r strings of all lengths, then there is a fixed approximate number of y’s within optimal
c cost d of z. This property will be very useful in defining cognitive distance in Section 3.

Topology) Let z,y € N. For all z the number of y’s satisfying E(z,y) < d is at least
r0st 2¢.

that in every set of low complexity almost all elements are far away from each other.
y K(8) of a set is the length of the shortest binary program that enumerates S and

Diameter of sets) Let S be a set with K(S) = O(logd) and with |S| = 2¢. Almost
ments x,y € S have distance E(z,y) > 2d, up to an additive logarithmic term.

atement can be proved for the distance of an z (possibly outside S) to the majority of
S. If K(x) > n, then for almost all y € S we have E(z,y) > n+ d — O(logdn).
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v digitized black-and-white pictures with binary strings. There are many distances
1ary strings. For example, the Hamming distance and the Euclidean distance. Such
sometimes okay. For instance, taking a binary picture, and you change a few bits on
hen the changed and unchanged pictures have small Hamming or Euclidean distance,
w0k similar. However, this is not always the case. The positive and negative prints of a
s largest possible Hamming and Euclidean distance, yet they look similar in our eyes.
ple, if we shift a picture one bit to the right, again the Hamming distance may increase
he two pictures remain similar.

. on pattern recognition try to define picture similarity. But up to now, no definition is
» satisfactory definition of cognitive similarity. Indeed, we do not even know what we
tively similar. This is an intuitive notion which has no mathematical meaning. In fact,
:ognitive distance’ can hardly be regarded as one definite measure since different people
srently. One man’s meat may be another man'’s poison.

ictures z and y, a first thought to us was to define the distance from « to y as K (y|z).
immediately notices that this is not symmetric. A few years ago, one of the authors
| proposed measure K(y|z) + K(z|y). But why? The solution is in thermodynamics of

r approach relevant for human cognition we will assume that human eyes (and brains)
\ation like a computer. Such an assumption suffices for artificial intelligence and pattern
which we deal only with artificial eyes and computer vision. We shall equate the
compare ¢ with y with the thermodynamic cost of comparing z with y. E(z,y) is the
‘modynamic cost which any effective process needs to spend in comparing z with y. It
y invariant objective notion and cannot be improved.
ly to define cognitive distance. A distance measure must be nonnegative, symmetric,
e triangle inequality. This is not sufficient since a distance measure like d(z,y) = 1 for
; be excluded. For a distance to make sense, it must be able to discriminate minority of
re near to a given string = from majority of strings that are far from z.
- only effectively computable distances. Our definition will not be suitable to situations
ce function is not computable. For human vision, it may be unclear if man can compute
nputers. But in pattern recognition and computer vision, our assumption is simply a
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consequence of universally accepted notions of effectiveness. This leads to Item 4 in the definition of
cognitive distance.

The thermodynamic cost of the shortest effective distance between z and y is E(z,y). Hence, we
may simply postulate E(z, y) as the optimal (minimal) cognitive distance. Alternatively, we can derive
this result from slightly weaker premisses, as follows.

According to Theorem 5, for each z, the number of elements that are within thermodynamic distance
d to z is at most 2¢. Suppose we require additionally that this is an upper bound on the number
of elements in a d-ball around z for any cognitive distance. Then clearly thermodynamic distance is
a cognitive distance. But it is not immediate that all cognitive distances majorize thermodynamic
distance, as we shall show below.

Definition 4 Cognitive distance, D, is a total function, N x N'— N, such that
1. Vz,y, D(z,y) > 0, with equality holding only for z = y;

Symmetry: Vz,y, D(z,y) = D(y, z);

Triangle Inequality: Vz,y, z, D(z,y) < D(z, 2) + D(z,y);

for each z, the set {y : D(z,y) < d} is recursively enumerable; and

S

for each z, |{y : D(z,y) < d}| < 2¢.
Let D be the class of cognitive distances.

Definition 5 I' € D is a universal cognitive distance if for each D € D, we have I'(z, y) = O(D(z, y))
foralz,yeN.

Theorem 7 (Optimal cognitive distance) The function E(z,y) is a universal cognitive distance
Sfunction.

In this sense, E(z,y) is the optimal cognitive distance. If z and y are d-close under any cognitive
distance D, then they are also 2d-close under E by the proof of Theorem 7. That is, E will account
for similarity according to any cognitive measure. This distance is the ultimate effective similarity
criterion.
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rem 2.
ave input x in memory.

‘ompute {. Copy t and reverse the computation. Now we have z and ¢.

ovetail the running of all programs of length less than z to find the shortest one halting
vith output z. This is z}. The computation has produced garbage bits g(z,z;). Copy

sverse the computation to obtain z erasing all garbage bits g(z,z}). Now we have
memory.

t from z, cancel one copy of ¢, and reverse the computation. Now we have z,z; in

sing z} by the standard method, and then erase z} irreversibly.

rem 3.

, here we will only give the proof for y = e. Given n, we will construct a string z
quirements of the theorem. String z will be constructed in m steps, and z will contain

-++,Zm each of length b = n/m. The idea is to make these blocks harder and harder
fine, for 1 <k < m,

n

ion, we will enforce the following things:

cks can be compressed iff given enough time. Precisely, z; can be compressed to
ize given tj41(n) time, but z; cannot be compressed at all given tx(n) time, where

tive compression”. I.e., if 4 cannot be compressed in time ¢ then zy, . . . Ty, as a single
not be compressed in time ¢ either. In the construction, we will use only prefixes from
set Sy which contains strings that are not compressible at step k.

0on.

) be the set of all strings of length n, and to(n) = 0.
0<k<m).

1e that the first k blocks z1,. ..,z of z are already constructed and we have |Sk| >
where S}, contains strings of length n — kb which cannot be computed from programs

than n — kb — 2k in time ¢(n). We now construct Tp41 using strings in Si. Let s be
of length b such that

ss' € Sk” > 2n-—(k+1)b—2k. (1)

sts (Claim 3). Set z4.; 1= s.

w construct Sgy; from Si. Let S} = {s' : 74415’ € Sx}. We have | S| > on—(k+1)b—2k
n 1. Simulate each of the programs of length less than n—(k+1)b—2k—1 for t4,(n)/2

Sk+1 contain all strings s of length n — (k + 1)b such that s € S, and s is not an
wbove simulations. We have |Sy| > 2n~(k+1)b~2(k+1)



ruction.

e 5 a string s of length b such that

c Sk}l > 2n—(k+1)b—2k'

‘his claim is not true, the number of elements in S; must be less than

1)6—2k __ 2n—kb—2k
- )

O

each k = 1,...,m, block z; can be generated by a constant sized program in time

' prove the claim, we notice that we can construct Sy in 2;;1 ti(n) steps. This is less

) steps. Then we can find zj in less than glﬁtk+1(n) steps. In total, this is less than

5. Thus in time %tk.*_l (n), given k, we can compute z; by a constant size program. O

Ulb=n/m.

z) < n — kb= O(logn).

2k + O(logn) < Kt +(x).

Je first prove Item 1, K%+ (z) < n — kb+ O(logn). Since 1tii1(n) is sufficient to
e construction to the end of step k by Claim 4, this produces the first & blocks of z.
z) < n— kb+x O(logn).

w that Item 2, K**+1(z) > n—kb—2k—O(log n), by contradiction. Suppose K*+1(z) <
-plogn, p is a constant large enough. Then in t41(n) time, with a program of size
- plogn can print z. Thus a program of size n — kb — 2k — (p — 1)logn can print

Sk+1 in time tx41(n). This contradicts to the construction, since the strings in Sg41
essible in time t44+; by more than 2(k + 1) + O(1) bits. O

-tg41(n), we can compress z to size n— kb O(logn). Thus by a reversible computation,
s developed earlier in this paper, we need only to erase n — kb £+ O(logn) bits in order
k+1(n) time. Precisely,

1t steps we can compute from s to s' and from s' to s, then E9®)(s,¢) < |s'|.
2 show how to erase s by erasing |s'| bits in O(t) time.
ly compute s’ from s, with garbage g(s, '), using ¢ steps.

, then reverse the computation of Item 1, absorbing the garbage bits g(s, s*), using at
t) steps.

ly compute from s' to s, with garbage g(s', s); then cancel a copy of s, using at most
te.

the computation of ITtem 3, absorbing the garbage bits g(s', s), then remove s' irre-
using at most time O(%).

» erasing procedure uses less than O(t) steps and erases s' bits. Thus EO®)(s) < |s'|. O

laim 5(1) and Claim 6, we have
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E*+1(z,€) < n — kb=+ O(logn). (2)
On the other hand, with time tx(n), by Claim 5(2), we have
K*(z)>n—(k—1)b=-2(k — 1) + O(logn).

Thus, by a time-bounded version of Corollary 1, we must erase at least n— (k~1)b—2(k— 1)+ O(logn)
bits. That is,

E%*(z,€) > n— (k—1)b~2(k — 1) = O(logn). (3)
By Equations 2 and 3, and the assumption that b > 3n/b+ O(logn), we conclude, for 1 < k& < m,
E'(z,€) > E'*+(z,¢).
0

Proof of Theorem 4.

Let K(x) = n — 6(n). In the remainder of the proof all (in)equalities involving complexities hold
up to an O(logn) additional term.

(=) We show that there are at least 2(4*+5("))/2 elements y such that Theorem 4 holds. Let y = z*2
with |z| = 6(n) and z* is the first program for = which we find by dovetailing all computations on
programs of length less than n. We can retrieve z from y using at most O(logn) bits. There are 2(%)
different such y’s. For each such y we have K(z|y) = O(1), since z can be retrieved from y using z*.
Now suppose we further divide y = uw with |u| = [/2 and choose u arbitrary. Then, the total number
of such ¥’s increases to 26(m)+/2,

These choices of y must satisfy E(z,y) < d. Clearly, K(y|z) < §(n) + /2. Moreover, K (z|y) < /2
since we can retrieve x by providing {/2 bits. Therefore,

K(zly) + K(ylz) <1/2+6(n) +1/2.

Since the lefthand side has at most value d, the largest [ we can choose is, up to the suppressed
additional term O(logn), given by | = d ~ §(n).

This puts the number of y's such that E(z,y) < d at least at 2(5(n)+d)/2£000gn) (Gince [ must be
nonnegative, we can at most choose 6(n) < d, which gives a greatest number 2¢ of y’s for §(n) = d.
This corresponds to Theorem 5)

(<) Assume, to the contrary, that there are at least 2(¢+5("))/2+¢ elements y such that Theorem 4
holds, with ¢ some large constant. Then, for some y,

K(y|z) > (—i—%(n) +ec (4)
By assumption

K(z) = 8(n), K(y) < n.
By symmetry of information [28]

K(z) + K(ylz) = K(y) + K(z]y),

and substituting we find
d—6(n)
2

n -+ + ¢ < n+ K(zl|y).
But this means that

K(z|y) > d—T{S(n) +c, (5)
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which, by Equations 4 and 5, contradicts
K(zly) + K(y|lz) < d.
[}

Proof of Theorem 5.

(<) Assume the converse. Then for some z and d, the number of y's for which E(z,y) < d exceeds
9¢. Consequently, there is a yo such that K(ylz) > d. Since E(z,3) > K(wlz) + K(z|yo) and
K(z|yo) > 0 we have a contradiction.

(>) Consider the set of y’s of the form xp®, where p is the reversal of a self-delimiting program p.
Then K(zly) = 0(1), K(y|z) = K(p|x) + O(1). Hence,

d > E(z,y) 2 K(zly) + K(yle) = K(plz) + O(1).

For any fixed = there are at least (2%) distinct p’s which satisfy K(plz) +O(1) < d, and hence there
are also that many y’s. O

Proof of Theorem 6.

By the conditions in the theorem, for all z € S we have K(z) < d + O(logd). There are 24 - 9d-¢
elements z in S which have complexity K(z) > d —c. Let S, be the set of these z’s. For any z in S,
there are at least 2¢ — 29—+l elements y € S, such that K(y|z) > d—2c. By symmetry of information,

K(z)+ K(ylz) = K(y) + K(zly) + O(log d).
Hence, for ¢ = log d we have K(z|y) > d — O(logd). That is, by Theorem 1, we have
E(z,y) > 2d — O(log d),

for at least
1

g _ 1
(2d _ 2d log d)(zd _ 2d 210gd) — 22d(1 . E . _&5

1
el
pairs z,y € §. O

Proof of Theorem 7.

We first prove that E is a cognitive distance. Items (1}—(3) of the definition are trivially satisfied
since E is a distance function. Item (4) is satisfied since E is enumerable. Item (5) is satisfied by
Theorem 5.

Secondly, it needs to be proved that E is optimal. For any D € D, by Item 5 of Definition 4, we
have |S| < 2¢, where § = {y: D(z,y) = d}. Given z, we can recursively enumerate the set 3, and
identify y by its index in S. Therefore, K(y|z) < d+O(1). Since D is symmetric, we derive similarly
K(zly) < d+ O(1). Hence,

E(z,y) = K(zly) + K(ylz) < 2D(z,9) + O(1). O



