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Abstract

We study animators and error reporters for generated programming environments.
An error reporter is a tool for indicating the exact position of a type-error in the
source text. An animator visualizes program execution; typically, it highlights the
statement that is currently executing. Applications of both tools are mainly to be
found in the areas of debugging and tutoring. Instead of explicitly extending language
specifications with these facilities, we claim that error reporters and animators can
be generated from existing specifications for type-checkers and interpreters with little
effort; to this end, a simple pattern-matching mechanism is used in conjunction with
origin tracking, a generic tracing technique. In this paper, we discuss our claim, and
at the same time investigate the limitations and deficiencies of origin tracking. Our
techniques are illustrated using an example language named CLaX, a Pascal relative.
The full specifications of the CLaX syntax, type-checker and interpreter are included
in appendices.
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We study animators and error reporters for generated programming environments. In our

setting, a programming environment consists of a syntax-directed editor, a type-checker,
and an interpreter for a programming language. We use the ASF+SDF Meta Environment
[Hen91, K1i93, Wal91] to generate programming environments from algebraic specifica-

tions.

An error reporter is a tool for pinpointing the position of a type-error in the source

text. An animator visualizes program execution; typically, it highlights the statement

that is currently executing. Applications of both tools are mainly to be found in the
areas of debugging and tutoring. Instead of explicitly extending language specifications
with these facilities, we claim that error reporters and animators can be generated from



PROGRAM fibonacci;
DECLARE
lab : LABEL;
count : INTEGER;
fib : ARRAY[1..20] OF INTEGER;

BEGIN
count := 3;
fib[1] :=1;
fib[2] :=1;

lab: fib[count] := fib[count-1] + fib[count-2];
count := count + 1;
WRITE(" count = "); WRITE(count); WRITE("\n");
IF count <= 20 THEN
GOTO lab
END
END.

Figure 1: Example of a CLaX program.

existing specifications for type-checkers and interpreters with little effort; to this end, a
simple pattern-matching mechanism is used in conjunction with origin tracking, a generic
tracing technique [DKT92|. In this paper, we discuss our claim, and at the same time
investigate the limitations and deficiencies of origin tracking.

To illustrate our techniques, we use an example language named CLaX (short for
Compare Language eXample). CLaX is a Pascal relative, and is indirectly derived from the
example language LAX used in [GW84]. CLaX features the following language concepts:
types, type coercion, overloaded operators, arrays, procedures, reference and value param-
eters, nested scopes, assignment statements, loop statements, conditional statements, and
goto statements.

The remainder of this paper is organized as follows. First, we give a brief introduction
to CLaX. Then, a short description of origin tracking is presented. After that, we describe
in detail how error reporters and animators can be derived from the CLaX type-checker
and interpreter specifications, respectively. Finally, related work in the areas of animation
and error reporting is discussed, and some conclusions are presented. In particular, we
evaluate the use of origin tracking, and we indicate possible directions for future research.

2 CLaX

CLaX is a Pascal-like imperative programming language, developed to serve as the demon-
stration language of the COMPARE project (ESPRIT). The most interesting features of
CLaX are: nested scopes, overloaded operators, arrays, goto statements, and procedures
with reference and value parameters. In Figure 1, an example of a CLaX program is
shown.

We use the combined formalism ASF+SDF to define the syntax, the static seman-
tics, and the dynamic semantics of CLaX. ASF+SDF is a combination of the formalisms
ASF and SDF. The Algebraic Specification Formalism, ASF, [BHK89] features first-order



signatures, conditional equations, modules, and facilities for import, export, and hiding.
The Syntax Definition Formalism, SDF [HHKR89], is used for the simultaneous defini-
tion of the lexical syntax, the context-free syntax, and the abstract syntax of a language.
ASF+SDF [Hen91, Wal91] is an integrated formalism for the definition of the syntax and
semantics of languages. In this paper, we elaborate on the features of ASF+SDF when
needed, in an informal way only. For more details, the reader is referred to the cited
papers.

The ASF+SDF Meta-environment [K1i93] is an implementation of ASF+SDF. By in-
terpreting equations as rewrite-rules, specifications can be executed as term rewriting
systems [Klo91]. In particular, the specifications of the static and dynamic semantics of
CLaX described in this paper are executable. The former defines a type-checker for CLaX
programs, and the latter an interpreter for CLaX programs.

In Appendix A, the specification of the CLaX syntax is described in detail; Appendix B
contains the full specification text.

The CLaX type-checker is specified in a non-standard way. Its basic strategy consists
of the following steps:

1. Distribution of the context (i.e., type information for all identifiers in the current
scope) over every program construct.

2. Replacement of identifiers and values by a common abstract representation. We use
the type of a value as its abstract representation.

3. Evaluation of expressions using the abstract values obtained in the previous step.

In the course of performing step 3, all type-correct program constructs are removed from
the result. What remains is a list containing only the abstract values of incorrect program
constructs. In an additional phase, we generate human-readable error-messages from these
abstract values. For example, we consider the type-checking of the following program:

PROGRAM error;
DECLARE
i : INTEGER;
j: INTEGER;
BEGIN
i:=0;
j=15
END.

Replacing the identifiers and constants by their abstract values results in:

PROGRAM error;
DECLARE
BEGIN
INTEGER := INTEGER;
INTEGER := REAL
END.



After removing the type-correct construct INTEGER := INTEGER, the type-incorrect
construct INTEGER := REAL remains. From this, an error-message “assignment-incompatible
INTEGER := REAL” is generated.

Appendix C contains a detailed description of the CLaX type-checker; the correspond-
ing specification can be found in Appendix D. In Section 4 we discuss how, from this
specification, an error reporter is derived. This CLaX error reporter is a tool for automat-
ically determining the positions of errors in the source text.

The CLaX interpreter uses the well-known concept of a stack of activation records
[ASU86]. This stack contains one record for every procedure that is being executed. Each
record contains the code of that procedure, a ‘pointer’ to the current statement, and a set
of values defined in the procedure. Executing a program is specified by way of a recursive
evaluation function which modifies the stack of activation records. The result of executing
a program is a list of variable-value pairs for each global variable in the program. For
instance, the result of executing the program of Figure 1 is shown below. Observe that an
array value consists of a triple containing the upper bound, the lower bound, and the list
of values of the components.

count : 21
fib : [1,20,1123581321 345589 144 233 377 610 987 1597 2584 4181 6765 |

The CLaX interpreter specification is not a purely algebraic one, because hybrid func-
tions [Wal91] are used to perform basic arithmetic operations and I/O in Lisp.

The specification is discussed in Appendix E; the text of the specification appears in
Appendix F.

In Section 5 we discuss how, from the interpreter specification, an animator is derived,
permitting us to visualize program execution.

L
err;rs assignment-incompatible
2 —————
///’/’— S0x B T~
statement stat\ement
\ .3
INTEGER :é/ REAL INTEGER = REAL
o o /// ///
a4 a7 5 -7

Figure 2: Example of single-step origin relations. Dashed lines indicate related subterms.
The relation labeled 1 is the relation between the entire redex and the entire contractum.
Relations 2 and 3 are caused by the common subterms _SimpleType := _SimpleType' and :=,
respectively. Moreover, relations 4 and 5 are the result of the presence of the common
variables _SimpleType and _SimpleType', respectively.



3 Origin tracking

In the ASF+SDF Meta-environment, a specification can be executed as a (conditional)
term rewriting system (TRS) [Klo91]. In a TRS, an initial term is transformed by repeat-
edly applying rewrite-rules to subterms. The application of a rewrite rule corresponds to
replacing a subterm (called a redez, for reducible ezpression) by another subterm (called
contractum). A term rewriting process terminates when no more rules are applicable; the
result is referred to as a mormal form.

In our setting, the initial term consists of an abstract syntax tree representing a CLaX
program, to which a function tc or eval is applied. The term rewriting system is obtained
from the specification by orienting the equations of the specification from left to right.
In the case of the type-checker, the normal form is a term which represents a list of
error-messages. In the case of the interpreter, the normal form is a list containing a
variable-value pair for each global variable in the program.

Origin tracking is a generic technique for relating parts of intermediate terms, which
occur during term rewriting, to parts of the initial term. The origin relation defines, given
a subterm of an intermediate term, a set of related subterms in the initial term. This
relation is defined as the transitive and reflexive closure of single-step origin relations.
These single-step origin relations relate subterms for one-step reductions. Four kinds of
single-step origin relations can be distinguished:

e The redex subterm is related to the contractum subterm.

e Subterms in the context of the redex are related to their counterparts in the context
of the contractum.

e A common variable of the left-hand side and the right-hand side of the rewrite rule
gives rise to relations between the subterms of its instantiations in the redex and the
contractum.

e A common subterm of the left-hand side and the right-hand side of the rewrite rule
gives rise to a relation between its instantiations in the redex and the contractum.

Figure 2 above shows the single-step origin relations established as a result of applying
the rule

[SOx] errors(_SimpleType := _SimpleType') =
assignment-incompatible _SimpleType := _SimpleTypée'

to a term errors(INTEGER := REAL), resulting in a term assignment-incompatible INTEGER := REAL.
For convenience, terms are depicted as trees in the figure.

For a formal definition of the origin function, we refer the reader to [DKT92]. We con-
clude this brief overview with a list of general principles and properties of origin tracking:

e Origin tracking does not depend on the confluence, and on the termination behavior

of the TRS.

e No changes to the TRS are required; single-step origin relations are derived from the
TRS automatically.



e Origin relations satisfy the following property: if a subterm ¢ of the initial term is
included in the origin of a term ¢/, then ¢ rewrites to ¢ in zero or more rewrite-steps.

e [DKT92] describes sufficient conditions a TRS should satisfy in order to guarantee
that all terms of a given sort have non-empty origins. These conditions can be
verified by a static check of the TRS. For example, in case of the CLaX interpreter
specification, subterms of sort STAT will always have non-empty origins.

4 Error Reporters

In Appendix C, an effective type-checker for CLaX is described. The result of type-
checking a CLaX program consists of a list of error-messages in a human-readable form.
These messages, albeit useful, provide no information regarding the specific language con-
structs that caused the errors, or the positions from which the errors originated. In the
case that a large program contains a type-error, such information clearly is necessary.

An error reporter is a tool for determining the source position of type-errors. This
task is commonly achieved by keeping track of line numbers at the specification (or im-
plementation) level. An obvious disadvantage of this method is that the specification
becomes less clear and concise. Moreover, it would involve a lot of extra work on specifica-
tion/implementation of the type-checker. By contrast, our approach does not require any
changes to the specification. The key issue is that positions of errors are automatically
maintained by the origin tracking mechanism.

4.1 Method

Type-checking a program consists of rewriting a term consisting of the function tc applied
to its abstract syntax tree. The result of this rewriting process consists of a term repre-
senting a list of error-messages. The origin function relates subterms of the latter term to
subterms of the former term: parts of the generated error-messages are related to parts of
the program’s abstract syntax tree. This situation is illustrated in Figure 3.

In order to implement an error reporter for CLaX, the error-list which results from the
type-checking of a program is put in an instance the ASF+SDF system’s generic syntax-
directed editor, GSE [Ko0092]. GSE is a hybrid editor: it allows one to do text-editing as
well as structure-editing. When in structure-editing ‘mode’, a focus indicates the current
structural selection. In order to implement an error reporter, the user-interface of this
editor is extended with a button labeled | Show Origin| Pressing this button results in:

e Retrieval of the origins in the subtree corresponding to the focus.
e Highlighting the corresponding subterms of the abstract syntax tree of the program.
As an example, we consider the type-checking of the following program:

PROGRAM errors;
DECLARE
i: INTEGER;

PROCEDURE incr(VAR r : REAL);
BEGIN (* incr *)
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Figure 3:
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INTEGER := REAL

- - -

Origin relations between subterms of the abstract syntax tree, and sub-
terms of the list of error-messages computed by the type-checker.

The abstract syn-

tax tree is shown partially, and only the origin relations involved in the error-message

assignment-incompatible INTEGER := REAL are shown.
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Figure 4: Snapshot of the generated error reporter for CLaX.



r:=r+1.0
END; (* incr *)

BEGIN (* errors *)
i:=0.0;
lab: incr(i);
lab: WRITE();
IFi < 10 THEN

GOTO lab

END

END. (* errors *)

Figure 4 above shows a snapshot of the generated error reporter for CLaX. One window
contains the text of the program (with the function errors applied to it); the other window
shows the list of error-messages produced by the CLaX type-checker. The error-message
assignment-incompatible INTEGER := REAL has been selected, and the corresponding pieces
of program text are highlighted. In this case, the indicated pieces of program text are:

e The := symbol of the statement containing the error (which is related to the :=
symbol in the error-message).

e The real constant 0.0 from which the abstract value REAL in the error-message orig-
inates.

e The type, INTEGER, of the variable used in the erroneous statement.

In Appendix C.8, it is argued how—in order to keep the amount of information
manageable—multiple occurrences of the same error are ‘merged’. This merging of er-
rors is performed by applying equation [2] of module TcErrors (shown below). According
to the definition of the origin function, the binding of variable Msg in the contractum
is related to both messages in the redex that were involved in the merge. Hence, in the
course of merging error-messages, no positional information is lost.

[2] _MsglList ;_Msg ;_MsgList' ;_Msg ;_MsgList'' = _MsgList ;_Msg ;_MsgList' ;_MsgList'’

4.2 Limitations

The limitations of this method for generating error reporters are results of the restrictions
imposed by the underlying origin function. Essentially, these restrictions consist of the fact
that only ‘equal’ terms are related by the origin function. This type of tracing relationship
appears to be particularly suitable for our method of reducing program constructs to
their abstract values. Put more precisely, the existence of many direct relations between
subterms common to the generated error-message and of the program’s abstract syntax
tree enables the generation of effective error-reporters in this manner.

Conversely, this means that the success of our method is highly dependent on the degree
in which such direct links are established. In more conventional methods of type-checking,
where error-messages are collected during type-checking rather than being derived from
erroneous type-constructs (see for example [Deu91]), the effectiveness of the origin relation

10



decreases. A solution to this problem could consist of a ‘stronger’ origin relation which
would also take indirect dependencies between subterms into account. In Section 7, we
outline several possibilities for such extensions of the origin relation.

It should be mentioned here that the syntax definition of CLaX is written such that a
maximal number of relationships between parts of error-messages and program constructs
could be achieved. In particular, we use separate tokens for all operators and language
constructs of CLaX (as defined in module SyntaxTokens, see Appendix B.2). Unfortunately,
this is somewhat in conflict with the demands of structure-editors, where a larger number
of tokens leads to greater number of editing actions. We conclude that this situation is
undesirable, and calls for an extension of the origin relation. In Section 7 we outline some
generalizations of the origin function which would obviate changes to the specification.

5 Animators

An animator is a tool for the visualization of program execution. Typical applications of
animators can mainly be found in the areas of tutoring and debugging. Visualization may
be performed in several ways. Conventional tracing/debugging tools often provide the user
with the line number of the statement that is currently being evaluated. More advanced
tools highlight the current line or statement. In this paper, we assume that animation is
done by highlighting pieces of program text, such as statements, declarations, etc.

Below, we describe a very flexible mechanism for defining animators, consisting of two
phases:

e Definition of the events we are interested in. A typical example of such an event is
the execution of a statement.

e Determination of the subjects, i.e., the parts of the program involved, for each of
these events.

We define events by way of a simple but powerful pattern-matching mechanism. Origin
tracking is used for determination of the subjects of events.

To illustrate our approach, we define several animation features for CLaX, based on the
CLaX interpreter specification of Appendix E. We start by defining some events which
occur during the execution of a CLaX program. Then, we describe how the subjects
involved in these events can be found.

5.1 Definition of events

In Appendix E.3, we describe a function eval which performs a single evaluation step, by
transforming the status of the interpreter. Evaluation steps consist of: (i) execution of a
statement, (ii) return from a procedure call, or (iii) termination of the program. Assuming
for the moment that each application of eval corresponds to the execution of a statement,
we may state: a statement is being executed when the current redex matches the pattern
(i.e., open term)

eval(_Status)
Here, _Status is a variable of sort STATUS. We will distinguish between the execution of a

statement and other applications of eval shortly.
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In a similar way, it can be argued that a predicate of an IF statement or a WHILE
statement is being executed when the current redex matches the pattern

eval-predicate(-Expr, _DStack)

with _Expr and _DStack variables of sorts EXPR and D-STACK, respectively (see Appendix F.4).

In fact, function eval-exp could be used for the evaluation of predicates. We introduced
an extra function eval-predicate to be able to distinguish between the evaluation of predicates
and the evaluation of other CLaX expressions.

The processing of declarations and parameters corresponds to an application of the
functions init-decls and init-params, respectively (Appendix F.5). Both these functions op-
erate on lists (of declarations and statements). The first element of a non-empty list
corresponds to the declaration or parameter being processed. Therefore, the following
patterns may be used to intercept events:

init-decls(_Decl+, _Path)
init-params(_Actual+, _Formal+, _DStack)

Returning to the eval function, we observe that the execution of statements can be
distinguished from other applications of eval by specializing the pattern (i.e., making the
pattern more specific). In particular, we propose:

e An application of eval corresponds to a return from a procedure if the current stack
frame (C-FRAME) contains no more code to be executed, and there is more than one
C-FRAME on the stack. This event exactly corresponds to a match with the following
pattern:

eval(<[.ld, _Stat*, | _CRec+, _DStack>)

e An application of eval corresponds to the termination of the program if the current
C-FRAME contains no more code to be executed, and there is exactly one C-FRAME
on the stack. The pattern which describes this event is:

eval(<[.Id, _Statx, |, _DStack>)

e An application of eval corresponds to the execution of a statement if the current
C-FRAME contains at least one more statement which is to be executed. This event
is described by the pattern:

eval(<[.ld, _Stat*, _Stat+] _CRec*, _DStack>)
Naturally, the patterns described above can be specialized even further, thus allowing

different animation behavior for different statements. Table 1 below summarizes some
events together with the corresponding patterns.

! All variables used in subsequent patterns occur exactly as they are defined in the CLaX interpreter
specification. Therefore we refrain from mentioning their sorts here.

12



Event Pattern

execution of a statement eval(<[./d, _Statx, _Stat+]| _CRec*, _DStack>)
return from a procedure eval(<[_/ld, _Stat*, | _CRec+, _DStack>)
evaluation of a predicate eval-predicate(-Expr, _DStack)

processing of a declaration | init-decls(_Dec/H, _Path)
processing of a parameter | init-params(_Actual+, _Formal+, _DStack)

Table 1: Events during the execution of CLaX programs, and corresponding patterns.

Path(s) | Pattern and subterm(s) indicated by paths Subject(s)
(11131) | eval(<[.Id, _Statx, ;_Stat*'] _CRecx, _DStack>) the statement
(11231) eval(<[_Id, _Stat*, | [_Id, _Stat+', ;_Stat*"] the procedure call

_CRec*, _DStack>)
(1) eval—predicate(, _DStack) the predicate
(11 init—decls(;_Decl*, _Path) the declaration
(11),(21) init-params(,_Actua/*, ;_Forma/*, the actual and the
_DStack) formal parameter

Table 2: Subjects of events. The first column contains paths to parts of the pattern that
correspond to subjects. The second column contains the patterns for event interception;
the subterms indicated by paths are shown in a box. The third column contains the
subjects which are obtained by retrieving the origins of the subterms of the redex matched
against the ‘boxed’ subterms of the pattern.

5.2 Determining subjects

Having defined patterns for the interception of events, we now describe how the subject
of an event can be determined. To this end, we use a concept of paths (a similar notion is
used in Appendix E.1). Paths are used to indicate subterms of patterns, by interpreting
the numbers in a path as argument positions of function symbols. For example, path
(1) indicates the subterm _Expr of pattern eval-predicate(_Expr, DStack). Intuitively, this
subterm ‘corresponds’ to the predicate that is being evaluated (and we want to be high-
lighted). This correspondence is formalized by the origin relation described earlier. The
origin of the subterm at path (1) in the redex (i.e., the origin of the subterm matching
_Expr) indicates the subject we are interested in: the predicate which is being evaluated.

Table 2 summarizes the paths to the subjects for each of the patterns shown in Table 1.
We have ‘expanded’ the patterns here by replacing variables by their structural expansions.
This permits us to indicate the subterms corresponding to the specified paths. Note that
these expansions are of a non-essential nature—the patterns in Table 2 have exactly the
same matching behavior as the corresponding patterns in Table 1.

5.3 Example

As an example, we use the patterns and paths described above to animate the execution
of the following program:

13



PROGRAM example;
DECLARE

i: INTEGER;
BEGIN

i:=0;

WHILE i < 5 DO

i=i+1

END

END.

Executing a program corresponds to reducing a term consisting of the function
eval-program applied to its abstract syntax tree. After starting the rewriting process, we
first find a match with pattern init-decls(_Dec/;_Decl*, _Path); at this moment the redex con-
sists of the term: init-decls(i:INTEGER;, 1). We retrieve the origins in the subterm i:INTEGER
at path (1 1) in the redex. Figure 5 (a) shows a window of the ASF+SDF system where
the corresponding subterms of the initial term (here: the declaration of i) are highlighted.

Continuing the execution, a match with pattern eval(<[_Id, _Stat, _Stat; Statx'] _CRec,
_DStack>) is encountered next; at this point the redex is: eval(<[ example, i:=0;
WHILE i < 5 DO i:=i+1 END, i:=0; WHILE i < 5 DO i:=i+1 END |, [ example, , i:0] >). Fig-
ure 5 (b) shows the subject, which is found by retrieving the origins of the subterm
i:=0 at path (1113 1) in the redex.

The next event corresponds to the execution of another statement (the WHILE state-
ment), resulting in the entire statement being highlighted as shown in Figure 5 (c)

Subsequently, a match with pattern eval-predicate(_Expr, _DStack) is found, correspond-
ing to the evaluation of the predicate. At this point, the redex consists of the term
eval-predicate(i < 5, [ example, , i : 0]). The origins of the subterm i < 5 at path (1) in the
redex are shown highlighted in Figure 5 (d).

The following animation steps consist of consecutively highlighting (i) the statement in
the body of the WHILE construct (Figure 5 (e)), (ii) the entire WHILE construct (Figure 5
(f)), and (iii) the predicate of the WHILE (Figure 5 (d)) construct until termination of the
program.

5.4 Limitations

Unfortunately, the usage of origin tracking for retrieving subjects imposes a restriction on
the class of language constructs for which we can do animation. In essence, this restric-
tion reflects the fact that we can only do visualization for language constructs which are
guaranteed to have non-empty origins. For example, if one wishes to highlight statements,
it is required that every subterm of sort STAT, which occurs in the course of the rewriting
process, has a non-empty origin. Some remarks are in order here:

e [t can be checked if a specification satisfies the property that all subterms of a given
sort always have non-empty origins. This (simple) check is described in [DKT92].

e In the case of CLaX, it is guaranteed that empty origins will not occur for any of
the patterns and paths we described.

e Extensions of the origin relation are envisaged which would overcome this problem.
We will discuss this in Section 7.
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Figure 5: Animation of Execution in the ASF+SDF system.
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When stated in an informal way, the check mentioned above verifies that the execution
of a language construct is either defined in terms of the execution of its sub-constructs, or
(recursively) as the execution of the same construct in a modified environment.

As an example of a violation of this rule, consider the equation below which expresses
the execution of a REPEAT construct in terms of the execution of a WHILE construct.

eval(<[./d, _Seq, REPEAT _Statx UNTIL _Exp END; _Stat*'] _CRec*, _DStack>) =
eval(<[_ld, _Seq, _Statx; WHILE NOT( _Exp) DO _Statx END; _Stat*'] _CRecx, _DStack>)

When using this rule, the animation of execution of REPEAT statements will fail because of
the fact that the ‘generated’” WHILE statements will have empty origins. In this example,
the problem can be solved by defining the execution of REPEAT in terms of itself.

6 Related Work

The CLaX type-checker specification described in Appendix C is written in a non-standard
abstract interpretation style. A similar style of type-checking is discussed in [Hee92], using
higher-order algebraic specifications. The question whether adequate human-readable
error-messages can be derived automatically was posed in [Deu91]. An attempt to derive
meaningful error-messages in an automatic fashion is described in [Bra92].

Few generic approaches for defining animators and error reporters exist, to our knowl-
edge. Many interpreters use ad-hoc methods for dealing with animation and error report-
ing, mostly consisting of keeping track of line numbers. Moreover, these systems only give
support for one specific programming language.

In the context of the PSG system [BS86|, a generator for language-specific debuggers
was described in [BMS87]. These debuggers are generated from a specification of the
denotational semantics of a language, and some additional debugging functions. A set of
built-in debugging concepts is provided to this end.

PSG generates language-specific compilers by compiling denotational semantics defi-
nitions to a functional language. A standard, language-independent interpreter is used to
execute the generated functional language fragments. During the compilation of program
fragments, correspondences between the abstract syntax tree and terms of the functional
language are maintained. Built-in trace functions are used to visualize execution. Besides
trace functions, other built-in concepts allow the inspection of the state of the interpreter,
the definition of breakpoints, and so on.

The debugging/animation facilities present in the PSG system are powerful, but the
specifications used to define these facilities are difficult to read. Moreover, there seems to
be little flexibility for defining animation features.

In the CENTAUR system [BCD*89], the specification language Typol [Des88] is im-
plemented, an implementation of natural semantics [Kah87]. Typol specifications can be
used to define type-checkers, interpreters, compilers, and so on. A Typol specification con-
sists of a set of axioms and inference rules which are compiled to Prolog. A key property
of Typol specifications is that the meaning of a language construct is expressed in terms
of the meanings of its sub-constructs.

Bertot [Ber91c, Ber91b| presents a formal framework for residuals and origin functions
in left-linear unconditional term rewriting systems and the A-calculus. He contributes a
technique called subject tracking to Typol, for relating execution to locations in a program.
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To this end, a special variable, Subject, indicates the language construct currently being
processed. This variable may be used to define animation and debugging features, based
on a specification of an interpreter. The main contrast with our approach is that origin
tracking establishes mappings for all language constructs remaining in normal forms or
intermediate terms, whereas in Typol only the construct currently being processed is
tracked. To some extent, this problem can be circumvented by explicitly manipulating
the established origin relations. Apart from the fact that this solution essentially means
leaving the domain of automatically established tracing relations, it is unclear if this
solution is sufficiently flexible to define useful error reporters.

Berry [Ber91la] presents a theory of animators. Animators are generated from formal
specifications; these specifications are written in structured operational semantics. Views
of the state of a program during execution are defined by extending existing specifications
with semantic display rules. He distinguishes between static and dynamic views of a
program. A static view consists of parts of the abstract syntax tree of a program, and a
dynamic view is constructed from the program state during execution. As an example of
a dynamic view, the evaluation of a predicate can be visualized as the actual truth value it
obtains during execution. Another criterion he uses to classify animators is that of source
views versus environment or memory views. Source views show parts of the source text
of the program, and memory views display the current contents of memory locations. All
animation features we describe in this paper can be classified as static views and source

views.

7 Concluding Remarks

We have presented a uniform framework for incorporating animators and error reporters
in generated programming environments. FExisting specifications for type-checkers and
interpreters are re-used. We show that origin tracking and a simple pattern-matching
mechanism are sufficiently powerful to obtain animators and error reporters from these
specifications.

Our experience with CLaX suggests that animators and error reporters can be defined
for a wide range of imperative programming languages in a similar manner. We expect
no fundamental problems with the definition of these tools for realistic languages such as
Pascal and C. Moreover, we conjecture that our technique is also suitable for programming
languages with parallel, or object-oriented features. It is our intention to verify this
conjecture in the near future.

In Sections 4.2 and 5.4, we mentioned limitations of origin tracking. These limitations
are caused by the fact that only ‘equal’ subterms are related. In principle, weaker concepts
than ‘equality’ could be used as a basis for an origin relation. In particular, we envisage
the following generalizations:

1. Subterms with the same function symbol which occur in rewrite-rules could be used
as a criterion for establishing origin relations.

2. Subterms of the same sort which occur in rewrite-rules could be used as a criterion
for establishing origin relations.

3. A notion of dependence could be used instead of a tracing relation such as origin
tracking. Associated with every subterm occurring during the rewriting process
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would be a minimal subset of the initial term which is responsible for the occurrence
of that subterm.

A problem with the first two options is that there may still remain subterms which do
not have origins. We are currently investigating the third option, which does not suffer
from this problem. A potential pitfall of all three options is that they may give rise to less
precise information. A multi-level approach may be adopted to circumvent the problem
of having too vague information. We could use the current origin tracking information in
the cases where it is available; in the remaining cases, we would then use the information
computed by the generalized notion.

Apart from investigating extended notions of the origin function, we intend to study
the following topics:

e Animators and error reporters for languages with parallel and object-oriented fea-
tures.

e More advanced animation features. In particular, we are interested in extending our
framework so as to be able to implement Berry’s notion of environment and memory
views [Ber91la).

e Extensions of the pattern-matching approach for the definition of generic, source-
level debuggers. The expressive power of the patterns can be increased by allowing
patterns to be conditional. In principle, this enables us to use arbitrary semantic
constraints on the program status as breakpoints.
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A The syntax of CLaX

In this section, we give an overview of the most significant features of CLaX. The modules
involved can be found in Appendix B.

A CLaX program essentially consists of declarations and statements. FEach variable
occurring in a statement must be preceded by a declaration which associates a type with
that variable. This type defines the set of values that may be assigned to that variable.

There are three basic types: boolean, integer and real. Array types are defined by
describing the types of their components and an integer range (module SyntaxTypes in
Appendix B.4).

A value is obtained by evaluating an expression. FExpressions consist of variables,
constants and operations on denoted quantities. CLaX defines a set of operators which
can be subdivided into arithmetic, boolean, and relational operators. The corresponding
sorts for each of these operators are AOPx, BOPx and COP, respectively (module SyntaxExpr,
Appendix B.6).

Statements are described in module SyntaxStats (Appendix B.7). An assignment state-
ment specifies a value to be assigned to a variable, a procedure statement causes the
execution of the designated procedure, and a GOTO statement causes the execution to
continue with the statement specified by a designated label. Sequential execution is spec-
ified by statement sequences, selective execution by IF statements and repeated execution
by WHILE statements.

Module SyntaxHeaders describes variable, label and procedure declarations. Procedure
declarations effectively identify a statement sequence, and optionally declarations, with a
name. A procedure has a fixed number of parameters, each of which is denoted within the
procedure by an identifier called formal parameter. The formal parameter can be of two
kinds: wvalue or variable parameters. An actual parameter, during a procedure activation,
will be evaluated once for value parameters while in the case of a variable parameter, the
actual parameter will be a variable that stands for the formal parameter. Possible array
indices are evaluated before execution of a procedure.

A.1 Comments

ASF+SDF provides a special sort called LAYOUT, using which, text-to-be-discarded can
be easily defined. This facility is used here to define comment in module SyntaxLayout.

module SyntaxLayout
exports
lexical syntax
[\t\n] — LAYOUT
“" [} “} — LAYOUT
“(" ~[¥]x %) — LAYOUT

This module defines that:
e all white spaces, tabs and line-feeds are to be ignored,

e a { followed by any sequence of characters not containing } followed by } should be
ignored, and
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e (* followed by any sequence of characters not containing * followed by *) should be
ignored?.

A.2 Tokens

Module SyntaxTokens defines sorts and tokens which represent reserved words and special
characters. This is not an exhaustive list, but should be thought of as a list of tokens for
which origin tracking is desired. The role of this module is elaborated on in Section 4.2.

A.3 Constants

The module SyntaxConsts defines the basic constants supported by CLaX. These con-
stants can be broadly identified as identifiers (ID), Booleans (BOOL-CONST), integers
(INT-CONST), reals (REAL-CONST) and strings (STRING). For example

[a—zA—Z] [A—Za—zO—Q]* — ID

defines a letter followed by a letter or digit to be an identifier. Similar definitions occur
in module SyntaxConsts for numeric constants. E.g., the following are all well-defined
constants: 1, 100, .1, and 87.35E-8. Likewise,

['] ~ ["\n] *['] — STRING

defines a character string as a sequence of characters enclosed in " which do not contain
3

either a " or a line feed character in between®. These strings are used only to output

messages (in WRITE statements).

A.4 Data Types

Module SyntaxTypes specifies the set of types in CLaX. The following simple types are
defined:

“INTEGER”  — SIMPLE-TYPE
“REAL” — SIMPLE-TYPE
“BOOLEAN” — SIMPLE-TYPE

The values of type INTEGER are of sort INT-CONST, those of type REAL are of sort
REAL-CONST, and those of type BOOLEAN are of sort BOOL-CONST.

An array type is a structure consisting of a fixed number of components which are all
of the same type, called the component type. The elements of the array are designated by
integer indices. The array type specifies the component type as well as a subrange of the
integers to be used as indices. The following are valid arrays:

ARRAY [1..100] OF INTEGER
ARRAY [4..7] OF ARRAY [2..2] OF BOOLEAN

2[Con91] defines (* followed by any sequence of characters not containing *) followed by *) should be
ignored.
3[Con91] defines that strings could contain " characters as long as they are escaped by \.
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A.5 Declarations

A declaration introduces an identifier for a label, variable or procedure?*. Module
SyntaxHeaders defines these declarations. Label declarations consist of an identifier de-
noting the new label, followed by the keyword LABEL. Variable declarations consist of an
identifier denoting the new variable, followed by its type. Examples:

Error : LABEL

i: INTEGER

r: REAL

b: BOOLEAN

a: ARRAY [4..7] OF ARRAY [2..2] OF INTEGER

Procedure declarations serve to define parts of programs and to associate identi-
fiers with them so that they can be activated by procedure call statements (module

SyntaxHeaders):
PROC-HEAD “;” BLOCK — PROC-DECL
VAR-DECL — FORMAL
VAR-LEX VAR-DECL — FORMAL
PROCEDURE ID — PROC-HEAD

PROCEDURE ID LPAR {FORMAL “”}+4+ RPAR — PROC-HEAD

The procedure heading (PROC-HEAD) specifies the identifier naming the procedure and
the formal parameters (if any). The parameters are either value or variable parameters.

If a formal starts with the delimiter VAR it specifies a variable parameter, otherwise a
value parameter. The use of the procedure identifier in a procedure statement within its
declaration implies recursive execution of the procedure. An example of a CLaX procedure
is shown below.

PROCEDURE ReadPoslnteger (VAR i: INTEGER);
DECLARE
J: REAL;
BEGIN
j=0;
WHILE NOT (0 < j) DO READ (j) END;
=]
END

A.6 Expressions

Expressions are constructs denoting rules of computation for obtaining values of variables
and generating new values by the application of operators.

The rules of composition specify operator precedences according to four classes of op-
erators. The operator NOT and unary minus have the highest precedence, followed by

*We also allow empty declarations. Declaration lists consist of zero or more declarations separated by
semi-colons. By contrast, [Con91] considers ; to be a terminator in declaration lists.

23



the operators *, /, %, and &; then the operators +, -, and |; and finally, with the low-
est precedence, the relational operators <, <=, =, #, >=, and >. Moreover, sequences
of non-relational binary operators of the same precedence are interpreted as being left-
associative.

Module SyntaxExpr defines these operators in different sorts and then defines priority
rules over these operations, as summarized in Table 3. For example:

“y?? — AOP1
‘g — AOP2
EXPR AOP1 EXPR — EXPR {left}
EXPR AOP2 EXPR — EXPR {left}

followed by the priority definition:

priorities
{left: EXPR AOP2 EXPR — EXPR}
<
{left: EXPR AOP1 EXPR — EXPR}

will parse j+2*i+ras (j+ (2*i)) +r.

Prio- | Oper- | left right Result Operation
rity ator | Operand Operand
4 NOT BOOLEAN | BOOLEAN | negation
- INTEGER | INTEGER | unary minus
REAL REAL unary minus
3 * INTEGER | INTEGER | INTEGER | integer multiplication
REAL REAL REAL real multiplication
/ INTEGER | INTEGER | INTEGER | integer division
REAL REAL REAL real division

% INTEGER | INTEGER | INTEGER | integer remainder
& BOOLEAN | BOOLEAN | BOOLEAN | boolean and

2 + INTEGER | INTEGER | INTEGER | integer addition
REAL REAL REAL real addition
- INTEGER | INTEGER | INTEGER | integer subtraction
REAL REAL REAL real subtraction

| BOOLEAN | BOOLEAN | BOOLEAN | boolean or

1 < <= | INTEGER | INTEGER | BOOLEAN | integer comparison
= # | REAL REAL BOOLEAN | real comparison

> >= | BOOLEAN | BOOLEAN | BOOLEAN | boolean comparison

Table 3: Table of Operators

A.7 Statements

Statements denote algorithmic actions, and are said to be executable. Module SyntaxStats
defines the statements of CLaX.

24



The empty statement executes no action. A statement may be labeled. The optional
label is defined by using a auxiliary sort STAT-AUX and an implicit function from STAT-AUX
to STAT:

STAT-AUX — STAT
LABEL “” STAT-AUX — STAT

The assignment statement serves to replace the current value of a variable by a new
value defined by an expression. A procedure statement serves to execute the procedure
denoted by the procedure identifier. The conditional statement specifies that a statement
sequence is to be executed only if a certain condition (Boolean expression) is TRUE. If it
is FALSE, the sequence following the (optional) delimiter ELSE is to be executed. The loop
statement specifies that a certain statement is to be executed repeatedly, as long as the
condition holds. If it evaluates to FALSE at the beginning, the statement is not executed
at all. The GOTO statement passes the control flow to the statement, which is labeled
with that identifier. It is forbidden to jump to a statement outside of the same block (i.e.
procedure) or to jump into another block (i.e. procedure). Input and output of values of
simple types is achieved by the standard procedures READ and WRITE.

A statement is executed when the control flow reaches it. The control flow starts with
the first statement (textually), of a statement sequence. All statements except GOTO’s and
procedure calls pass the control flow after its execution to the next statement (textually)
in the statement sequence. An example statement sequence (STAT-SEQ) is:

WRITE ( "read integers and write until a non-positive \n");
WRITE ( "number is read \n");
READ (i);
WHILE 0 < i DO
WRITE (i); READ (i)
END ;
IFi<0THENi:=1ELSEi:=2END;
next ;
Transpose(a,m,n) ;
; (* empty statement *)

A.8 Blocks and Programs

Module SyntaxProgram defines BLOCKs and PROGRAMs. A BLOCK contains an optional
declaration part. If present, this starts with the reserved keyword DECLARE, followed by a
list of zero or more declarations. Furthermore, each block consists of a list of statements
between delimiters BEGIN and END.

A CLaX program has the form of a procedure declaration except for its heading.
The identifier following the symbol PROGRAM is the program name; it has no further
significance inside the program.

A.9 The generated CLaX environment

A snapshot of an editor containing a CLaX program is shown in Figure 6. The syntax
definition in Appendix B is used to derive the structured editor tuned for CLaX. The

25



=i ASFSIF Hets—environment {a j I;!j

Statu=s: Iidle
Specification Delete Edit-Module Edit-term Errors

|=.; Term ower SyntaxProgrami sort,clax i -1 j |;|J

[1 tree text expand help

|
Execute | oomrmam sores
Tupecheck | [DECLARE
print : LABEL:
& ¢ ARRAY [1,.101 OF REAL:

{# read ¢ fill an array with REAL=s =}

FROCEDURE read{VAR a: ARRAY [1,.101 OF REAL::
DECLARE
i ¢ IHTEGER:
BEGIM £ read
i = 1z
WHILE i <= 10 DO
READ{aCili;
i=1i+1
EMD
EMO:r £ read 2

=

Figure 6: A snapshot of the generated CLaX environment.

buttons | Typecheck | and respectively invoke the type-checker (described in

Appendix C) and the interpreter (described in Appendix E) for the program in the editor.
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B CLaX syntax modules

The specification in this appendix defines the syntax of CLaX. The import diagram for
the syntax modules is:

Syntax Syntax Syntax Syntax Syntax
Layout Consts Types Headers Program
Syntax Syntax Syntax
Tokens Expr Stats

B.1 module SyntaxLayout
module SyntaxLayout

exports
lexical syntax
I\t\n] — LAYOUT
"~} P — LAYOUT

“(7 ~[x]x “x)"  — LAYOUT
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B.2 module SyntaxTokens
module SyntaxTokens

exports
sorts LABEL-LEX PROCEDURE VAR-LEX DECLARE BEGIN ASGN IF THEN ELSE
END WHILE OF DO GOTO READ WRITE LPAR RPAR LSQ RSQ

context-free functions

“LABEL” — LABEL-LEX
“PROCEDURE” — PROCEDURE
“VAR" — VAR-LEX
“OF” — OF

“(r — LPAR

“r — RPAR

“I — LSQ

“I" — RSQ
“DECLARE" — DECLARE
“BEGIN" — BEGIN
=" — ASGN

“IF” — IF

“THEN" — THEN
“ELSE" — ELSE
“END" — END
“WHILE" — WHILE
“DQ” — DO
“GOTO" — GOTO
“READ" — READ
“WRITE” — WRITE
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B.3 module SyntaxConsts

module SyntaxConsts
imports SyntaxLayout SyntaxTokens
exports
sorts ID STRING BOOL-CONST INT-CONST REAL-CONST SIGN SCALE-FACTOR
UNS-INT-CONST UNS-REAL-CONST
lexical syntax

[a-zA-Z] [A-Za-z0-9]x — ID

v — SIGN

‘l+” — SIGN
UNS-INT-CONST — INT-CONST

SIGN UNS-INT-CONST — INT-CONST

“E" [+\—] UNS-INT-CONST — SCALE-FACTOR
UNS-REAL-CONST — REAL-CONST
SIGN UNS-REAL-CONST — REAL-CONST

] ~f\aJ ] — STRING

“TRUE” — BOOL-CONST
“FALSE" — BOOL-CONST
[0-9]+ — UNS-INT-CONST
""" UNS-INT-CONST — UNS-REAL-CONST
""" UNS-INT-CONST SCALE-FACTOR — UNS-REAL-CONST
UNS-INT-CONST *“.” UNS-INT-CONST — UNS-REAL-CONST

UNS-INT-CONST *“.” UNS-INT-CONST SCALE-FACTOR — UNS-REAL-CONST
variables
[] 1d []* — 1D
-] IntConst [']* — INT-CONST
-] BoolConst ["]* — BOOL-CONST
-] RealConst [']* — REAL-CONST
-] String [']* — STRING

[
[
[
[
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B.4 module SyntaxTypes
module SyntaxTypes

imports SyntaxConsts

exports

sorts TYPE SIMPLE-TYPE ARRAY-TYPE

context-free functions
“INTEGER”

“REAL"
“BOOLEAN"

“ARRAY” LSQ INT-CONST “..” INT-CONST RSQ OF TYPE

SIMPLE-TYPE

ARRAY-TYPE
variables

[] Type [']+

[.] SimpleType [']*

[-] ArrayType [']*

— TYPE
— SIMPLE-TYPE
— ARRAY-TYPE
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B.5 module SyntaxHeaders

module SyntaxHeaders
imports SyntaxTypes
exports
sorts PROC-HEAD LABEL-DECL PROC-DECL VAR-DECL DECL DECL-LIST
FORMAL BLOCK
context-free functions

ID *" LABEL-LEX — LABEL-DECL
ID *" TYPE — VAR-DECL
PROC-HEAD *" BLOCK — PROC-DECL

— EMPTY-DECL

VAR-DECL — DECL
PROC-DECL — DECL
LABEL-DECL — DECL
EMPTY-DECL — DECL
{DECL *;" }« — DECL-LIST
VAR-DECL — FORMAL
VAR-LEX VAR-DECL — FORMAL
PROCEDURE ID — PROC-HEAD

PROCEDURE ID LPAR {FORMAL *“;"}4+ RPAR — PROC-HEAD
variables
_] Decl “+" [0-9']* — {DECL ;" }+
_] Decl “x" [0-9']* — {DECL “;" }x
_] LabelDecl [0-9']* — LABEL-DECL
_] VarDecl [0-9']* — VAR-DECL
] ProcDecl [0-9']x — PROC-DECL
_] ProcHead [0—9']* — PROC-HEAD
y
y
y
gy
y

Decl [0-9"] — DECL

Block [0-9"]* — BLOCK

Formal [0-9']* — FORMAL

Formal “+" [0-9']* — {FORMAL *;" }+
DeclList [0-9']* — DECL-LIST

[
[
[
[
[
[
[
[
[
[
[
[

-] EmptyDecl [0-9']* ~ — EMPTY-DECL
hiddens
sorts EMPTY-DECL
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B.6 module SyntaxExpr
module SyntaxExpr

imports SyntaxConsts

exports
sorts UAOP AOP1 AOP2 UBOP BOP1 BOP2 COP VARIABLE EXPR
context-free functions

“r — UAOP
“NOT” — UBOP

" — AOP1

“f — AOP1

“%" — AOP1

& — BOP1

o — AOP2

“r — AOP2

I — BOP2

< — COP

=" — COP

=" — COP

“>=" — COP

"> — COP

# — COP

“(" EXPR )" — EXPR {bracket}
ID — VARIABLE

VARIABLE LSQ EXPR RSQ — VARIABLE

VARIABLE — EXPR
BOOL-CONST — EXPR
INT-CONST — EXPR
REAL-CONST — EXPR
EXPR AOP1 EXPR — EXPR {left}
EXPR AOP2 EXPR — EXPR {left}
EXPR BOP1 EXPR — EXPR {left}
EXPR BOP2 EXPR — EXPR {left}
EXPR COP EXPR — EXPR {left}
UAOP EXPR — EXPR
UBOP EXPR — EXPR

32



variables
[] AopI []* — AOP1
[] Aop2 [']* — AOP2
[] Bopl []* — BOP1
[.] Bop2 [']* — BOP2
[.] Cop [']* — COP
[ gE — UAOP
[-] Ubop ["]* — UBOP
[] Var [0-9']x  — VARIABLE
[] Expr[0-9']* — EXPR

priorities

{ EXPR COP EXPR — EXPR } <

{left: EXPR AOP2 EXPR — EXPR, EXPR BOP2 EXPR — EXPR}

<
{left: EXPR AOP1 EXPR — EXPR, EXPR BOP1 EXPR — EXPR}

< { UAOP EXPR — EXPR, UBOP EXPR — EXPR }
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B.7 module SyntaxStats
module SyntaxStats

imports SyntaxExpr
exports
sorts LABEL STAT STAT-SEQ ASSIGN-STAT PROC-STAT
COND-STAT LOOP-STAT IN-OUT-STAT GOTO-STAT EMPTY-STAT
context-free functions

ID — LABEL
{STAT “"}+ — STAT-SEQ

— EMPTY-STAT
ID — PROC-STAT
VARIABLE ASGN EXPR — ASSIGN-STAT
IF EXPR THEN STAT-SEQ ELSE STAT-SEQ END — COND-STAT
IF EXPR THEN STAT-SEQ END — COND-STAT
WHILE EXPR DO STAT-SEQ END — LOOP-STAT

— IN-OUT-STAT
— IN-OUT-STAT
— IN-OUT-STAT

READ “(" VARIABLE “)"
WRITE “(" EXPR *)"
WRITE “(" STRING “)"

GOTO LABEL — GOTO-STAT
ID LPAR {EXPR “)"}4+ RPAR — PROC-STAT
ASSIGN-STAT — STAT-AUX
COND-STAT — STAT-AUX
LOOP-STAT — STAT-AUX
PROC-STAT — STAT-AUX
GOTO-STAT — STAT-AUX
IN-OUT-STAT — STAT-AUX
EMPTY-STAT — STAT-AUX
STAT-AUX — STAT
LABEL “:" STAT-AUX — STAT
variables

[] StatSeq [0-9']*

]
]

-] Stat [0-9']*

-] ExprList [0-9]*
-] StatAux [']*
] Label ["]x

_| AssignStat

-] CondStat

_| LoopStat

_] InOutStat

-] ProcStat

_| EmptyStat

[
[
[
[
[
[
[
[
[
[
[

StatSeq [0—9’] e

hiddens
sorts STAT-AUX

— {STAT " }+
— {STAT "}«
— STAT

— {EXPR “" }x
— STAT-AUX

— LABEL

— ASSIGN-STAT
— COND-STAT
— LOOP-STAT
— IN-OUT-STAT
— PROC-STAT
— EMPTY-STAT
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B.8 module SyntaxProgram

module SyntaxProgram
imports SyntaxHeaders SyntaxStats

exports
sorts PROGRAM

context-free functions
DECLARE DECL-LIST BEGIN STAT-SEQ END

BEGIN STAT-SEQ END
“PROGRAM" ID “;” BLOCK *“."

variables
[] Program [0-9']* — PROGRAM
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C A type-checker for CLaX

Once a program is accepted as valid according to the CLaX syntax, the context-dependent
aspects of the program need to be checked. E.g., multiple declarations of the same variable
are not allowed within one scope. The formal static semantics presented here were defined
using the (informal) description of CLaX presented in [Con91|. The modules which con-
stitute the complete static semantics of CLaX can be found in Appendix D. From these
modules, a type-checker for CLaX is generated by the ASF+SDF Meta-Environment. In
this section, we present the highlights of the specification of the CLaX type-checker. The
specification is written in a non-standard abstract interpretation style.

C.1 Overview

Type-checking is performed in a compositional manner: the meaning of a compound CLaX
construct is defined in terms of the meanings of its sub-constructs. The basic strategy of
the CLaX type-checker consists of the following steps:

1. Distribution of the context (i.e., type information for all identifiers in the current
scope) over every program construct.

2. Replacement of identifiers and values by a common abstract representation. We use
types for abstract representations.

3. Evaluation of expressions using the abstract values obtained in the previous step.

In the course of performing step 3, all type-correct program constructs are removed from
the result. What remains is a list containing only the abstract values of the incorrect
program constructs. In an additional phase, we generate acceptable error-messages from
these abstract values. Section 4 discusses how the system automatically locates the source
positions of these errors.

C.2 Extending the language

The syntax of the language is generalized in the module TcSyntaxExt shown below, in order
to be able to replace program constructs by their abstract values. Note that this does not
affect the CLaX language itself, since this extension will only be used in the type-checking
modules.

module TcSyntaxExt
imports SyntaxProgram

exports

context-free functions
EXPR ASGN EXPR — ASSIGN-STAT

EXPR LSQ EXPR RSQ — EXPR
READ “(" EXPR “)" — IN-OUT-STAT

Module TcSyntaxExt (above) generalizes (i) the assignment statement, (ii) the array
indexing and (iii) the input statement. The reason for these generalizations is to make
the specification of the type-checker uniform over all constructs of the language. These
extensions will be elaborated on as needed later.
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C.3 Type-environments

The module TcTenv specifies the type-environment (or the context) in which the state-
ments of a particular BLOCK will be type-checked. The declarations as seen from a partic-
ular point in the program are represented simply as a list (TENV) of variable-declaration
(VAR-DECL) mappings. The sort TYPE is also extended with LABEL and (later) sort
PROC-TYPE, so that all identifiers can be uniformly mapped to their types using the
ID : TYPE notation.

module TcTenv
imports TcSyntaxExt

exports

sorts TENV

context-free functions
TYPE — EXPR
LABEL-LEX — TYPE
“I" {VAR-DECL “;"}* “|" — TENV
TENV “." EXPR — TYPE
tenv(TENVx) — TENV

Because we want to use types as the abstract values, sort TYPE is now injected into sort
EXPR. Equations [1]—[3] below (over sort EXPR) rewrite all constants found in expressions
to their abstract values.

[1] -IntConst= INTEGER  [2] _RealConst= REAL [3] -BoolConst= BOOLEAN

The operation TENV.EXPR extracts the abstract value of an expression from a type-
environment. The inclusion of this operation in TYPE indicates the intention that it
reduces to an abstract value and also helps us to define this operation by distributing it
over the operations of the expressions (See equations [V0] and [V1] of module TcExpr in
Appendix D.3).

Function tenv takes a list of TENVs and returns the effective TENV by (i) only con-
sidering the LABEL declarations of the most recent scope (TENV) as seen in equation [T1]
and (ii) by considering the most recent mapping of an identifier when there are multiple
mappings. The idea is that, during type-checking, a list of type-environments (ID : TYPE
mappings) is seen from a given point in the program. This list, however, can be reduced
to one effective type-environment for that point.

C.4 Evaluation of expressions over abstract values

Module TcExpr describes the evaluation of expressions over abstract values. The expres-
sions are transformed to a more general form (sort OP) so that (i) the equations that
distribute an environment over an expression, (ii) the equations that evaluate an expres-
sion (over abstract values), and (iii) those that generate readable error messages can be
written in a generalized fashion.

The main idea is that all type-correct expressions are converted to their abstract value,
whereas type-incorrect expressions will only be evaluated partially. As an example, we show
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equations [t0] and [7] of module TcExpr. The former transforms type-correct comparison
expressions to a generalized form; the latter replaces generalized comparison expressions
by their abstract value, i.e., BOOLEAN.

1] -Op = _Cop
t
_Expr _Cop _Expr' = _Expr _Op _Expr'
_Op = _Cop
[7]

_SimpleType _Op _SimpleType = BOOLEAN

C.5 Type-checking procedures

The most significant parts of module TcProc (Appendix D.5), which deals with type-
checking of procedure calls, are shown below. In order to ease the specification of type-
checking procedures, we introduce the sort PROC-TYPE (denoting the signature of a proce-
dure) and inject this into sort TYPE. This allows procedure signatures to be in the range
of ID : TYPE mappings in a type-environment (TENV). For convenience, we introduce a
sort VTYPE denoting a type that is (optionally) preceded by the keyword VAR.

A procedure header (sort PROC-HEAD) is reduced to the ID : PROC-TYPE form by the
function signature. The formal variable declarations in a procedure heading along with
their type declarations are reduced to a type-environment by the function formals.

Procedure calls are type-checked by matching the abstract form of the procedure header
against the abstract form of the procedure call. In the case of a variable parameter, we
have the additional constraint that the actual parameter must be a variable; this is checked
by the function vararg. All type-correct calls are eliminated, resulting in abstract forms of
type-incorrect calls only.

module TcProc

imports TcExpr TcBooleans

exports
sorts PROC-TYPE VTYPE TYPE-LIST
context-free functions

“PROC" “(" {VTYPE *;"}x ")" — PROC-TYPE
PROC-TYPE — TYPE
{TYPE *;" }x — TYPE-LIST
TENV “.((" {EXPR “"}x* “))" — TYPE-LIST
formals PROC-HEAD — TENV
signature PROC-HEAD — VAR-DECL
TYPE — VTYPE
VAR-LEX TYPE — VTYPE
vtype(FORMAL) — VTYPE

isproc “(" EXPR LPAR TYPE-LIST RPAR “)"  — BOOL
vararg “(" EXPR LPAR {EXPR “"}x RPAR “)" — BOOL
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C.6 Type-checking labels

Module TcLabel (Appendix D.6) handles the various cases of label consistency that must
be checked so as to type-check a GOTO statement. The various cases are: (i) a label must
be declared before being used, (ii) a label must be defined so that a GOTO can succeed,
and (iii) a label must be uniquely defined.

The most significant functions of module TclLabel are shown below. [Dx defines a
LABEL-LIST, an auxiliary sort used in the definition of other label consistency check func-
tions. The list of labels that are actually used in the GOTO statements of a given statement
sequence is generated by gotos. The list of labels that are defined (and possibly multiply
defined) in a given statement sequence is generated by defines. The uniqueness of label
definitions is checked using the function unique, which returns true if the list of labels does
not contain elements more than once. For checking whether labels used in GOTO state-
ments are defined, the function ID* def IDx* is used, which returns true if the list on the left
is a subset of the list on the list on right. The function is used in checking if the list of
labels generated by gotos is a subset of the list of labels generated by defines. Checking if
an (abstract) value is a label is done by function islabel, which returns true if the expression
is LABEL.

Note that in the above, definitions of gotos and defines assume a statement sequence
without any (non-trivial) complex statements (like WHILE and IF) since these statements
will be flattened by the function flat defined in module Tec.

module TclLabel
imports TcProc
exports

sorts LABEL-LIST

context-free functions
ID* — LABEL-LIST

“gotos” STAT-SEQ — LABEL-LIST
“defines” STAT-SEQ — LABEL-LIST

“unique” ID=* — BOOL
ID* “def” ID* — BOOL
islabel(EXPR) — BOOL

C.7 Type-checking programs

Module Tc (Appendix D.8) defines the function tc for type-checking entire programs; the
syntax part of module Tc is shown below. The function tc is invoked by the
button on the editor window. The type-checking process is started by placing an initial
pointer (denoted by a " symbol) at the beginning of the block with an initially empty
local TENV and an initially empty global TENV. TENV* A BLOCK defines the semantics of
type-checking the block in a given context (i.e., a list of type-environments from which an
effective type-environment is derived).
Informally, the type-checking proceeds as follows:

e The declarations of the block are processed, yielding a local type-environment.

e Some simple checks on the local environment are performed. The function unique-decls
checks that the association of identifiers is unique within the scope, and nonemptyarray
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checks if the index ranges of arrays contain at least one element.

e All IF and WHILE statements are flattened: the statement series inside these state-
ments are moved outside the IF/WHILE.

e All statements and expressions are type-checked using the previously described func-
tions for type-checking statements and expressions.

e The list of statements in the block is transformed into a conjunction of statements,
which can, in principle, be processed in parallel. To this end, sort STAT is injected
in sort BOOL (module TcBooleans, Appendix D.4). Each type-correct statement that
evaluates to true disappears, because true is an identity in conjunctions.

module Tc

imports TcLabel TcNint

exports

context-free functions

tc(PROGRAM) — BOOL
TENVx* “" BLOCK — BOOL
STAT — BOOL
isbool(EXPR) — BOOL

unique-decls(TENV) — BOOL
nonemptyarray(TENV) — BOOL
hiddens

context-free functions
flat STAT-SEQ — STAT-SEQ

C.8 Generating error messages

As we already mentioned, the result of type-checking a CLaX program is a list of abstract
values representing incorrect constructs. These constructs can be transformed into human-
readable error messages in a modular manner, by applying the function errors of module
TcErrors (Appendix D.9). The function errors is executed by distributing a function errors
over all transformed statements which remained after type-checking. Thus, each equation
for the function errors handles one particular type-error. It should be noted that module
TcErrors does not constitute an exhaustive set of messages that can be derived from the
output of the tc function, but—in order to keep the amount of information manageable—a
rather conservative list of messages:

e If a statement contains more than one error, only one error is reported.

e Multiple occurrences of the same error are merged®.

As a result, when a user fixes all reported errors, other errors could still be re-
ported from the corrected program text. As an example, we show the processing of
LABEL := EXPR; here an error-message cannot-assign-to LABEL is generated.

[Soz] errors(LABEL := _Expr) = cannot-assign-to LABEL in :=

SNevertheless, no essential information is lost, because origin tracking permits us to determine the
source positions of all errors (see Section 4).
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C.9 Example
Consider the type-checking of the following CLaX program:

PROGRAM test;
DECLARE
n: REAL;
i: INTEGER;
PROCEDURE square (n : INTEGER);
DECLARE
x : REAL;
step : LABEL,;
BEGIN
x := 0; step := n; step := step * 0.01;
WHILE x < 1.0 DO
WRITE (x); WRITE (" ** 2 ="); WRITE (x * x); WRITE ("\n");
step: x := x + step
END ;
GOTO step ;
step:
END ;
BEGIN (* main program *)
i=0;
WHILE i < 0 DO
WRITE(" Enter number greater than 0");
READ(i);
END;
square(n)
END.

Our type-checker basically involves the following steps:

1. Change constants to their abstract values. For instance, the main program in the
example will look like:

BEGIN
i ;== INTEGER;
WHILE i < INTEGER DO
WRITE(" Enter number greater than 0");
READ(i);
END;
square ( n)
END.

Note that integer constants are represented by their abstract values, however, since

the strings are not of sort TYPE in CLaX (and there are no operations defined over
strings) they don’t have an abstract value.
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2. Build the context—which is the effective TENV for a given statement and thus for a
given expression. For instance, before entering the type-checking of the statements
in the procedure square, a snap-shot might look like:

[i: INTEGER;
square : PROC (INTEGER);
n: INTEGER;
x : REAL;
step : LABEL
A
DECLARE
BEGIN
x := INTEGER;
step := n;
step := step ¥ REAL,; - --
END
&
[ n: REAL;
i : INTEGER;
square : PROC (INTEGER)
A
DECLARE
BEGIN
i := INTEGER; - --
END

3. Check the consistency of GOTO statements before checking a block. For instance,
before spawning the checking of the statements in procedure square, the following
label error is produced (in this case):

unique step step
&
[i: INTEGER;
square : PROC (INTEGER);
n : INTEGER;
x : REAL;
step : LABEL |A
BEGIN x := INTEGER;

step :=n;
step := step * REAL; - --
END - - -

4. Convert the list of statements to a conjunction of statements. For instance, the next
step might look like:

unique step step &
REAL := INTEGER &
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Normal form Cause of the error

unique step step & Label step is defined twice

LABEL := INTEGER & Cannot assign to label

LABEL := LABEL * REAL & Cannot operate on label

REAL := REAL + LABEL & Cannot operate on label

isproc ( PROC (INTEGER) ( REAL )) | Procedure called with incompatible arguments

Table 4: The result of type-checking the program.

LABEL := INTEGER &
LABEL := LABEL * REAL &

5. Perform abstract evaluation of expressions.

6. Eliminate the cases of correct statements.

Table 4 shows the normal form of the type-checking process. For each of the con-
juncts in this error message, the cause of the error is listed.

7. Generate error messages. The normal form of Table 4 is translated to:

multiply-defined-label step ;

cannot-assign-to LABEL in :=;

used-as-operand LABEL ;

procedure-call () expected-arg INTEGER found-arg REAL

The translator has converted LABEL := LABEL * REAL into the error-message
cannot-assign-to LABEL in :=. Moreover, it has merged two occurrences of the same
error-message.

Note that the generated error messages do not contain information regarding the po-
sitions where the errors occurred. Section 4 discusses how the type-checker specification
described above can be used to automatically derive an error reporter, i.e., a tool which
indicates the positions of errors.

C.10 Type-checking incomplete programs

Next we introduce some placeholders to the example program to illustrate how we can
type-check incomplete programs. For simplicity, the type-errors above are removed from
the program.

PROGRAM test;
DECLARE
n: INTEGER;
<DECL>;
i INTEGER;
PROCEDURE square (n : INTEGER);
DECLARE
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x : REAL:
step : REAL;
BEGIN
x := 0; <STAT>; step := step * 0.01;
WHILE x < 1.0 DO
WRITE (x); WRITE (" ** 2 ="); WRITE (x * x); WRITE ("\n");
lab0: x := x + <EXPR>
END;
GOTO lab0;
END;
BEGIN (* main program *)
i:=0;
WHILE i < 0 DO
WRITE(" Enter number greater than 0");
READ(i);
END;
square(n)
END.

The result of type-checking this incomplete program is:

isproc ( <STAT> ()) &
islabel(| <DECL> | . lab0) &
REAL := REAL + <EXPR> &
islabel(| <DECL> ] . lab0)

Except for the first conjunct which thinks a <STAT> placeholder is a procedure call
(due to an idiosyncrasy in the system), the other messages seem proper and obvious to
decipher.
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D CLaX type-checking modules

The specification below is the full specification of the CLaX type-checker. It imports the
CLaX syntax defined in module SyntaxProgram (see Appendix B). The import diagram for
the type-checking modules is:

Syntax Tc
Consts Nint
Tc Tc Tc
Tc >
Booleans Tenv Errors
Tc Tc Tc
SyntaxExt Expr Label
Syntax Tc
Program Proc

D.1 module TcSyntaxExt
module TcSyntaxExt

imports SyntaxProgram
exports

context-free functions
EXPR ASGN EXPR — ASSIGN-STAT

EXPR LSQ EXPR RSQ — EXPR

READ “(" EXPR “)" — IN-OUT-STAT
priorities

{ VARIABLE ASGN EXPR — ASSIGN-STAT,

VARIABLE LSQ EXPR RSQ — VARIABLE,

READ “(" VARIABLE “)" — IN-OUT-STAT } >

{ EXPR ASGN EXPR — ASSIGN-STAT, EXPR LSQ EXPR RSQ — EXPR,
READ “(" EXPR “)" — IN-OUT-STAT }

equations

[t1]

_Expr' = _Var

_Var := _Expr = _Expr' := _Expr

_Expr = _Var
READ(_Var) = READ(_Expr)

[12]
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D.2 module TcTenv

module TcTenv
imports TcSyntaxExt TcBooleans

exports
sorts TENV
context-free functions
TYPE — EXPR
LABEL-LEX — TYPE
“I" {VAR-DECL “;"}x* “]" — TENV
TENV “." EXPR — TYPE
tenv(TENVx) — TENV
variables
[] C " — TENV=x*
[]D " ["]* — {VAR-DECL “;"}x
[] D[']* — VAR-DECL
[] D “+"["]* — {VAR-DECL “;"}+
[-] Tenv [ | — TENV
hiddens

context-free functions
merge(TENV, TENV) — TENV

occurs(ID, TENV) — BOOL
equations
[1] _IntConst = INTEGER [2] _RealConst = REAL [3] _BoolConst = BOOLEAN

[01] occurs(_Id, [_Id : _Type;_Dx]) = true

[02] occurs(_ld, [|) = false

Jd 4 Id'
occurs(_Id, [_Id" : _Type;_Dx]) = occurs(_Id, [_Dx])

[03]

[M1] merge([], -Tenv) = _Tenv

occurs(_Id, [.Dx']) = true,
_Type # LABEL

[v2] merge([_Id : _Type;_Dx|, [.Dx']) = merge([_Dx], [.Dx'])
occurs(_Id, [_Dx']) = false,
merge(|.D], [.D="]) = [+,
v _Type # LABEL

merge([_Id : _Type;_Dx], [-.Dx']) = [ld : _Type;_-Dx"']
[M4] merge([_Id : LABEL;_Dx|, _Tenv) = merge([_Dx], _Tenv)

[T1] tenv(-Tenv _Tenv' _Cx) = tenv(merge(_Tenv, _Tenv') _Cx)
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[T2]
[E0]

[E1]

[E2]

[E3]

[E4]

tenv(_Tenv) = _Tenv
_Tenv . _Type = _Type

[LDx;_Id : _Type; D«'] . _Id = _Type

Jd# Id'
[.Dx;_1d" : _Type;_Dx'] . _Id = [_D*;_D«'] . _Id

_Tenv. Var [ _Expr' | = _Tenv. _Var [ _Tenv. _Expr']

ARRAY [ _IntConst .. _IntConst’ | OF _Type [ INTEGER | = _Type
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D.3 module TcExpr
module TcExpr

imports TcTenv
exports

sorts AOP BOP UOP OP
context-free functions

AOP1
BOP1
AOP2
BOP2
AOP
BOP
CopP
UAOP
UBOP

— AOP
— BOP
— AOP
— BOP
— OP
— OP
— OP
— UOP
— UOP

EXPR OP EXPR — EXPR

UOP EXPR
variables

— EXPR

[.] Aop [']* — AOP

[

]
] Bop [+ — BOP
Jop['lx —oOP

[] Uop[']* — UOP

priorities

{ UAOP EXPR — EXPR, UBOP EXPR — EXPR, EXPR COP EXPR — EXPR,
EXPR AOP2 EXPR — EXPR, EXPR BOP2 EXPR — EXPR,

EXPR AOP1 EXPR — EXPR, EXPR BOP1 EXPR — EXPR } >

{ UOP EXPR — EXPR, EXPR OP EXPR — EXPR }

equations

1] -Op = _Cop
t

_Expr _Cop _Expr' = _Expr _Op _Expr'
t

_Expr _Aop; _Expr' = _Expr _Op _Expr’
(2] -Op = _Aopy

_Expr _Aopy _Expr' = _Expr _Op _Expr’
3] -Op = _Bop,
t

_Expr _Bop; _Expr' = _Expr _Op _Expr’
t

_Expr _Bop, _Expr' = _Expr _Op _Expr'
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[t5]

[t6]

[vo]

[v1]

_Uop = _Ubop

_Ubop _Expr = _Uop _Expr

_Uop = _Uaop

_Uaop _Expr = _Uop _Expr

_Uop = NOT

_Uop BOOLEAN = BOOLEAN

_Uop # NOT

_Uop INTEGER = INTEGER

_Uop # NOT

_Uop REAL = REAL

_Op = _Aop

INTEGER _Op INTEGER = INTEGER

_Op = _Aop, Op# %

REAL _Op REAL = REAL

-Op = _Bop

BOOLEAN _Op BOOLEAN = BOOLEAN

-Op = _Cop

_SimpleType _Op _SimpleType = BOOLEAN

_Tenv . _Uop _Expr = _Uop _Tenv . _Expr

_Tenv . _Expr _Op _Expr' = _Tenv . _Expr _Op _Tenv
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D.4 module TcBooleans
module TcBooleans

exports
sorts BOOL BOOL-CON
context-free functions

true — BOOL-CON

false — BOOL-CON

BOOL-CON — BOOL

BOOL “&" BOOL — BOOL {assoc}

“(" BOOL “)" — BOOL {bracket}

variables

Bool [1-9'] — BOOL

Bool-con [1-9']* — BOOL-CON
equations

[1] true & Bool = Bool
[2] Bool & true = Bool
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D.5 module TcProc

module TcProc
imports TcExpr

exports
sorts PROC-TYPE VTYPE TYPE-LIST
context-free functions

“PROC" “(" {VTYPE “;"}x* “)" — PROC-TYPE
PROC-TYPE — TYPE
{TYPE *;" }x — TYPE-LIST
TENV “.((" {EXPR “"}% “))" — TYPE-LIST
formals PROC-HEAD — TENV
signature PROC-HEAD — VAR-DECL
TYPE — VTYPE
VAR-LEX TYPE — VTYPE
vtype(FORMAL) — VTYPE

isproc “(" EXPR LPAR TYPE-LIST RPAR “)" — BOOL
vararg “(" EXPR LPAR {EXPR “" }* RPAR “)" — BOOL
variables
[] TypeList [']*  — {TYPE “;" }x
[.] ProcType [']* — PROC-TYPE
y

[] Viype [']+  — VTYPE
[] ViypeList [']x  — {VTYPE "}«
equations

[AE0] _Tenv .(()) =

_Type = _Tenv . _Expr, _Tenv .(( -ExprlList)) = _TypeList

[AE1] . .
_Tenv .(( -Expr,-ExprList)) = _Type;_TypeList

[Fo] formals PROCEDURE _Id =[]
[F1] formals PROCEDURE _id ( .D ) = [.D]
[F2] formals PROCEDURE _Id ( VAR _D ) = [_D]

formals PROCEDURE _Id ( _Formal ) = [_D),
formals PROCEDURE _Id ( _Formal+ ) = [_D+]
formals PROCEDURE _Id ( _Formal;_Formal+ ) = [-D;_D+|

[so] signature PROCEDURE _Id = _Id : PROC()
[s1] signature PROCEDURE _Id ( _Formal ) = _Id : PROC(vtype(-Formal))

signature PROCEDURE Id ( _Formal+ ) = Id : PROC(_VtypelList)

signature PROCEDURE _Id ( _Formal,_Formal+ ) = _Id : PROC(vtype(_Formal);_VtypelList)

[Po] isproc(PROC() ( )) = true

[P1] isproc(PROC(_Type; _ViypelList) ( _Type; _Typelist )) =
isproc(PROC(_VtypelList) ( _Typelist))

[P2] isproc(PROC(VAR _Type; Viypelist) ( _Type; Typelist )) =
isproc(PROC(_VtypelList) ( _Typelist))
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[vao] vararg(PROC() ( )) = true
[VA1] vararg(PROC(-Type;_Vtypelist) ( _Expr,-ExprList )) = vararg(PROC(_VtypelList) ( _ExprList

)

[va2] vararg(PROC(VAR _Type;_Viypelist) ( _Var,_ExprList )) = vararg(PROC(_VtypelList) (
_ExprList ))

[vTo] vtype(VAR _Id : _Type) = VAR _Type
[VT1] vitype(_Id: _Type) = _Type
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D.6 module TcLabel
module Tclabel

imports TcProc
exports
sorts LABEL-LIST

context-free functions
ID* — LABEL-LIST

“gotos” STAT-SEQ — LABEL-LIST
“defines” STAT-SEQ — LABEL-LIST

“unique” ID=* — BOOL

ID* “def” ID* — BOOL

islabel(EXPR) — BOOL
variables

[] Labels [']x — ID%
[] Labels “+" — ID+
equations
[Lo] defines _StatAux =
[L1] defines _Id : _StatAux = _Id

_Labels' = defines _Stat,
_Labels'' = defines _StatSeq,
_Labels = _Labels' _Labels''

defines _Stat;_StatSeq = _Labels

[L2]

[U0] unique = true
[U1] unique _Id = true

Id# _Id'
unique _Id _Id" = true

[u2]

[U3] unique _Id _Id" _Labelst+ =
unique _Id _Id" & unique _Id _Labels+ & unique _Id’' _Labels+

[Go] gotos _Id : _StatAux = gotos _StatAux
[G1] gotos GOTO _Id = _Id

[G2a] gotos _AssignStat =
[G2b] gotos _CondStat =
[G2c] gotos _LoopStat =
[G2d] gotos _InQutStat =
[G2¢] gotos _ProcStat =

[G2f] gotos _EmptyStat =
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_Labels = gotos _Stat, _Labels’ = gotos _StatSeq,
_Labels'' = _Labels _Labels’

gotos _Stat;_StatSeq = _Labels'’

[63]
IS def _Labels = true
[S1] _Id def _Id _Labels = true

2 _Id # _Id’

_Id def _Id" _Labels = _Id def _Labels
[S3] _Id _Labels+ def _Labels = _Id def _Labels & _Labels+ def _Labels

[IsLo] islabel(LABEL) = true
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D.7 module TcNint
module TcNint

imports TcBooleans SyntaxConsts
exports
context-free functions
INT-CONST islessthan INT-CONST — BOOL
hiddens
sorts INT INT-CON POS NEG NAT AUX
lexical syntax
[1:9] [0-9]* — POS
[+\-0] — AUX
context-free functions
toint INT-CONST — INT

“—" POS — NEG
0" — NAT
POS — NAT
NAT — INT-CON
NEG — INT-CON
INT-CON — INT
“P" INT — INT
“S" INT — INT
“(" INT )" — INT {bracket}
INT “<” INT — BOOL
“—" INT — INT
variables
Int [0-9']% — INT
hiddens
context-free functions
INT “" INT — INT {left}
hd “(" INT “)" — INT
th (" INT )" — INT
“bigpos?” “(" INT “)" — BOOL
variables
Int [0-9']x — INT
[xy] [0-9"]* — INT
[7] [0-9']* — NEG
(] [0-9']  — POS
c [0-9']* — CHAR

c[0-9']x “+” — CHAR+
c[0-9']% %" — CHARx
priorities
“" < { “S"INT — INT, “P" INT — INT, “—="INT — INT } <
{ “=" POS — NEG }

equations
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2]

[13]

[14]

[15]

[16]

[11]
[12]
[13]
[14]
[15]

[h1]
[h2]

[t1]
[12]
[01]

[02]

[s1]1 S0=1
[s4] S3=4
[s6] S5 =6
[s9] S8=9
[Pl P1=0
[P4] P4 =3
[P6] P 6 =5
[Po] P9 =8

tl(n) # 9, bigpos?(n) = true

S n=hd(n); S tl(n)

tl(n) =9

S n=Shd(n);0

n"=Pn

S—n=-—n

!

tl(n) # 0, bigpos?(n) = true

P n = hd(n); P tI(n)

tl(n) = 0, bigpos?(n) = true

P n=P hd(n); 9

n'=Sn
P—n=—n'
0 < 0 = false
0 < n=true
0 < z = false

n<x=Pn<Px
z< x=852z<Sx

hd(pos(c+ ¢)) = pos(c+)

hd(pos(c)) = 0

tl(pos(c+ “0")) =0

pos(ck c) # pos(cx “0")

tl(pos(cx ¢)) = pos(c)

bigpos?(pos(c+ ¢)) = true

bigpos?(pos(c)) = false
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[02] pos(c+); pos(c’+) = pos(c+ ¢'+)
[03] pos(c+); 0 = pos(c+ “0")
[o4] 0; x = x

[el] —n=—n
[2] — —n=n
[e3] —0=0

[To] toint int-const(“+" c¢+) = toint int-const(c+)
[T1] toint int-const(“—" c+) = — toint int-const(c+)
[T2] toint int-const(“0" c+) = toint int-const(c+)
[T3] toint int-const(c) = pos(c)

aux(c) # aux(“0"),
aux(c) # aux(“+"),
aux(c) # aux(“=")

toint int-const(c c¢+) = pos(c c+)

[T4]

toint _IntConst < toint _IntConst! = true

LO -
[ ] _IntConst islessthan _IntConst’ = true
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D.8 module Tc

module Tc

imports TcLabel TcNint

exports

context-free functions

tc(PROGRAM) — BOOL
TENVx* “" BLOCK — BOOL
STAT — BOOL
isbool(EXPR) — BOOL

unique-decls(TENV) — BOOL
nonemptyarray(TENV) — BOOL
hiddens

context-free functions
flat STAT-SEQ — STAT-SEQ
equations

[PO]

[To]

[T4]

[Ts]

tc(PROGRAM _Id; _Block .) = [| [|  _Block

_Cx [_D*] " DECLARE _EmptyDecl; _Declx BEGIN _StatSeq END =
_Cx [.D*] " DECLARE _Decl+ BEGIN _StatSeq END

_LabelDecl = _Id : LABEL
_Cx [_D*] " DECLARE _LabelDecl; _Decl+ BEGIN _StatSeq END =
_Cx [_D*; _d : LABEL] " DECLARE _Declx BEGIN _StatSeq END

-ProcDecl = _ProcHead; _Block,
_D = signature _ProcHead,
_Tenv = formals _ProcHead,
Booh = _Ck [_D%;_D] _Tenv" _Block,
Booly = _Cx [_D%;_D] " DECLARE _Decl+ BEGIN _StatSeq END
_Cx [_Dx] " DECLARE _ProcDecl; -Declx BEGIN _StatSeq END =
nonemptyarray(-Tenv) & Booh & Bools

-Cx [.D*] " DECLARE _VarDecl; -Decl« BEGIN _StatSeq END =
nonemptyarray([-VarDecl]) & _Cx [_Dx; _VarDecl] ~ DECLARE _Decl« BEGIN _StatSeq END

_Cx _Tenv _Tenv' " BEGIN _StatSeq END = _Cx _Tenv _Tenv' " DECLARE BEGIN _StatSeq
END

_StatSeq' = flat _StatSeq,
_Labels = gotos _StatSeq’,
_Labels' = defines _StatSeq'
_Cx _Tenv” DECLARE BEGIN _StatSeq END =
_Labels def _Labels’ & unique _Labels’ & unique-decls(_Tenv) &
tenv(.Cx _Tenv) " BEGIN _StatSeq’ END
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[Té] _Tenv™ BEGIN _Stat; StatSeq END =
_Tenv "~ BEGIN _Stat END & _Tenv "~ BEGIN _StatSeq END

[Tso] -Tenv”™ BEGIN END = true

[TS1] _Tenv " BEGIN _I/d : _StatAux END = islabel(-Tenv . _Id) & _-Tenv " BEGIN _StatAux END
[Ts2] _Tenv " BEGIN _Expr := _Expr’' END = _Tenv . _Expr:= _Tenv . _Expr'

[TS2x] _SimpleType := _Simple Type = true

[TS2y] REAL := INTEGER = true

[Ts3] _Tenv " BEGIN _Id END = isproc(_Tenv . _Id ( ))

[Ts4] _Tenv ™ BEGIN _Id ( _ExprList ) END =
isproc(-Tenv . _Id ( -Tenv .(( -ExprList)) )) & vararg(-Tenv . _Id ( _ExprList ))

[Ts5] _Tenv” BEGIN IF _Expr THEN ELSE END END =
IF _Tenv . _Expr THEN END

[Tssx] IF BOOLEAN THEN END = true

[Tse] _Tenv” BEGIN IF _Expr THEN END END =
IF _Tenv . _Expr THEN END

[Ts7] _Tenv” BEGIN WHILE _Expr DO END END =
WHILE _Tenv . _Expr DO END

[Ts7x] WHILE BOOLEAN DO END = true

[Tsg] _Tenv " BEGIN READ(_Expr) END = READ(_Tenv . _Expr)
[Ts8x] READ(_SimpleType) = true

[Ts8] _Tenv " BEGIN WRITE(.Expr) END = WRITE(_Tenv . _Expr)
[Ts8x] WRITE(_SimpleType) = true
[Ts8y] _Tenv " BEGIN WRITE(_String) END = true

[s9] -Tenv " BEGIN GOTO _Id END = islabel(-Tenv . _Id)

flat _StatAux = _StatAux';_StatSeq'*
flat _Id : _StatAux = _Id : _StatAux’;_StatSeq'x*

[FLo]

[FL1] flat _Expr:= _Expr' = _Expr:= _Expr'
[FL2] flat _id = _Id

[FL3] flat _Id ( -ExprList ) = _Id ( _ExprList )
[FL4] flat READ(_Expr) = READ(_Expr)
[FLs] flat WRITE(.Expr) = WRITE(_Expr)
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[FLe] flat WRITE(_String) = WRITE(_String)
[FL7] flat GOTO _Id = GOTO _I/d
[FL8] flat =

_StatSeq' = flat _StatSeq
flat IF _Expr THEN _StatSeq END = IF _Expr THEN END;_StatSeq'

[FL9]

_StatSeq'' = flat _StatSeq; StatSeq'

[FL10] 7
flat IF _Expr THEN _StatSeq ELSE _StatSeq” END =
IF _Expr THEN END; _StatSeq'’
(FL11) _StatSeq’ = flat _StatSeq
flat WHILE _Expr DO _StatSeq END = WHILE _Expr DO END;_StatSeq'’
_StatSeq' = flat _Stat, StatSeq'' = flat _StatSeq
[FL12]

flat _Stat, StatSeq = _StatSeq'; StatSeq'’

[1IBo] isbool(BOOLEAN) = true

[U0] unique-decls([]) = true
[U1] unique-decls([_Id : _Type|]) = true
e
unique-decls([_Id : _Type; _Id" : _Type'; Dx]) =
unique-decls([_Id : _Type; Dx]) & unique-decls([_Id’ : _Type'; _Dx])

[u2]

[NAO] nonemptyarray([_Id : _SimpleType]) = true

[NA1] nonemptyarray([_/d : LABEL]) = true

[NA2] nonemptyarray([-Id : ARRAY [ _IntConst .. _IntConst’ | OF _Type]) =
_IntConst islessthan _IntConst’ & nonemptyarray([_Id : _Type])

L
i

[NA3] nonemptyarray([]) = true
[NA4] nonemptyarray([-D;_D+|) = nonemptyarray([_-D|) & nonemptyarray([-D+])
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D.9 module TcErrors
module TcErrors

imports Tc
exports
sorts MESSAGE MSG-LIST

context-free functions
errors(PROGRAM)

errors(BOOL)
{MESSAGE * ;"}+
err(TYPE-LIST)

no-errors
err(EXPR)
incomp(MESSAGE)

undeclared-identifier ID
incompatible-operands(EXPR)
incompatible-array-access(EXPR)
used-as-operand EXPR
assignment-incompatible BOOL
cannot-assign-to EXPR “in” ASGN
“Boolean-expected” |IF MESSAGE THEN
“Boolean-expected” WHILE MESSAGE DO
undeclared-procedure-called ID
procedure-call LPAR RPAR expected-arg VTYPE found-arg MESSAGE
procedure-call LPAR RPAR expected-no-more-args-but-found TYPE-LIST
procedure-call LPAR RPAR expected-variable-arg VTYPE found-arg EXPR
only-simple-type-variable-allowed-in READ “(" MESSAGE “)"
only-simple-type-variable-allowed-in WRITE “(" MESSAGE “)"
array-decl-must-have-positive-size “(" INT-CONST “..” INT-CONST *)"
expected-label-found MESSAGE
multiply-defined-label ID
not-defined-label 1D
not-declared-label ID
multiple-declaration-in-same-scope ID
unary-operator UOP not-allowed-on-operand-of-type TYPE
TYPE
variables

[.] Msg [']* — MESSAGE
[] MsgList ["]* — {MESSAGE " ;" }x

equations

[M-1] errors(_Program) = errors(tc(_Program))

[0] errors(true) = no-errors
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_MsglList = errors(Bool ),
_MsgList' = errors(Bool)
errors(Booly & Book) = _Msglist ;_MsgList'

[2] _MsgList ;_Msg ;_MsgList' ;_Msg ;_MsgList'' = _MsgList ;_Msg ;_MsgList' ;_MsgList"’

[sox] errors(_SimpleType := _SimpleType') =
assignment-incompatible _SimpleType := _SimpleType'

[soy] errors(-Expr [ -Expr’ | :== _Expr'") = err(_Expr [ -Expr' ])

[S0z] errors(LABEL := _Expr) = cannot-assign-to LABEL in :=

[S0z1] errors(_SimpleType := _Expr [ -Expr' ]) = incomp(err(_Expr [ -Expr' ]))
[S0z2] errors(_SimpleType := _Expr _Op _Expr') = incomp(err(-Expr _Op _Expr'))
[S0z3] errors(_SimpleType := _Uop _Expr) = incomp(err(_Uop _Expr))

[s1a] errors(isproc([] . -Id ( _Typelist ))) = undeclared-procedure-called _Id
[s1b] errors(isproc(PROC(_Vtype; _VtypeList) ( _Type; -Typelist ))) =
procedure-call ( ) expected-arg _Vtype found-arg incomp(err(_Type))
[sic] errors(isproc(PROC() ( -Type; -Typelist ))) =
procedure-call ( ) expected-no-more-args-but-found _Type; _TypelList

[s1d] errors(vararg([] . -Id ( -ExprList ))) = undeclared-procedure-called _Id
[Ste] errors(vararg(PROC(_Vtype; _VitypelList) ( _Expr, ExprList ))) =
procedure-call ( ) expected-variable-arg _Vtype found-arg _Expr

[s2] errors(IF _Expr THEN END) = Boolean-expected IF incomp(err(_-Expr)) THEN
[s2x] errors(WHILE _Expr DO END) = Boolean-expected WHILE incomp(err(-Expr)) DO

[s3] errors(READ(_Expr)) = only-simple-type-variable-allowed-in READ(incomp(err(_Expr)))
[s4] errors(WRITE(-Expr)) = only-simple-type-variable-allowed-in WRITE(incomp(err(_Expr)))
[s5] errors(islabel(_Expr)) = expected-label-found incomp(err(_Expr))

[Eox] err(-Uop [] . _Id) = err([] . _Id)

[Eoy] err(-Expr _Op [] . _Id) = err([] . _Id)

[E0z] err([] . -Id -Op -Expr) = err([] . -Id)

[E1a] err(-Uop -Type _Op _Expr) = err(_Uop _Type)

[E1b] err(_Type _Op _Type' _Op' _Expr) = err(_Type _Op _Type')

[E1] err(_Expr -Op _Type -Op' _Type') = err(_Type _Op’ _Type')

[Exd] err(ARRAY [ _IntConst .. _IntConst’ | OF _Type [ -Expr]) =
incompatible-array-access(_Expr)
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err(_Expr’) = incompatible-array-access(_Expr)

El
[Exe] err(_Expr’ _Op _Expr'") = incompatible-array-access(-Expr)

err(_Expr'") = incompatible-array-access(_Expr)

E1f
[Ex] err(_Expr’ _Op _Expr'") = incompatible-array-access(-Expr)

[E2a] err(_Uop _Type) = unary-operator _Uop not-allowed-on-operand-of-type _Type
[E2b] err([] . -Id) = undeclared-identifier _Id

[01] incomp(undeclared-identifier _Id) = undeclared-identifier _Id

[02] incomp(err(_SimpleType)) = _SimpleType

[03] incomp(err(_SimpleType _Op _SimpleType')) =
incompatible-operands(_SimpleType _Op _SimpleType')

[04] incomp(err(LABEL _Op _Expr)) = used-as-operand LABEL
[05] incomp(err(_Expr -Op LABEL)) = used-as-operand LABEL

err(_Expr') = err(_Expr)

06
[oe] incomp(incompatible-array-access(-Expr)) = incompatible-array-access(_Expr’)

[07] incomp(unary-operator _Uop not-allowed-on-operand-of-type _Type) =
unary-operator _Uop not-allowed-on-operand-of-type _Type

[08] incomp(err(-Uop _Expr -Op _Expr')) = incomp(err(_-Uop _Expr))
[09] incomp(err(-Expr -Op -Uop _Expr')) = incomp(err(_Uop -Expr'))

[010] incomp(err(_Expr Op _Expr' _Op' _Expr'")) =
incomp(err(_Expr _Op _Expr'))

[011] incomp(err(-Expr -Op -Expr’ _Op' _Expr'")) =
incomp(err(_Expr’ _Op _Expr’ '))

[Lo] errors(unique _Id _Id _Labels) = multiply-defined-label _Id
[L1] errors(_Id def ) = not-defined-label _Id
[L2] errors(islabel([] . -Id)) = not-declared-label _Id

[UEO] errors(unique-decls([-Id : _Type; _Id : _Type'; Dx])) =
multiple-declaration-in-same-scope _Id

[ALo] errors(_IntConst islessthan _IntConst’) =
array-decl-must-have-positive-size(_IntConst .. _IntConst')
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E An interpreter for CLaX

This appendix contains the specification of an interpreter for CLaX. The specification is
not a purely algebraic one, because hybrid functions [Wal91] are used to perform basic
arithmetic operations and I/O in Lisp. This specification imports the CLaX syntax, as
defined in Appendix B. Programs which are to be executed are assumed to be type-correct
according to the CLaX type-checker as defined in Appendix D. Currently, no provisions
are made to detect or report run-time errors, such as divisions by zero.

E.1 Basic Datatypes

The status of the interpreter is defined by way of two stacks: a code stack and a data stack.
Together, these stacks represent the well-known concept of a stack of activation records
[ASUB6]. We use two separate stacks in this specification because it allows us to separate
the control flow issues from the operations on the data. We believe that this separation
of issues results in a more clear specification. Code stacks (sort C-STACK) are defined
in module CodeStacks (see Appendix F.1) and contain the current point of execution for
each procedure on the call stack (comparable to the return address). Data stacks (sort
D-STACK) are defined in module DataStacks (see Appendix F.2) and contain the current
values of the variables for each of the procedures on the call stack. In module EvalProgram,
an interpreter status is defined as:

"<" C-STACK “" D-STACK “>" — STATUS

Code Stacks

In module C-Stacks, a code stack is defined as a list of zero or more code records (sort
C-RECORD). During execution, one code record exists for each procedure on the call
stack. A code record consists of the following parts: the name of the procedure, the list
of statements that forms the procedure body, and a ‘pointer’ to an element of that list
which indicates the statement which is currently being executed. Below, the definitions of
code records and code stacks are shown. In this specification, the pointer to the current
statement is modeled by means of another list of statements—the statements which are
yet to be executed; the current statement is the first element of this list. Thus, the first
list in a code record contains all code of a block, whereas the second code record contains
the code which is yet to be executed.

“"ID “ {STAT “"}x “" {STAT */"}x “]" — C-RECORD
C-RECORD* — C-STACK

Data Stacks

The other component of the status of the CLaX interpreter, the data stack, is defined
in module D-Stacks. Like code stacks, data stacks consist of a list of zero or more data
records, one for each procedure on the code stack. A data record for procedure P contains
variable-value pairs for all local variables of P and parameters of P. In addition, it contains
procedure definitions for all procedures which are declared in the declaration section of P.
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Data record elements are represented by sort D-ELEM. The definitions of data records and
data record elements will follow shortly.

Simple Values and Array Values

We inject the sort EXPR into the sort VALUE®. During execution, however, expressions
occurring in variable-value pairs in data records will always be integer, real, or boolean
constants. Array values are represented by triples which denote the lower bound, the
upper bound, and a list of values bound to the successive elements of the array. Below,
the relevant parts of module D-Stacks are shown.

EXPR — VALUE
“[" INT-CONST “," INT-CONST “,” VALUE+ “|" — VALUE
ID *" VALUE — D-ELEM

Static Scoping

CLaX , like Pascal, is a language with nested procedures and static scope rules (also called
lexical scope rules). In [ASUB86|, static scoping in the presence of nested procedures is
discussed. The difference between dynamic and static scoping consists of the way references
to non-local variables are handled. Dynamic scoping corresponds to successively searching
in the next record on the stack. Static scoping corresponds to successively searching in
the most recent record for the immediately surrounding scope.

The following strategy is adopted to specify static scoping. Associated with every
procedure in the program is a path: a (possibly empty) sequence of natural numbers.
This path reflects the relative position of the procedure in the abstract syntax tree of the
program, with respect to other procedures and the main program only. For example: if the
declaration section of program P contains declarations for Q and R (in that order), and the
declaration section of procedure R contains a declaration for procedure S, the paths (), (1),
(2), and (2, 1) are associated with P, Q, R, and S, respectively. Each data record contains
the path to the associated procedure, and lexical scoping is specified in the following way:
if a non-local cannot be found, and the path of the current data record is (nj -- - ng), the
search is to be continued in the first record with path (n;---ng_1) that is encountered.

The specification of procedure definition entries, data records (sort D-RECORD) and
data stacks is shown below.

ID *" PATH “:" PROC-DECL — D-ELEM
“"ID “)" PATH “)" D-ELEMx “|" — D-RECORD
D-RECORD=* — D-STACK

6 Alternatively, the sorts INT-CONST, REAL-CONST, and BOOL-CONST could be injected in sort
EXPR. The advantage of the adopted approach is that it results in a more compact specification: EXPR
can serve as the output sort of function eval-exp. Hence, eval-exp can be specified in a simple recursive
manner.
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Parameter Passing Mechanisms

In CLaX, both call-by-value and call-by-reference parameter passing are supported. Call-
by-value parameter passing is specified by treating formal value parameters as local vari-
ables of the same name, which obtain their initial value from the corresponding actual
parameter. Call-by-reference parameter passing is handled as follows. Instead of an ac-
tual value, a reference to an entry in a previous data record is entered as the value part of
the variable-value pair. Any uses or updates of a reference value are simply regarded as
uses or updates of the variable that is referred to. The specification of reference values is
given below.

ref(ID, PATH) — VALUE

Referencing and Updating of Values

The functions lookup and update define the lookup of the current value of a variable, and
the update of the value of a variable, in a data stack. Simple variables and array variables
are handled in a uniform way. The first two arguments of both lookup and update are an
identifier and a path. In the case of a simple variable, the path is empty, and in the case of
an array variable the path contains the actual indices of the array element involved. For
example, when a lookup is done for array element i[1][2], the identifier is i and the path is
(1 2). Several auxiliary functions are used in the definition of lookup and update; the most
significant of these are the functions lookup-list and update-list which do a lookup and update
of an array element, respectively. Furthermore, a function next-scope determines, given a
data stack, the immediately surrounding scope, get-id and get-value are access functions for
data stack elements, and is-ref is a boolean predicate which tests whether or not a value is
a reference value. The signature of all functions mentioned above is presented below.

context-free functions

lookup(ID, PATH, D-STACK) — VALUE
update(ID, PATH, D-STACK, VALUE) — D-STACK
hiddens
context-free functions

lookup-list(PATH, VALUE) — VALUE
update-list(PATH, VALUE, VALUE) — VALUE
next-scope(D-STACK, PATH) — D-STACK
get-id(D-ELEM) — ID
get-value(D-ELEM) — VALUE
is-ref(VALUE) — BOOL-CONST

Below, the equations which define the semantics of lookup and lookup-list are listed; the
definitions of update and update-list are similar (see Appendix F.2).

Equation [lol] describes the case where a variable cannot be found in the current data
record—the search is continued in the next scope. In [lo2], the identifier is not equal to
the identifier of the first element of the data record—the search continues with the next
element of the same record. In [lo3], an entry for a non-array variable is found in the
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current record; it is not a reference value, so the lookup terminates. [lo4] is very similar to
the previous case: an entry for the identifier is found in the current record, and it is not
a reference value. However, as we search for an array element the search is continued by
looking for an array element. This is expressed by means of lookup-list. [lo5] handles the
case where a reference value is found for a simple (i.e., non-array) variable. The search
continues in the data record for the calling procedure with the variable that is referred to.
Finally, in [lo6], a reference value is found for an array element. The search is continued
in the next record.

Recall that array structures consist of triples with the lower bound, the upper bound,
and a list of values. In equation [lI1], the index of the element that is searched is equal to the
lower bound of the array; the first element of the list of values is the value to be found. [I12]
describes a case similar to the previous one, however, the search has to continue because
the array is multi-dimensional. This is expressed by a recursive application of lookup-list.
Finally, [lI3] handles the remaining case: the element to be found is not the first element of
the list of values. This is defined by way of an auxiliary function incr which increments an
integer constant by one (module Arithmetic, Appendix F.8), and by continuing the search
in the tail of the list.

_DRecx' = next-scope(_DRecx, _Intx)
lookup(-Id, _Path, [_Id", _Intx _Int, | _DRec*) =
lookup(_/d, _Path, -DRecx")

[lo1]

_Id # get-id(_DElem)
lookup(_Id, _Path, [_Id", _Path', _DElem _DElem«] _DRecx) =
lookup(_Id, _Path, [_Id", _Path’, DElem*] _DRecx)

[|02]

is-ref(_Value) = FALSE

[I°3] 7
lookup(_Id, , [-Id", _Path, _Id : _Value -DElemx| _DRecx) = _Value

is-ref(_Value) = FALSE
lookup(_Id, _Int+, [_Id’, _Path, _Id : _Value DElem*| DRecx) =
lookup-list(_Int+, _Value)

[Io4]

[los] lookup(-Id, , [-Id", _Path, _Id : ref(_Id"’, _Path') _DElem*| DRecx) =
lookup(_Id"’, _Path’, _DRecx)

[lo6] lookup(_Id, _Int+, [_Id’, _Path, _Id : ref(_ld"’, ) _DElem] _DRecx) =
lookup(_Id"!, _Int+, _DRecx)

(1] lookup-list(_Int, [_Int, _High, _Value _Valuex|) = _Value
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[12] lookup-list(_Int _Int+, [_Low, _High, _Valuex]) =
lookup-list(_Int+, lookup-list(_Int, [_Low, _High, _Valuex]))

_Int # _Low
lookup-list(_Int, [_Low, _High, _Value _Valuex|) =
lookup-list(_Int, [incr(_Low), _High, _Valuex])

[13]

E.2 Evaluation of Expressions

In module EvalExpr, the evaluation of an expression in a given data stack is specified.
Below, the exports section of this module is shown.

eval-exp(EXPR, D-STACK) — EXPR
get-index-list(VARIABLE, D-STACK) — PATH
get-id(VARIABLE) T

Eval-exp defines the evaluation of an expression, given a data stack. Before describing
this function in detail, we comment on the other two exported functions which are auxiliary
functions for dealing with variables. Get-index-list computes a path denoting the actual
indices, given a variable (represented by a term of sort VAR) and a data stack. For example,
for a non-array variable get-index-list computes the empty path, and in a situation where
variable i has value 1, get-index-list computes the path (1 2) for array variable ai][i+i]. In
equations [gill] and [gil2] below, get-index-list is recursively defined in terms of eval-exp. Get-id
is a function which retrieves the identifier of a variable.

[gil]] get-index-list(_Id, -DStack) =

eval-exp(_Exp, -DStack) = _Int,
get-index-list(_Var, _DStack) = _Int*
get-index-list(_Var [ _Exp |, _DStack) = _Int* _Int

[gil2]

At this point, we describe the most significant issues which arise in the specification
of eval-exp. The full definition can be found in Appendix F.3. The equations which define
eval-exp can be classified roughly as follows:

1. equations for evaluating constants

2. equations for evaluating variables

3. equations for simplifying complex expressions

4. equations for basic computations on simplified expressions
5. equations for auxiliary notions used in 1-4

Below, some examples of each of these classes are studied.
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Evaluating Constants

Constants can be evaluated without any access to the data stack. As an example, equa-
tion [ee3] for evaluating real constants (represented by sort REAL-CONST) is shown. The
variables _Real and _DStack are of sorts REAL-CONST and D-STACK, respectively.

[ee3] eval-exp(_Real, -DStack) = _Real

Evaluating Variables

Evaluating an expression which consists of a single variable corresponds to doing a lookup
for that variable in the current D-STACK; this is expressed in equation [ee4] below. The
previously described functions get-index-list and get-id are used in order to retrieve the index
list and the identifier of the variable.

_Intx = get-index-list(_Var, _DStack),
_Id = get-id(_Var)
eval-exp(_Var, _DStack) = lookup(_Id, _Ints, _DStack)

[ee4]

Simplifying Complex Expressions

Equations [ee5]—[ee20] deal with simplifying expressions by transforming (combinations
of) operators into other operators, or by removing redundant operators. Two examples
are shown: in equation [eel3] an addition in combination with a unary minus is transformed
into a subtraction, and in [ee20] the % operator is defined in terms of other operators.

[ee13] eval-exp(_Exp + — _Exp', _DStack) = eval-exp(_Exp — _Exp’, _DStack)

[ee20] eval-exp(_Exp % _Exp', -DStack) =
eval-exp( _Exp — eval-exp(eval-exp(-Exp / _Exp’, DStack) * _Exp', _DStack), _DStack)

Evaluating Simplified Expressions

Equations [ee21]—[ee47] describe the evaluation of expressions which are “simplified”:
operands are values of sort INT-CONST, REAL-CONST or BOOL-CONST.

In equation [ee28] shown below, the evaluation of the multiplication of two real con-
stants is expressed. The two conditions of this equation force the simplification of the
operands, by recursive calls to eval-exp. The auxiliary function hybrid-real-mul, which will
be discussed shortly, performs the actual multiplication of two real constants. As another
example, equation [ee37] is shown. Here, the relational operator < is defined by way of
an auxiliary function >0 which decides whether or not an expression represents a value
greater than zero.
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eval-exp(-Exp, -DStack) = _Real,
eval-exp(_Exp’, .DStack) = _Real’

28
[e<28] eval-exp(-Exp * _Exp', _DStack) = hybrid-real-mul(_Real, _Real’)
eval-exp(_Exp, _DStack) = _Real,
eval-exp(_Exp’, -DStack) = _Real’,
_Real"’ = hybrid-real-sub(_Real’, _Real)
[ee37]

eval-exp(_Exp < _Exp’, _DStack) = >0 (_Real”)

Auxiliary Notions

The following kinds of auxiliary functions occur in module EvalExpr:
e operations on boolean constants
e auxiliary notions >0 and >=0 used for defining relational operators
e arithmetic operations on integer and real constants

The arithmetic operations are not defined in module EvalExp, but in module Arithmetic
(see Appendix F.8). For efficiency reasons, hybrid functions are used for integer and real
arithmetic: the actual computations are done in LeLisp [LeL90]. Details of this feature are
discussed in [Wal91]. Module Arithmetic provides functions for integer and real addition,
subtraction, multiplication, division, and for computing the absolute value of integer and
real constants.

The operations on booleans are straightforward; the reader is referred to Appendix F.3
for details.

The definition of the function > 0 makes use of the automatically generated lexical
constructor functions int-const and real-const, allowing access to the individual characters of
terms belonging to lexical sorts (see [HHKR89]). Equations [gt1]—[gt4] handle the cases in
which the result is the boolean constant FALSE. This is true when the result of evaluating
the expression is any constant starting with a minus sign, or the (integer or real) constant
zero. Equations [gt5] and [gt6] describe the cases where the argument is a positive integer
or real value, respectively. Hybrid functions are used here to check whether a number is
greater than, or equal to zero (by checking if it is equal to its absolute value).

[gt1] >0 (int-const(“— _Char+)) = FALSE
[gt2] >0 (real-const(“—" _Char+)) = FALSE
[gt3] >0 (int- const(“O”)) = FALSE

>0 (

[gt4] real-const(“0" “.” “0")) = FALSE

_Int = hybrid-int-abs(_Int),
_Int # int-const(“0")
>0 (_Int) = TRUE

[gt5]
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_Real = hybrid-real-abs(_Real),
_Real # int-const(“0" “." “0")
>0 (-Real) = TRUE

[g16]

E.3 Execution of Programs and Statements
Execution of Programs

The execution of a CLaX program is defined by equation [epl] of module EvalProgram below
(see Appendix F.4). The function eval-program applied to a CLaX program computes a
list of data stack elements (sort D-ELEMS) containing the values for the global variables of
the program. The output generated by WRITE statements is handled as a side-effect, and
is not reflected by this list of variable-value pairs. Several auxiliary notions are used in
the definition of eval-program. First, get-seq is a simple access function which retrieves the
sequence of statements in a block. Second, init is a function which computes the initial
values in a data record. As arguments it takes a block, a list of actual parameters (here:
empty), a list of formal parameters (here: empty), the previous data stack (here: the
empty stack), and the path corresponding to the current scope (see E.1). The definition
of init can be found in Appendix F.5. Third, a function eval is used which transforms a
status into another status (by executing a statement). Below, the variables _CRec and
_DRec correspond to the initial code record and data record on the respective stacks.

_Seq = get-seq(_Block),
_CRec = [_Id, _Seq, _Seq|,
_DElemx = init(_Block, , , , ),
_DRec = [.Id, , _DElemx]
eval-program(PROGRAM _Id; _Block .) = eval(< _CRec, -DRec >)

[ep1]

Execution of Statements

As mentioned, eval computes the effect on the status of executing a single statement; eval
is defined by equations [evl]—[ev18] of module EvalProgram (see Appendix F.4). Below, we
will describe a few of these equations in some detail.

[evl] handles the case where no more statements have to be executed—the values in
the final data record are the result of executing the program. The function values is an
auxiliary function which throws away all procedure definition elements from a data record.
Equation [ev2] is very similar; it handles the case in which no more code is to be executed
in the current procedure. The procedure call statement in the code record for the calling
procedure is removed, and execution proceeds with the next statement in that record.

[evl] eval(< [-Id, _Seq, |, [-Id, , -DElem%] >) = values(_DElemx)

[ev2] eval(< [.Id, Seq, ] [-Id", Seq’, _Stat; Statx] _CRec*, -DRec .DRec+ >) =
eval(< [-ld', _Seq’, _Statx] _CRecx, _DRec+ >)
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The execution of an assignment statement _Var := _Exp is specified by equation [ev4]
below. First the index list and the identifier of _Var are determined (see E.2). Then, the
expression is evaluated and the resulting value is bound to the variable _Value. Subse-
quently, the value is converted from sort INT-CONST to sort REAL-CONST if necessary; this
is expressed by way of two auxiliary functions type and convert (not shown). Finally, the
updated data stack is computed, using the (converted) value _Value’, and a new status is
constructed by discarding the assignment statement, and replacing the old data stack by
the new data stack.

_Intx = get-index-list(_Var, _DStack),
_ld" = get-id(_Var),
_Value = eval-exp(-Exp, -DStack),
_Type = type(_Id’, _Intx, _DStack),
_Value' = convert(_Type, _Value),
_DStack’ = update(_Id’, _Intx, DStack, _Value")
eval(< [_Id, _Seq, _Var := _Exp; Statx]| _CRecx, -DStack >) =
eval(< [.ld, Seq, -Statx] _CRecx, _DStack' >)

[ev4]

The execution of an IF-THEN-ELSE statement is defined by equations [ev7] and [ev8].
Depending on the result of evaluating the predicate _Exp, resulting in TRUE or FALSE, the
statement is replaced by either the THEN branch _Stat+’, or the ELSE branch _Statx".

eval-predicate(_Exp, _DStack) = TRUE

7
[ev7] eval(< [Id, _Seq, IF _Exp THEN _Statx’ ELSE _Stat«'’ END; _Stat«] _CRecx, _DStack >)
eval(< [_Id, _Seq, _Statx'; Statx] _CReck, DStack >)
feve] eval-predicate(-Exp, _DStack) = FALSE
€V

eval(< [_Id, _Seq, IF _Exp THEN _Stat«x’ ELSE _Stat«'’' END; _Statx] _CRecx, _DStack >)
eval(< [.Id, _Seq, _Statx''; Stat*] _CRec*, _DStack >)

The execution of a procedure call is expressed by equations [ev15] and [ev16]. The
former handles procedure calls without parameters, whereas the latter handles calls with
parameters. In the first condition, the definition of the procedure is retrieved, by means of
an auxiliary function lookup-proc (see Appendix F.2). Next, a new data record is created,
using init (see the description of equation [epl], above). Finally, a new code record is
created, and the execution continues with the extended code and data stacks. Observe,
that the call statement itself is not removed at this point, but upon return from the
procedure—this was described earlier (equation [ev2]).

72



lookup-proc(_ld’, _DRecx) = _Id""" : _Path : PROCEDURE _Id"'; _Block,
_DElemx = init(_Block, , , , _Path),
_Seq' = get-seq(_Block),
_DRec' = [_Id"!, _Path, _DElemx],
_CRec' = [.I1d"!, _Seq’, _Seq']

15
[ev13] eval(< [_Id, _Seq, _Id"; _Statx] _CRec*, DRecx >) =
eval(< _CRec' [.Id, _Seq, _Id'; Statx] _CRec*, -DRec’ _DRec* >)
lookup-proc(-Id’, _DRecx) = _Id""' : _Path : PROCEDURE _Id"’ ( _Formal+ ); _Block,
_DElem« = init(_Block, _Actual+, _Formal+, DRec*, _Path),
_Seq' = get-seq(_Block),
_DRec' = [_Id"", _Path, _DElemx],
_CRec' = [_Id"!, _Seq’, _Seq'
[evie] ec’ = [Jd"/, -Seq’, -Seq ]

eval(< [.Id, _Seq, _Id" ( _Actual+ ); _Statx] _CRec*, -DRecx >) =
eval(< _CRec’ [_Id, _Seq, _Id" ( _Actual+ ); Statx| _CRec*, _DRec’ _DRecx >)

Finally, we show equation [ev11l] which specifies the executing of a statement GOTO _Label.
The condition of [evll] uses function find-label (see Appendix F.1) to extract a sequence of
statements from _Seq which starts with the statement labeled with _Label. Executing the
GOTO corresponds to substituting this list for the list of statements to be executed.

_Seq' = find-label(-Label, _Seq)
eval(< [_Id, _Seq, GOTO _Label, Statx] _CRec*, _DStack >) =
eval(< [.ld, _Seq, -Seq'] -CRecx, _DStack >)

[evl 1]

E.4 Input/Output

In CLaX, input and output is performed by way of READ and WRITE statements, re-
spectively. In our specification, hybrid functions are used to implement these statements.
Output is written to the ASF+SDF System’s output window. Input is handled in a more
elegant manner, by re-using the system’s generic text and structure editor, GSE [K0092].
Whenever a READ statement is executed, an instance of this editor pops up asking the
user to ‘fill in’ a placeholder of the appropriate type. After entering this value, the input
will be parsed. In case of a failing parse, the user is notified of this fact; execution will
be suspended until a value of the correct sort is entered. In Figure 7 below, a snapshot is
shown in which the user is asked to enter a value of type REAL.

Input

The CLaX READ statement is defined by equation [ev17]. Notice the similarity between
this equation, and equation [ev4] for an assignment. The actual reading of the value is
done by function read-value. This function is implemented by a hybrid equation which calls
Lisp to read a value of the appropriate type _Type (see Appendix F.6).
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Figure 7: Interactive input in the CLaX environment.

_Intx = get-index-list(_Var, _DRecx),
_ld" = get-id(_Var),
_Type = type(_Id’, _Intx, DRecx),
_Value' = read-value(_Type),
_DRecx' = update(_Id’, _Intx, DRecx, _Value')

[e27] eval(< [-ld, _Seq, READ(_Var); _Statx] _CRec* , -DRecx >)

eval(< [_Id, _Seq, _Statx] _CRecx, DRecx’ >)

Output

In the specification, the effect of a WRITE statement on the computed values is nil.
As a side-effect, however, a value or string is printed in the LelLisp window. This is
expressed in equations [ev12]—[ev14] below. The conditions -Dummy = emit(_Value) and
The functions emit and

_-Dummy = emits-string(_String) generate the desired side-effect.

emit-string are specified as hybrid equations containing calls to Lisp for printing the values.
Observe that in the case of writing booleans, a conversion to the external display format

is performed. For details, the reader is referred to Appendix F.7.
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_Bool = eval-exp(_Exp, -DStack),
_Dummy = emit-string(external-representation(_Bool))

[ev12]
eval(< [_Id, -Seq, WRITE(_Exp); _Statx| _CRec*, _DStack >) =

eval(< [_Id, _Seq, _Statx] _CRec*, DStack >)

_Value = eval-exp(_Exp, _DStack),

fev13] _Dummy = emit(_Value)

eval(< [-Id, _Seq, WRITE(_Exp); -Statx| _.CRec*, _DStack >) =
eval(< [_Id, _Seq, -Statx] _CRec*, .DStack >)

_Dummy = emit-string(_String)

[ev14] .
eval(< [.Id, _Seq, WRITE(_String); Statx] _CRec*, -DStack >) =

eval(< [_Id, _Seq, _Statx] _CRec*, DStack >)
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F CLaX interpreter modules

The specification below is the full text of the CLaX interpreter. It imports the CLaX
syntax defined in module SyntaxProgram (see Appendix B). The import diagram for the
interpreter modules is:

Synt
yntax Output
Layout
. Eval Initia
Lisp -
Expr lizations
Eval
+ * Program
Arith Data Inout
> > npu
metic Stacks P
Syntax Code
Program "] stacks

F.1 module CodeStacks
module CodeStacks

imports SyntaxProgram
exports
sorts C-RECORD C-STACK

context-free functions
“I"'1ID “" {STAT *;"}* “)" {STAT “;"}x “]" — C-RECORD

C-RECORD= — C-STACK
find-label(LABEL, STAT-SEQ) — STAT-SEQ
variables

[

] CRec [']* — C-RECORD
[.] CRec [%] [']* — C-RECORDx
[.] CRec [+] [']* — C-RECORD+
[] CStack [']+  — C-STACK

[] Stat [*] [']*  — {STAT ;" }x
[] Stat [+] ['][* — {STAT *;"}+

hiddens
sorts FL
context-free functions
fl(LABEL, STAT-SEQ) — FL
“I" BOOL-CONST “)” STAT-SEQ “]" — FL
equations
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fl(_Label, _Statx) = [TRUE, _Statx']
find-label(_Label, Stat+) = _Stat*'

[f11]

_Label = _Label’

[f12] ; 7
fl(_Label, _Label’ : _StatAux;_Statx) = [TRUE, _Label’ : _StatAux; Statx]
_Label # _Label’

] :
fl(_Label, _Label’ : _StatAux; Statx) = fl(_Label, StatAux;_Statx)

(4] fi(_Label, ;_Statx) = fl(_Label, _Statx)
[f5] fI(_Label, GOTO _Label’; Statx) = fl(_Label, _Statx)

(6] fl(_Label, _Var := _Expr;_Statx) = fl(_Label, _Statx)

fl(-Label, _Statx") = [FALSE, _Statx'’]
fl(_Label, WHILE _Expr DO _Stat+' END; _Statx) =
fl(_Label, _Statx)

[717]

fl(_Label, _Statx') = [TRUE, _Stat+]
fl(-Label, WHILE _Expr DO _Statx' END; _Statx) =
[TRUE, _Stat+; WHILE _Expr DO _Stat+' END; _Statx]

[n8]

fl(_Label, _Statx') = [FALSE, _Statx'’|
fl(_Label, IF _Expr THEN _Statx' END; _Statx) =
fl(_Label, _Statx)

[f19]

fi(_Label, Statx') = [TRUE, Stat+]

[10] ,
fl(_Label, IF _Expr THEN _Statx’ END;_Stat+) = [TRUE, _Stat+;_Statx|
fl(_Label, Statx') = [FALSE, |,
f] fl(_Label, _Statx'") = [FALSE, |
fl(_Label, IF _Expr THEN _Statx' ELSE _Stat«'’' END; Statx) =
fl(_Label, _Statx)
fr12] fl(_Label, Statx') = [TRUE, _Stat+]
fl(_Label, IF _Expr THEN _Stat+’ ELSE _Stat+'' END; _Statx) =
[TRUE, _Stat+; _Statx]
f13) fl(_Label, Statx'') = [TRUE, _Stat+]
fl(_Label, IF _Expr THEN _Stat+’ ELSE _Statx'' END; _Statx) =
[TRUE, _Stat+; _Statx]
_Statx = _Statk;_Statx
[f114]

fi(_Label, _Statx) = [FALSE, ]
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F.2 module DataStacks
module DataStacks

imports Arithmetic

exports
sorts VALUE PATH D-ELEM D-ELEMS D-RECORD D-STACK
context-free functions

EXPR — VALUE

“I" INT-CONST “” INT-CONST “;” VALUE+ “|" — VALUE

ref(ID, PATH) — VALUE

INT-CONST * — PATH

ID *:" VALUE — D-ELEM

ID *:" PATH “:" PROC-DECL — D-ELEM

D-ELEM=x* — D-ELEMS

“I"'ID “)" PATH “,” D-ELEMx “]" — D-RECORD

D-RECORD=* — D-STACK

type(ID, PATH, D-STACK) — TYPE

lookup(ID, PATH, D-STACK) — VALUE

update(ID, PATH, D-STACK, VALUE) — D-STACK

lookup-proc(ID, D-STACK) — D-ELEM

get-name(PROC-DECL) — ID
variables

[] 1d "] — 1D

[] Int [']+ — INT-CONST

[] Real [] — REAL-CONST

[-] Bool ["]* — BOOL-CONST

“Low” [']* — INT-CONST

“High” [']* — INT-CONST

[] Int [*] ["]* — INT-CONSTx*

[] Int [4+] []* — INT-CONST+

[] Exp [']* — EXPR

0 Bp [ [ — {EXPR %}

1] Seq [ — {STAT *"}x

[.] ProcDecl — PROC-DECL

[] Formal [+] [']* — {FORMAL " }+

[] Block — BLOCK

[[] Value [']* — VALUE

[] Value [¢] ['][*  — VALUEx

[] Value [+] [']* — VALUE+

[] Path [] — PATH

[] DElem ]+ — D-ELEM

[.] DElem [%] [']* ~ — D-ELEM=x

[.] DRec ["]* — D-RECORD

[] DRec[+] ]+  — D-RECORD=

[] DRec [+] []*  — D-RECORD+

[.] DStack [']* — D-STACK



hiddens
context-free functions

lookup-list(PATH, VALUE) — VALUE

update-list(PATH, VALUE, VALUE) — VALUE

next-scope(D-STACK, PATH) — D-STACK

get-id(D-ELEM) — 1D

get-value(D-ELEM) — VALUE

is-ref(VALUE) — BOOL-CONST
equations

snl| next-scope(|-Id, _Fath, _ em*| _DRec*, _Fat =
Id, _Path, _DEI DR Path
[_Id, _Path, _DElemx*| _DRecx

_Path # _Path’
next-scope([_Id, _Path’, _DElem*] _DRec*, _Path) =
next-scope(_DRec*, _Path)

[sn2]

_DRecx' = next-scope(_DRecx, _Intx)
lookup(-Id, _Path, [_Id", _Intx _Int, | _DRec*) =
lookup(_Id, _Path, -DRecx")

[Iol]

_Id # get-id(_DElem)
lookup(_Id, _Path, [_Id", _Path', _DElem _DElem«] _DRecx) =
lookup(_Id, _Path, [_Id", _Path’, DElem*] _DRecx)

[102]

is-ref(_Value) = FALSE
lookup(_fd, , [-Id’, _Path, _Id : _Value _DElem*] _DRec*) = _Value

[103]

is—ref(_Va/ue) = FALSE

lookup(_Id, _Int+, [_Id", _Path, _Id : _Value _DElem«] _DRecx) =
lookup-list(_Int+, _Value)

[Io4]

[los] lookup(-Id, , [-Id", _Path, _Id : ref(_Id"’, _Path') _DElem*| DRecx) =
lookup(_Id"’, _Path’, _DRecx)

[l06] lookup(_Id, _Int+, [_Id’, _Path, _Id : ref(_Id"', ) _DElem*] DRecx) =
lookup(_Id"!, _Int+, _DRecx)

(1] lookup-list(_Int, [_Int, _High, _Value _Valuex|) = _Value

[12] lookup-list(_Int _Int+, [_Low, _High, _Valuex]) =
lookup-list(_Int+, lookup-list(_Int, [_Low, _High, _Valuex]))
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_Int # _Low

lookup-list(_Int, [-Low, _High, _Value _Valuex]) =
lookup-list(_Int, [incr(_Low), _High, _Valuex])

[13]

_DRecx''" = next-scope(-DRecx, _Intx),
_DRecx = _DRecx' _DRecx'’,
_DRecx''" = update(_Id, _Path, -DRecx'', _Value)
update(_/d, _Path, [_Id", _Intx _Int, | _DRec*, _Value) =
[-/d', _Intx _Int,] _DRecx' _DRecx'"’

[up]

_Id # get-id(_DElem),
update(_Id, _Path, [_Id", _Path’, _DElem*] _DRecx, _Value) =
[Id’, _Path’, _DElem'] _DReck’
update(-/d, _Path, [_Id", _Path’, _DElem _DElem*| _DRec*, _Value) =
[-Id', _Path’, _DElem _DElem«'] _DRecx*'

[up2]

is-ref(_Value) = FALSE
update(_Id, , [_Id’, _Path, _Id : _Value DElem*| DRecx, Value') =
[LId", _Path, _Id : Value' DElem*| _DRec%

[up3]

is-ref(_Value) = FALSE,
_Value'' = update-list(_Int+, _Value, Value')
update(-/d, _Int+, [_Id', _Path, _Id : _Value _DElem*] _DRecx, _Va/ue') =
[-1d", _Path, _Id : _Value'' _DElemx] _DRecx

[up4]

update(-/d"’, _Path’, _DRec*, _Value) = _DRecx’

5
Lues] update(_Id, , [_Id’, _Path, _Id : ref(_Id"', _Path') _DElem+] _DRecx, _Value) =

[Lid", _Path, _Id : ref(_ld"’, _Path') _DElem+] _DRecx'

update(_Id"’, _Int+, DRec*, Value) = DRec*'

6
[vee] update(_Id, _Int+, [_Id", _Path, _Id : ref(_ld"", ) _DElem*] _DRec*, _Value) =

[L1d", _Path, _Id : ref(_ld"’, ) _DElem+] _DRecx’

[ul] update-list(_Low, [-Low, _High, Value _Valuex], Value') =
[_Low, _High, _Value' _Valuex]
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_Int # _Low,
Low' = incr(_Low),
update-list(_Int, [_Low', _High, _Valuex|, Value') = [_Low', _High, _Valuex'|
update-list(_Int, [_Low, _High, _Value _Valuex], _Value') =
[-Low, _High, _Value _Valuex ']

[u|2]

[u3] update-list(_Low _Int+, [-Low, _High, Value _Valuex], _Value') =
[-Low, _High, update-list(_Int+, _Value, _Value') _Valuex|

_Int # _Low,
Low" = incr(_Low),
update-list(_Int _Int+, [_Low', _High, -Valuex], _Value') = [_Low’, _High, _Valuex']

[u|4]

update-list(_Int _Int+, [_Low, _High, -Value _Valuex], _Value') =
[-Low, _High, _Value _Valuex']

_DRecx' = next-scope(_DRecx, _Intx)
lookup-proc(_/d, [-Id’, _Intx _Int, | _DRec*) = lookup-proc(_Id, -DRecx")

[1p1]

_Id # get-id(_DElem)
lookup-proc(_/d, [-Id’, _Path, _DElem _DElem*] _DRecx) =
lookup-proc(_/d, [-Id’, _Path, _DElemx] _DRecx)

[1p2]

[1p3] lookup-proc(_Id, [_Id', _Path, _Id : Path’ : _ProcDecl DElem*| DRecx) =
_Id : _Path’ : _ProcDecl

lookup(_Id, _Path, _DStack) = _Int

[tv1]
type(_Id, _Path, _DStack) = INTEGER
fy2] lookup(-/d, -Path, _DStack) = _Real
t
Y Ttype(_Id, _Path, _DStack) = REAL
lookup(_Id, _Path, _DStack) = _Bool
[1v3]

type(_Id, _Path, _DStack) = BOOLEAN

fir1] is-ref(ref(_Id, _Path)) = TRUE
[ir2] is-ref(_Expr) = FALSE
[ir3] is-ref([-Low, _High, _Value+]) = FALSE

[gn1] get-name(PROCEDURE _Id; _Block) = _Id
[gn2] get-name(PROCEDURE _Id ( _FormalH ); _Block) = _Id

gi1] get-id(-/d : _Value) = _Id
[gi2] get-id(_Id : _Path : _ProcDecl) = _Id
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F.3 module EvalExpr

module EvalExpr
imports DataStacks

] Char [+] [']* — CHAR+
] Char [%] ["]* — CHAR=x

exports
context-free functions
eval-exp(EXPR, D-STACK) — EXPR
get-index-list(VARIABLE, D-STACK) — PATH
get-id(VARIABLE) — ID
variables
[.] Bool ["]* — BOOL-CONST
[] Int ["]* — INT-CONST
[.] Real ["]* — REAL-CONST
[] Var [']* — VARIABLE
[L] Exp []* — EXPR
[] Lisp []* — LISP
[
[
[] Char [']* — CHAR
hiddens
context-free functions
“>0" “(" EXPR “)" — BOOL-CONST
“>=0" “(" EXPR “)" — BOOL-CONST

bool-It(BOOL-CONST, BOOL-CONST) — BOOL-CONST
bool-le(BOOL-CONST, BOOL-CONST) — BOOL-CONST
bool-and(BOOL-CONST, BOOL-CONST) — BOOL-CONST
bool-or(BOOL-CONST, BOOL-CONST) — BOOL-CONST
bool-not(BOOL-CONST) — BOOL-CONST
equations

[ee1] eval-exp(_Bool, _DStack) = _Bool

[ee2] eval-exp(_Int, _DStack) = _Int

[ee3] eval-exp(_Real, _DStack) = _Real

_Intx = get-index-list(_Var, _DStack),
_Id = get-id(_Var)
eval-exp(_Var, _DStack) = lookup(_Id, _Int*, _DStack)

[ee4]

[ees] — — _Exp = _Exp
[ee6] — int-const(“—" _Char+) = int-const(_Char+)
[ee?] int-const(“+" _Char+) = int-const(_Char+)

int-const(_Char “1") # int-const(“—" “1")

[ees] — int—const(_Char _Char*) = int—const(“—" _Char _Char*)

[ee9] — real-const(“—" _Char+) = real-const(_Char+)
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[eelO]

[eel 1]

[ee12]
[ee13]

[ee14]
[ee15]

[ee16]
[ee17]

[ee18]
[ee19]

[ee20]

[ee21]

[ee22]

[ee23]

[ee24]

[ee25]

[ee26]

real-const(“+" _Char+) = real-const(_Char+)

real-const(_Char “.” “1") # real-const(“—" “." “1")
— real—const(_Char _Char*) = real—const(“—" _Char _Char*)

eval-exp(— _Exp + _Exp’, _DStack) = eval-exp(_Exp’ — _Exp, _DStack)
eval-exp(_Exp + — _Exp’, _DStack) = eval-exp(_Exp — _Exp', _DStack)

eval-exp(— _Exp — _Exp', _DStack) = — eval-exp(-Exp + _Exp', -DStack)
eval-exp(_Exp — — _Exp', _DStack) = — eval-exp(_Exp + _Exp', _DStack)

eval-exp(— _Exp * _Exp', _DStack) = — eval-exp(_Exp * _Exp', _DStack)
eval-exp(_Exp * — _Exp', _DStack) = — eval-exp(-Exp * _Exp', _DStack)

eval-exp(— _Exp / _Exp', -DStack) = — eval-exp(-Exp / -Exp', -DStack)
eval-exp(_Exp /| — _Exp’, _DStack) = — eval-exp(-Exp / _Exp', _DStack)

eval-exp(_Exp % _Exp’, DStack) =
eval-exp(
_Exp — eval-exp(eval-exp(_Exp / _Exp’, _DStack) * _Exp', _DStack), _DStack)

eval-exp(_Exp, -DStack) = _Bool
eval-exp(NOT _Exp, _DStack) = bool-not(_Bool)

eval-exp(_Exp, -DStack) = _Bool,
eval-exp(_Exp’, _DStack) = _Bool'
eval-exp(_Exp & _Exp’, _DStack) = bool-and(_Bool, -Bool")

eval-exp(_Exp, -DStack) = _Bool,
eval-exp(_Exp', _DStack) = _Bool’
eval-exp(_Exp | -Exp’, _DStack) = bool-or(-Bool, _Bool")

eval-exp(_Exp, -DStack) = _Int,
eval-exp(_Exp’, -DStack) = _Int’
eval-exp(-Exp * _Exp', _DStack) = hybrid-int-mul(_Int, _Int")

eval-exp(_Exp, -DStack) = _Int,
eval-exp(_Exp’, _DStack) = _Int'
eval-exp(_Exp / -Exp’, _DStack) = hybrid-int-div(_Int, _Int")

eval-exp(-Exp, -DStack) = _Int,
eval-exp(_Exp’, -DStack) = _Int'
eval-exp(_Exp + _Exp’, _DStack) = hybrid-int-add(_Int, _Int")
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[ee27]

[ee28]

[ee29]

[ee30]

[ee31]

[ee32]

[ee33]

[ee34]

[ee35]

[ee36]

[ee37]

eval-exp(_Exp, _DStack) = _Int,
eval-exp(_Exp’, _DStack) = _Int'

eval-exp(_Exp — _-Exp’, _DStack) = hybrid-int-sub(_Int, _Int")

eval-exp(-Exp, -DStack) = _Real,
eval-exp(_Exp', .DStack) = _Real’

eval-exp(_Exp * _Exp', _DStack) = hybrid-real-mul(_Real, _Real")

eval-exp(_Exp, -DStack) = _Real,
eval-exp(_Exp’, _DStack) = _Real’

eval-exp(-Exp / -Exp', _DStack) = hybrid-real-div(_Real, _Real")

eval-exp(-Exp, -DStack) = _Real,
eval-exp(_Exp’, -DStack) = _Real’

eval-exp(_Exp + -Exp’, _DStack) = hybrid-real-add(_Real, _Real")

eval-exp(-Exp, -DStack) = _Real,
eval—exp(_Exp', _DStack) = _Real’

eval-exp(_Exp — -Exp’, _DStack) = hybrid-real-sub(_Real, _Real’)

eval-exp(-Exp, _DStack) = eval-exp(_Exp’, _DStack)

eval-exp(_Exp = _Exp’, _DStack) = TRUE

eval-exp(_Exp, _DStack) # eval-exp(_Exp’, _DStack)

eval-exp(_Exp = _Exp/, _DStack) = FALSE

eval-exp(_Exp, -DStack) # eval-exp(-Exp’, _DStack)

eval-exp(_Exp # _Exp', DStack) = TRUE

eval-exp(_Exp, -DStack) = eval-exp(_Exp’, _DStack)

eval-exp(_Exp # _Exp’, -DStack) = FALSE

eval-exp(_Exp, _DStack) = _Int,
eval-exp(_Exp', _DStack) = _Int’,
_Int"" = hybrid-int-sub(_Int’, _Int)

eval-exp(-Exp < _Exp', _DStack) = >0 (_Int'")

eval-exp(_Exp, -DStack) = _Real,
eval-exp(_Exp’, _DStack) = _Real’,
_Real"’ = hybrid-real-sub(_Real’, _Real)

eval-exp(_Exp < _Exp’, _DStack) = >0 (_Real'’)
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[ee38]

[ee39]

[ee40]

[ee41]

[ee42]

[ee43]

[ee44]

[ee45]

[ee46]

[ee47]

eval-exp(_Exp, -DStack) = _Int,
eval-exp(_Exp’, _DStack) = _Int’,
_Int"" = hybrid-int-sub(_Int’, _Int)

eval-exp(_Exp <= _Exp', DStack) = >=0 (_Int'")

eval-exp(_Exp, _DStack) = _Real,
eval-exp(_Exp’, -DStack) = _Real’,
-Real’"! = hybrid-real-sub(_Real’, _Real)

eval-exp(-Exp <= _Exp', -DStack) = >=0 (_Real'’)

eval-exp(_Exp, -DStack) = _Int,
eval-exp(_Exp', _DStack) = _Int’,
_Int"" = hybrid-int-sub(_Int, _Int")

eval-exp(_Exp > _Exp’, _DStack) = >0 (_Int"")

eval-exp(_Exp, -DStack) = _Real,
eval-exp(_Exp’, -DStack) = _Real’,
_Real’’ = hybrid-real-sub(_Real, _Real")

eval-exp(_Exp > _Exp’, _DStack) = >0 (_Real'’)

eval-exp(-Exp, -DStack) = _Int,
eval-exp(_Exp’, -DStack) = _Int’,
_Int"" = hybrid-int-sub(_Int, _Int")

eval-exp(_Exp >= _Exp', DStack) = >=0 (_Int"")

eval-exp(_Exp, -DStack) = _Real,
eval-exp(_Exp’, _DStack) = _Real’,
_Real’’ = hybrid-real-sub(_Real, _Real)

eval-exp(_Exp >= _Exp’, .DStack) = >=0 (_Real’")

eval-exp(_Exp, -DStack) = _Bool,
eval-exp(_Exp’, _DStack) = _Bool’

eval-exp(_Exp < _Exp’, _DStack) = bool-It(-Bool, -Bool")

eval-exp(_Exp, -DStack) = _Bool,
eval-exp(_Exp’, _DStack) = _Bool’

eval-exp(_Exp <= _Exp', _DStack) = bool-le(_Bool, _Bool")

eval-exp(_Exp, -DStack) = _Bool,
eval-exp(_Exp’, _DStack) = _Bool’

eval-exp(_Exp > _Exp’, _DStack) = bool-It(-Bool’, _Bool)

eval-exp(-Exp, -DStack) = _Bool,
eval-exp(_Exp’, .DStack) = _Bool’

eval-exp(-Exp >= _Exp', _DStack) = bool-le(_Bool’, _Bool)
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[blt1] bool-It(FALSE, TRUE) = TRUE
[blt2] bool-It(TRUE, _Bool) = FALSE
[blt3] bool-It(FALSE, FALSE) = FALSE
[ble1] bool-le(TRUE, FALSE) = FALSE
[ble2] bool-le(TRUE, TRUE) = TRUE
[ble3] bool-le(FALSE, _Bool) = TRUE
[ba1] bool-and(TRUE, _Bool) = _Bool
[ba2] bool-and(FALSE, _Bool) = FALSE
[bo1] bool-or(TRUE, _Bool) = TRUE
[bo2] bool-or(FALSE, _Bool) = _Bool
[bn1] bool-not(FALSE) = TRUE

[bn2] bool-not(TRUE) = FALSE

[gt1] >0 (int-const(“—" _Char+)) = FALSE
[gt2] >0 (real-const(“—" _Char+)) = FALSE
[gt3] >0 (int-const(“0")) = FALSE

[gt4] >0 (real-const(“0" “." “0")) = FALSE

_Int = hybrid-int-abs(_Int),
_Int # int-const(“0")

e >0 (_Int) = TRUE
-Real = hybrid-real-abs(_Real),
_Real # int-const(“0" “." “0"
[gt6] ( )

>0 (_Real) = TRUE

[ge1] >=0 (int-const(“—" _Char+)) = FALSE
[ge2] >=0 (real-const(“—" _Char+)) = FALSE

_Int = hybrid-int-abs(_Int)
>=0 (_nt) = TRUE

[ge3]

_Real = hybrid-real-abs(_Real)
>=0 (_Real) = TRUE

[ge4]

[gill] get-index-list(_/d, -DStack) =

eval-exp(_Exp, -DStack) = _Int,
get-index-list(_Var, -DStack) = _Intx

il2
lsi2] get-index-list(_Var [ _.Exp |, -DStack) = _Int* _Int

[gil] get-id(_Var [ _Exp]) = get-id(_Var)
[gi2] get—id(_ld) = _Id

86



F.4 module EvalProgram
module EvalProgram

imports CodeStacks Input Output Initializations

exports
context-free functions

eval-program(PROGRAM) — D-ELEMS
eval-predicate(EXPR, D-STACK) — BOOL-CONST

hiddens

sorts STATUS

context-free functions
<" C-STACK " D-STACK “>"
eval(STATUS)
get-seq(BLOCK)
VALUE
STRING
convert(TYPE, VALUE)
external-representation(BOOL-CONST)
values(D-ELEMS)

variables
[.] Var — VARIABLE
[] Stat — STAT
[-] StatAux — STAT-AUX
[] Stat [«] [']* — {STAT *;" }x
[] Label [']* — LABEL
[.] Block — BLOCK
[-] String — STRING

[.] Char [+] [']* — CHAR+
equations

— STATUS
— D-ELEMS
— STAT-SEQ
— OUTPUT
— OUTPUT
— VALUE

— STRING
— D-ELEMS

_Seq = get-seq(-Block),
_CRec = [_Id, _Seq, _Seq],
_DElemx = init(_Block, , , , ),

_DRec = [.Id, , _DElemx]

[ep1]

[evi] eval(< [-Id, _Seq, |, [-Id, , -DElem%] >) = values(_DElemx)

[ev2] eval(< [.Id, Seq, | [-Id’, Seq’, _Stat; Stat¥] _CReck, -DRec _DRec+ >)

eval(< [_Id', _Seq’, _Stat*] _CRecx, _DRec+ >)

[ev3] eval(< [_Id, -Seq, -Label : _StatAux; Statx] _CRec*, -DStack >)
eval(< [_Id, _Seq, _StatAux; _Statx| _CRec*, _DStack >)
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_Intx = get-index-list(_Var, _DStack),
Id" = get-id(_Var),
_Value = eval-exp(-Exp, -DStack),
_Type = type(_Id’, _Intx, DStack),
_Value' = convert(_Type, _Value),
_DStack’ = update(_Id’, _Intx, DStack, _Value")
eval(< [.Id, _Seq, _Var := _Exp; Statx]| _CRecx, -DStack >) =
eval(< [.ld, _Seq, _Statx] _CRecx, _DStack' >)

[ev4]

eval-predicate(-Exp, -DStack) = TRUE
eval(< [_Id, _Seq, IF _Exp THEN _Statx' END; _Statx] _CRecx, DStack >) =
eval(< [_Id, _Seq, _Statx'; Statx] _CRecx, DStack >)

[ev5]

eval-predicate(_Exp, -DStack) = FALSE
eval(< [ld, _Seq, IF _.Exp THEN _Statx' END; _Statx] _.CRec*, _DStack >) =
eval(< [_Id, _Seq, _Statx] _CReck, DStack >)

[ev6]

eval-predicate(-Exp, -DStack) = TRUE

[eV7] 7 1
eval(< [.Id, _Seq, IF _Exp THEN _Statx' ELSE _Statx'’ END; _Stat*| _.CRec*, _DStack >)

eval(< [-Id, _Seq, _Statx'; Statx] _CReck, _DStack >)

eval-predicate(-Exp, -DStack) = FALSE

8
[eve] eval(< [_Id, _Seq, IF _Exp THEN _Stat+' ELSE _Statx'’ END; _Statx] _CRec*, _DStack >)

eval(< [.ld, _Seq, -Statx''; Statx| _.CRecx, _DStack >)

eval-predicate(_Exp, -DStack) = TRUE
eval(< [ld, -Seq, WHILE _Exp DO _Statx' END; _Statx| _.CRec*, _DStack >) =
eval(< [.ld, _Seq, -Statx'; WHILE _Exp DO _Stat+' END; _Stat*] _CRec*, _DStack >)

[evg]

eval-predicate(-Exp, _DStack) = FALSE
eval(< [_Id, _Seq, WHILE _Exp DO _Statx' END; _Statx] _CRecx, DStack >) =
eval(< [_Id, _Seq, _Statx] _CRec*, DStack >)

[ele]

_Seq’ = find-label(_Label, _Seq)
eval(< [_Id, _Seq, GOTO _Label, _Statx] _CRec*, _DStack >) =
eval(< [.ld, _Seq, -Seq'] -CRecx, _DStack >)

[evl 1]

_Bool = eval-exp(_Exp, -DStack),
_Dummy = emit-string(external-representation(_Bool))
eval(< [-/d, -Seq, WRITE(_Exp); -Statx| _.CRec*, _DStack >) =
eval(< [_Id, _Seq, _Statx] _CRec*, DStack >)

[ev12]
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_Value = eval-exp(_Exp, -DStack),
_Dummy = emit(_Value)

[ev13]

eval(< [_Id, -Seq, WRITE(_Exp); _Statx| _CRec*, _DStack >) =

eval(< [_Id, _Seq, _Statx] _CRec*, DStack >)

_Dummy = emit-string(_String)

[ev14] eval(< [-Id, _Seq, WRITE(_String); Stat] _.CRec*, -DStack >) =

eval(< [_Id, _Seq, -Statx] _CRec*, .DStack >)

lookup-proc(_ld’, _DRecx) = _Id""" : _Path : PROCEDURE _Id"'; _Block,

_DElems = init(_Block, , , , _Path),
_Seq' = get-seq(_Block),
_DRec’ = [_Id"!, _Path, _DElemx],
_CRec' = [.Id"!, _Seq', _Seq']
[ev1e] eval(< [_Id, Seq, _Id'; Statx] _CRecx, DRecx >) =
eval(< _CRec’ [.Id, _Seq, _Id'; Statx] _CRec*, -DRec’ _DRec* >)
lookup-proc(-Id’, -DRecx) = _Id""' : _Path : PROCEDURE _Id"’ ( _Formal+ ); _Block,
_DElemx = init(_Block, _Actual+, _Formal+, _DRec*, _Path),
_Seq’ = get-seq(_Block),
_DRec’ = [.Id"", _Path, _DElemx],
_CRec' = [_Id"", _Seq’, _Seq’|
6] (< [1d, Seq, Jd" { Actualt ); Stats] .CRecx, DRecr >) =
eval(< _CRec’ [_Id, _Seq, _Id" ( _Actual+ ); -Statx] _CReck, _DRec’ _DRecx >)
_Intx = get-index-list(_Var, _DRecx),
_ld" = get-id(_Var),
_Type = type(_Id’, _Intx, DRecx),
_Value' = read-value(_Type),
_DRecx' = update(_Ild’, _Intx, _DReck, _Value)

[evl?]

eval(< [.Id, -Seq, READ(_Var); _Statx| _.CReck, -DRecx >) =
eval(< [.ld, _Seq, _Statx] _CRecx, -DRecx' >)

[evi8] eval(< [_Id, _Seq, ; -Stat*] _CRecx, -DRecx >) =
eval(< [_Id, _Seq, -Statx]| _CRecx, _DRec* >)

[evp] eval-predicate(_Expr, -DStack) = eval-exp(_Expr, -DStack)

[vall] values() =

values(_DElem*) = _DElemx'

[va|2] 7
values(_Id : _Value _DElemx) = _Id : _Value _DElemx
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[val3] values(_/d : _Path : _ProcDecl .DElemx) = values(_DElemx)
[con1] convert(REAL, int-const(.Char+)) = real-const(_Char+ “." “0")

[con2] convert(REAL, _RealConst) = _RealConst

_Type # REAL
convert(_Type, _Value) = _Value

[con3]

[gs1] get-seq(BEGIN _Seq END) = _Seq
[gs2] get-seq(DECLARE _DeclList BEGIN _Seq END) = _Seq

[ex1] external-representation(TRUE) = “T"
[ex2] external-representation(FALSE) = “F”
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F.5 module Initializations

module Initializations
imports EvalExpr
exports

context-free functions
init(BLOCK, {EXPR “,"}*, {FORMAL “;”}*, D-STACK, PATH) — D-ELEMS

init-decls(DECL-LIST, PATH) — D-ELEMS
init—params({EXPR ,}* {FORMAL ,}* D-STACK) — D-ELEMS
variables

[] Actual [*] []* — {EXPR “," }x

[] Formal [«] [']J*  — {FORMAL *;"}x
[-] Actual [+] [']* — {EXPR “" }+

[.] Formal [+] [']* — {FORMAL “;"}+
[

[

[

LabDecl — LABEL-DECL
Type — TYPE
_] IntConst [*] [']* — INT-CONST=*
hiddens

context-free functions
init-locals(BLOCK, PATH) — D-ELEMS

initial-value(TYPE) — VALUE
equations

_DElem*' = init-params(_Actual+, _Formal+, _DStack),
_DElemx = init-locals(_Block, _Path)
init(_Block, _Actual+, _Formal+, _DStack, _Path) = _DElem* _DElemx'

[inl]
[in2] init(_Block, , , -DStack, _Path) = init-locals(_Block, _Path)
1] init-locals(BEGIN _Seq END, _Path) =

[i2] init-locals(DECLARE _DeclList BEGIN _Seq END, _IntConstx) =
init-decls(_DeclList, _IntConst* 1)

[id1] init-decls(, _Path) =
[id2] init-decls(_LabDecl;_Decl+, _Path) = init-decls(_Dech, _Path)

_DElem = get-name(_ProcDecl) : _Int* _Int : _ProcDecl,
_DElemx = init-decls(_Declx, _Int* incr(_Int))

id3

i3] init-decls(_ProcDecl:_Decl*, _Intx _Int) = _DElem _DElemx
_DElem = _Id : initial-value(_Type),

fidd] _DElems = init-decls(_Decl, _Path)

1

init-decls(_/d : _Type;_Declx, _Path) = _DElem _DElems

ids] init-decls(;_Decl*, _Path) = init-decls(_Decl*, _Path)

liv] initial-value(INTEGER) = 0
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[iv2] initial—value(REAL) = 0.0
[iv3] initial—value(BOOLEAN) = FALSE

[iv4] initial-value(ARRAY [ _Low .. _Low | OF _Type) =
[-Low, _Low, initial-value(_Type)]

_Low # _High,
_Low' = incr(_Low),
-Value = initial-value(_Type),
initial-value (ARRAY [ _Low' .. _High | OF _Type) = [_Low’, _High, _Valuex|

[iv5] — - -
initial-value(ARRAY [ _Low .. _High | OF _Type) = [_Low, _High, Value _Valuex]
lip1] init-params(, , -DStack) =

init-params(_Actuakk, _Formalx, _DStack) = _DElemx,
_Value = eval-exp(-Expr, _DStack)
init-params(_Expr, Actualx, _Id : _Type; _Formalx, _DStack) =
_Id : _Value _DElemx

[ip2]

init-params(_Actuals, _Formaks, DStack) = _DElemx,
_IntConstx = get-index-list(_Var, _DStack),
ld" = get-id(_Var),
_Value = ref(_Id’, _IntConsts)
init-params(_Var, _Actualk, VAR _Id : _Type; _Formalx, DStack) =
_Id : _Value _DElem*

[ip3]
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F.6 module Input

module Input
imports DataStacks
exports
context-free functions
read-value(TYPE) — VALUE
hiddens
sorts INPUT TF

context-free functions

uTn — TF
wpr — TF
tf2bool (TF) — BOOL-CONST

“Please enter an INTEGER:” INT-CONST — INPUT
“Please enter a REAL:" REAL-CONST — INPUT

“Please enter T or F:” TF — INPUT

“LISP™ LISP — TF

“TF" LISP — TF

"< TE Y>> — LISP
equations

[vi] read-value(INTEGER) =
INT-CONST (let
(vtp
(meta (send ! meta (send " module #:EQM:seI))))
(#:SEAL:create-input
“/tmp/input”
“Input”
(list “Please enter an INTEGER:<INT-CONST>")
“INPUT"
(send ' config-table meta))
(setq vtp (#:SEAL:select

“/tmp/input”

“INT-CONST”

(send ' config-table meta)))
(#:SEAL:kill-inputs (send ' config-table meta))
(bitmap-flush)

(#:EQM:tree:vtp2 vtp))
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[v2] read-value(REAL) =
REAL-CONST (let

(vtp
(meta (send ! meta (send " module #:EQM:seI))))

(#:SEAL:create-input
“/tmp/input”
“Input”
(list “Please enter a REAL:<REAL-CONST>")
“INPUT"
(send ' config-table meta))

(setq vtp (#:SEAL:select

“/tmp/input”

"REAL-CONST"

(send ' config-table meta)))
(#:SEAL:kill-inputs (send ' config-table meta))
(bitmap-flush)

(#:EQM:tree:vtp2 vtp))

[v3] read-value(BOOLEAN) =
tf2bool(TF (let
(vtp
(meta (send ' meta (send ' module #:EQM:sel))))
(#:SEAL:create-input
“/tmp/input”
“Input”
(list “Please enter T or F:<TF>")
“INPUT"
(send ' config-table meta))
(setq vtp (#:SEAL:select

“/tmp/input”

“TE"

(send ' config-table meta)))
(#:SEAL:kill-inputs (send ' config-table meta))
(bitmap-flush)

(#:EQM:tree:vtp2 vip)))

[tf1] tf2bool(T) = TRUE
[tf2] tf2bool(F) = FALSE
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F.7 module Output
module Output

imports SyntaxLayout Lisp

exports
sorts OUTPUT
context-free functions

“emit” “(" OUTPUT )" — OUTPUT
“emit-string” “(" OUTPUT “)" — OUTPUT
“LISP” LISP — OUTPUT
“"OUTPUT" LISP — OUTPUT
<" OUTPUT “>>" — LISP
variables

[.] Dummy — OUTPUT

equations

[outl] emit(_-Dummy) =
OUTPUT (letx*
((theEQM (#:EQM:EQMseI:eqm #:EQM:seI))
(text (#:EQM:tree:pretty theEQM
(#:EQM:tree:leximplode theEQM << _Dummy >>))))
(prinflush text)
<< _Dummy >>)

[out2] emit-string(_Dummy) =
OUTPUT (lets
((theEQl\/I (#:EQM:EQMseI:eqm #:EQI\/I:seI))
(text (string (#:EQM:tree:pretty theEQM
(#:EQM:tree:leximplode theEQM << _Dummy >>))))
start end
(len (plength text)))
(setq current 1)
(setq end (decr len 2))
(while (le current end)
(if (neq (sref text current) 92)
(prog
(prin (substring text current 1))
(incr current 1))
(prog
(if (eq (sref text (add 1 current)) 110)
(print))
(incr current 2))))
(prinflush)
<< _Dummy >>)
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F.8 module Arithmetic
module Arithmetic

imports SyntaxProgram Lisp

exports

context-free functions
hybrid-int-add (INT-CONST, INT-CONST)
hybrid-int-sub(INT-CONST, INT-CONST)
hybrid-int-mul(INT-CONST, INT-CONST)
hybrid-int-div(INT-CONST, INT-CONST)
hybrid-int-abs(INT-CONST)
incr(INT-CONST)
hybrid-real-add(REAL-CONST, REAL-CONST)
hybrid-real-sub(REAL-CONST, REAL-CONST)
hybrid-real-mul(REAL-CONST, REAL-CONST)
hybrid-real-div(REAL-CONST, REAL-CONST)
hybrid-real-abs(REAL-CONST)

— INT-CONST
— INT-CONST
— INT-CONST
— INT-CONST
— INT-CONST
— INT-CONST
— REAL-CONST
— REAL-CONST
— REAL-CONST
— REAL-CONST
— REAL-CONST

“LISP" LISP — INT-CONST
“INT-CONST" LISP — INT-CONST
“<<" INT-CONST “>>" — LISP

“LISP” LISP

“REAL-CONST"” LISP
"< <" REAL-CONST “>>"
hiddens

variables
[] Bool [']* — BOOL-CONST
[] Int ["]* — INT-CONST
[] Real [']J* — REAL-CONST
equations

[hi1]

[hi2]

[hi3]

hybrid-int-add(_Int, _Int") =
INT-CONST (convert-to-lexical
<<L1>>
(add (convert-lexical-to-lisp << _Int >>)
(convert-lexical-to-lisp << _Int' >>)))

hybrid-int-sub(_Int, _Int') =
INT-CONST (convert-to-lexical
<<L<1>>
(sub (convert-lexical-to-lisp << _Int >>)
(convert-lexical-to-lisp << _Int' >>)))

hybrid-int-mul(_Int, _Int") =
INT-CONST (convert-to-lexical
<<1>>
(mul (convert-lexical-to-lisp << _Int >>)
(convert-lexical-to-lisp << _Int' >>)))
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[hia]

[his]

[Incr]

[hr1]

[hr2]

[hr3]

[hr4]

[hr5]

hybrid-int-div(-Int, _Int") =
INT-CONST (convert-to-lexical
<<1>>
(div (convert-lexical-to-lisp << _Int >>)
(convert-lexical-to-lisp << _Int' >>)))

hybrid-int-abs(_Int) =
INT-CONST (convert-to-lexical
<<1>>
(abs (convert-lexical-to-lisp << _Int >>)))

incr(_Int) =
INT-CONST (convert-to-lexical <<1>>
(add 1 (convert-lexical-to-lisp << _Int >>)))

hybrid-real-add(_Real, _Real’) =
REAL-CONST (convert-to-lexical
<< 1.0>>
(fadd (convert-lexical-to-lisp << _Real >>)
(convert-lexical-to-lisp << _Real’ >>)))

hybrid-real-sub(_Real, _Real’) =
REAL-CONST (convert-to-lexical
<< 1.0 >>
(fsub (convert-lexical-to-lisp << _Real >>)
(convert-lexical-to-lisp << _Real’ >>)))

hybrid-real-mul(_Real, _Real’) =
REAL-CONST (convert-to-lexical
<< 1.0 >>
(fmul (convert-lexical-to-lisp << _Real >>)
(convert-lexical-to-lisp << _Real’ >>)))

hybrid-real-div(_Real, _Real’) =
REAL-CONST (convert-to-lexical
<< 1.0 >>
(fdiv (convert-lexical-to-lisp << _Real >>)
(convert-lexical-to-lisp << _Real’ >>)))

hybrid-real-abs(_Real) =
REAL-CONST (convert-to-lexical
<< 1.0 >>
(abs (convert-lexical-to-lisp << _Real >>)))
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F.9 module Lisp
module Lisp

exports
sorts LISP
sorts LispAtom StringPart PackagePart QuotedLispAtom
Lispld LispString
lexical syntax
[$%&x/\-0-9=7@A-Z\\a-z~|+ — LispAtom

*" LispAtom — PackagePart
“#" PackagePart+ — Lispld

“#%" [01]+ — Lispld

“#$" [0-9a-fA-F]+ — Lispld

“#7 [a-zA-ZQ)] — Lispld

“Imfl]E — QuotedLispAtom
QuotedLispAtom—+ — LispAtom
LispAtom — Lispld
T e — StringPart

StringPart+4

— LispString

context-free functions

Lispld — LISP
LispString — LISP
“(" LISPx “)" — LISP
“"<<" Condition “>>" — LISP
“Im ISP — LISP
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