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Numerical Multigrid Software:

MGD5M, A Parallel Multigrid Code with a Twisted ILLU-Relaxation

Margreet Louter-Nool <greta@cwi.nl>

cwi
P.O. Box 4079, 1009 AB Amsterdam, The Netherlands

Abstract.
In this paper we consider the twisted LDU-decomposition for tridiagonal matrices. This technique enables
us to partly parallelize the Incomplete Line LU-relaxation(ILLU). This relaxation method is applied as
smoothing process for the multigrid method MGD5V[3,10,12]. As a successor of MGD5V we present
MGDS5M which is a multitasked code based on the twisted ILLU-relaxation. We compare the performance
results of MGD5V and MGD5M as measured on a dedicated four processor Cray Y-MP4/464.

1991 Mathematics subject classification: 65N55, 65F10, 65Y05.
1991 CR Categories: G.1.8, G.1.3, G.1.0.

Keywords & Phrases: Elliptic PDEs, ILLU-relaxation, multigrid methods, numerical software, parallel com-
puters, sparse linear systems, twisted LDU-decomposition, vector computers.

Note: The implementation is available in ANSI Fortran 77. A variant, using macro- and auiotasking tech-
niques tuned for the Cray Y-MP, is available too.

1. INTRODUCTION

The Incomplete Line LU-relaxation(ILLU)[9] is often applied as preconditioning for CG-methods and as
smoothing process for multigrid (see [3,5,10]). The ILLU as used within MGDS5V[12] is a powerful relaxa-
tion method, since only a limited number of multigrid iterations is needed to achieve high accuracy. How-
ever, the time per iteration is considerable, partly because this method hardly permits vectorization and paral-
lelization. A new technique to decrease the wall-clock time is to perform the underlying tridiagonal decom-
positions in a twisted form allowing parallelism. This technique has been proposed by Joubert et al.[4]. In
this paper we concentrate on the twisted tridiagonal LDU-decomposition and its influence on the ILLU.

In Section 2, we describe the twisted LDU-factorization. The ILLU-relaxation based on the twisted factor-
ization is treated in Section 3. Next, in Section 4, we describe how the ILLU-relaxation process can be car-
ried out in parallel. In Hemker and De Zeeuw[3], an outline is given of the cycling process of MGD5V and
MGD1YV, two codes with the same global structure (see also Wesseling[11]). These codes solve linear sys-
tems that arise from the discretization of linear elliptic PDEs and share the same prolongation, restriction and
Galerkin-approximation of coarse grid systems. The vectorization and parallelization of MGD1M, the multi-
tasked variant of MGD1V, are described in Louter-Nool[7]. In Section 5, we focus on the implementation
and performance of those routines, which are relevant for MGD5V and its successor MGD5M and which are
not yet discussed in [7]. The execution times on the Cray Y-MP4 for MGDSM solving a simple Poisson
equation are listed.
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2. THE TWISTED LDU-FACTORIZATION

Let A be a tridiagonal matrix of order n. Assume that the linear system A x = y has to be solved. A fre-
quently used technique is to factor A as A =L D U, with L lower and U upper bidiagonal, respectively, and
D diagonal. If the decomposition exists then it is uniquely defined (and illustrated by Figure 1) by choosing

diag (L ) =diag (U ) =1. @2.1)

FIGURE 1. The standard LDU-decomposition.

The solution of A x = y is replaced by

Lw=y (2.2a)
Dv=w (2.2b)
Ux=v. (2.2¢)

Two bidiagonal systems ((2.2a) and (2.2c)) have to be solved. Unfortunately, the recurrent relations for solv-
ing from the bidiagonal systems do not vectorize well. Moreover, they can not be performed in parallel.

In Joubert et al.[4] a twisted LU-factorization is proposed. Here we discuss the twisted LDU-factorization.
On a vector machine the LDU-decomposition for a tridiagonal matrix leads to a faster solution scheme than
the LU-decomposition. We prefer to store the matrix D as prescribed by Figure 1. This implies that the
inverse matrix D' contains the values d;, i = 1, - - - ,n, and therefore solving equation(2.2b) is just a plain
vector-multiplication, which can be performed at high vector speed.

Assume n to be odd and let 4 be defined by

n+l
h=——,
2

then the twisted LDU-factorization of A can: be illustrated by

FIGURE 2. The Twisted LDU-decomposition.

According to the definition of D in Figure 1 the matrix A of Figure 2 is defined by the reciprocal values d;’,
i =1, - ,n Fori=zh the elements of D and'A are not equal.
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Algorithm A1 describes the decomposition of the upper part of A, and A2 describes the lower part:

Algorithm Al: Algorithm A2:
gL gL
a an

fori=2toh-1 for j=n-1toh+1by-1

Pi=¢ di—ll gj=b; dj+11

a; - pi b, a;j=qjCj+1

Pr = Cndy_ Gn = bndy 1
fori=1toh-1 for j=ntoh+1by-1

r,-=b,-d,- Sj=de]'

Both parts are completely independent and can therefore be computed in parallel. At the end we compute dj,,
which depends on values from the upper and lower part:

1

d, = .
ap = ppbr_y — gy chay

2.3)

Since d, can not be calculated before the computation of the upper and lower part has been accomplished,
this point is called the synchronization point in the computation.

Algorithm A1 contains a recursion and therefore the computation of p; and d; can not be vectorized. At
the cost of one extra vector loop of length # -1, p; and d; can be computed separately, leaving one single
recursive loop to compute d;. This approach, which is described in Algorithm B1, delivers a better perfor-
mance on vector computers than the Al approach. A similar scheme to decouple the computation of g; and
d; is applied in algorithm B2.

Algorithm B1: Algorithm B2:

dy = - dy= =

a, n
ti=c¢; bi_ll l=2(1)h—1 tj=bj C]'+]] j=n—1(—-])h+1
b= i=2h-1 | d;= pa—yy j=n-1(=1)h+1
pi=cidi, i=2(1)h gj=bjd;, j=n-1(-Dh
ri=b,-di ) l=1(1)h—1 Sj=cjdj j=n(—1)h+1

The twisted factorization leads to a twisted back substitution, too. In a similar way as in the non-twisted case
(2.2a-c), the solution of A x = y can be divided into three steps

Pw=y
Av=w
Qx=v

The first two steps can be combined and deliver the following independent systems

Algorithm C1:

Vi=)
Vi=Yi= Pi Vi i=2(1)h-1
Vi=Vid,' l=](])h—1

For the center point we get

Vi =( Y = Pr Vi1 = Gn Vis1 ) p-

Algorithm C2:

Yn = Yn
Vi=DYi—4qjVia
vi=vjd;

(2.4a)
(2.4b)
(2.4c)
j=n-1(-h+l
j=n(-1h+l
(2.5)
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Relation (2.4c) leads to
Xp = Vp (2.6)

for the center point, and the other elements of x can be computed by Algorithms D1 and D2

Algorithm D1: Algorithm D2:
Xi=V; =T Xj l=h—1(—1)1 | x]-=v]--—ijj_1 ]=h+1(l)n

Note that the computation of the center point ((2.5) plus (2.6)) forms the bottleneck in the parallel process.
The upper and lower part can entirely be carried out concurrently on two processors, except for the computa-
tion of x;,. As a consequence, the computation is split twice, doubling the parallel overhead.

3. THE INCOMPLETE TWISTED LINE LU-RELAXATION

In Louter-Nool[7], we described how 7-point finite difference discretizations are obtained and how the
discretization over a two-dimensional rectangular grid of n, x n, points leads to a linear system A x = y,
where A has the following block-tridiagonal structure

B, U,

LZ BZ UZ
L; By

A= S . 3.1)

Ln’—l Bn,—] Un,——l
L, B,

The block matrices B; are tridiagonal matrices of order n,, corresponding to the number of points on the hor-
izontal grid lines. We have exactly n, diagonal-blocks corresponding to the number of horizontal grid lines.
The block matrices L; and U; are upper and lower bidiagonal matrices, respectively. The matrix A (3.1) has
exactly the same structure as employed in MGD1V. The decomposition used by MGD1V, the Incomplete
LU (ILU), neglects the block structure and focuses on the seven diagonals. The incomplete line-relaxation of
MGDS5V s, on the contrary, especially based on the block structure. Following the description in Hemker
and De Zeeuw[3], we factorize the matrix A, such that

A=(L+D)D'(D+U) (32
with L, D and U given by, respectively
0 1 [p, 1 [o v, ]
L, 0 D, 0 U,
Ly . D, 0 .
, . and . .(33)
0 Un
L,, 0 D, 0 U,
Lo 4 D,, 0

The blocks L; and U; are identical to the ones in (3.1). For the block matrices D; we obtain the requirement
D 1= B 1 (3'4)

D;=B;-L; D7}, U;_, i=2,"",n,
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Note that the matrices D; are of full order, which makes the method not very attractive. For that reason, the
Incomplete Line LU-relaxation has been introduced by Underwood[9]. The term L; D7} U;_y is replaced by
its truncated tridiagonal form. So (3.4) becomes

D] =B1 (35)

D; = B; - tridiag (L; Dy, U;_, ) =2,

The computation of the matrices D must be carried out in sequential order. Hence, the desired parallelism

must be introduced at a lower level, for instance, at the level of the computation of the inverse of D;_,. This
will result in an Incomplete Twisted Line LU-relaxation.

At this point our scheme is going to deviate from the original ILLU scheme. By selecting the twisted form

we introduce parallelism at the level of grid lines. In the following, D;_, is briefly represented by T. The tri-
diagonal matrix T can be factorized in a twisted way

T=PAQ, (3.6)

where P, A and Q have the same meaning as in Figure 2. As discussed in Section 2, the factorization can be
split up into two independent parts. For the inverse of the factorized T we obtain

Lot Al Pt 3.7

This implies that the inverse of Q as well as the inverse of P are required. The inverse of Q is explicitly given
by

Lpi2 Pz - Pis
T P23 - pos
1
Pr-1,n
o' = 1 (3.8)
Oh+1,h
1
Opn-1,h + On-1n-2 1
| Onh +  Onn-2 Onon-i 1_
with
-l
Pij=(1)"TIn i=1, - h=1;j=i+l,- - \h  (3.9)
k=i
and
o =(-1)"" H Sk i=h+l, - ,ngj=h, - ,i-1.(3.10)
k=j+1
The inverse of P is given by
1
P 1
931 932
. . . 1
Pl =1dn1 dn2 - OGunor 1 Whper - Yin-1 Wi, (3.11)
1
Wn,-2.n-1 Wn-2,n,
1 Yo 1.,

L 1
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with
Gij =D TT pe i=2,,hj=1,,i-1 (332
k=j+1
and
.
P;j = D7 TT a9k i=h, - ,n-1;j=i+l, - -,n. (3.13)
k=i

For the incomplete decomposition (3.5) only five diagonals of T-! (3.7) are of interest. We denote them by
[, 1D, 1O 4 @] The main diagonal is represented by ¥, whereas ¢V and t® represent the super-
and 12 and 1 the sub-diagonals. The upper and lower part of the diagonals can be computed con-
currently, as is expressed by Algorithm E1 and E2.

80 =dy s 821 = dy vy G 157 = 3y Snar Pa (3.14)
Algorithm E1: Algorithm E2:
tSO) = ts(,)‘,)l Di+1 r; + di = h—](—])l t(jﬂ) = IS‘O_)l qj—] Sj + dj ] = h +1(l)nx
D =9 r, i=h-1(-D1 | &2 =-£2 q;_ j=h+1(Dn,
(50 =69 pin i=h-1-D1 | GV == s; Jj=h+1()n,
13 =Y r; i=h=2(-11 | 2 =-1q;, j=h+2(D)n,
83 =39 pin i=h-2(-D)1 | 2= s; i=h+2(1)n,

Now, the dgs?ription of the inverse of T has been completed, since we know how to compute the relevant
diagonals of D;_;. The next step is the computation of the tridiagonal matrix in

D, = B, - tridiag (L; D;1 Ui_; ),
which can be carried out analogously to the original scheme (see [8], formula(2.27)).
4. THE SMOOTHING PROCESS

The ILLU-relaxation has been used as a smoothing process in MGD5V. At each level the vector x in equa-
tion

Ax=y 4.1)

is overwritten by a better (smoothed) approximation. Rewriting the decomposition (3.2) as
A=(LD'+1)(D+U), 4.2)

the iterative method becomes:

r=y-Ax 4.3)
(LD '+1)z=r (4.4a)
(D+U)c=z (4.4b)
X=x+cC 4.5)

We define x, r, c and z as
T|,T T
x=(xf (g | o T

r=(rl LD | )
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c=(ei |ei | |e),
z=(zf |23 | -+ |z )T,

respectively, where x;,rj,c j and zj, j =1,...,n, are vectors of length n,. These definitions, together with the
block structures of L, D and U as given by (3.3), enable us to rewrite (4.4a) into n, smaller systems:

Zy=r, (4.63)
-1 )
zj=rj—LjD,-_] Zj_y ]=2,"',ny

and equation (4.4b) becomes
~_1

o, =Dy 2z, (4.6b)
- ]
Cj=Dj (Zj—U]'Cj+1) j=ny—1(—1)1.
Finally, the improved solution is given by
xj=xj+cj j=],"',ny. (47)

The computation of z; in (4.6a) corresponds to the solution of two bidiagonal systems of order n,. The first
one operates from the left and right boundary points to the middle of the horizontal grid line. After that point
has been computed the second one starts at the center and operates outerwards, analogously to the solution
process described by Algorithms C1, C2 and D1 and D2. Note, that first all vectors z; have to be updated
before the corrections cj, j=n,, - --,1 as described by (4.6b) can be computed sequentially from the upper
grid line down to the lower grid line.

5. THE EFFICIENCY ON THE CRAY Y-MP

5.1. DEFINITIONS AND TEST PROBLEM

We refer to the new multitasked implementation of MGDSV as MGD5M. This variant is, just like MGD5V,
written in ANSI Fortran. By means of compiler directives the code has been adapted for autotasking[2] on
the Cray Y-MP. Also macrotasking has been applied[2]. Actually, there are two implementations, one vector
and one parallel variant. A reason for this is that there are all kinds of parallel overhead, varying from thres-
hold tests, load balancing to synchronization overhead. Besides, although the computational complexity of
the twisted factorization and relaxation is exactly equal to the standard decomposition, the vector perfor-
mance may be less for the twisted case. To minimize the parallel overhead, it is often preferable to split the
computation into (large) equal parts that can be performed concurrently, rather than to switch constantly
from two to four processors. We will return to this point later on in this section. Therefore, in the definition
of the parallel speedup we may not neglect the parallel overhead. The purely vectorized version, not based
on the twisted decomposition, has been compiled with the —Zv option, and so has the original code MGD5V.
The parallel implementation has been compiled with —Zp.

The vector speedup is expressed by

Execution time of MGD5V
Execution time of vector-MGD5M

(.1

S vector =

The execution times have both been measured on a dedicated Cray Y-MP4. The parallel speedup is denoted
by
_ Execution time of vector-MGD3SM on 1 processor

S
Execution time of MGDSM on p processors

P 5.2)

Again the values have been obtained in dedicated mode. The total acceleration of MGDS5M with respect to
MGD5V is the product of S,,,, and S,.

As a test problem we solve the Poisson equation on the unit square with Dirichlet boundary conditions,
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zero initial estimates and the right-hand-side constructed according to the exact solution
x(l-x)+y(l-y). (5.3)

This problem was also used to measure the acceleration of the MGD1M[7] compared with the vector code
MGD1V by De Zeeuw[12]. The convergence of both methods is so rapid that only a few multigrid iterations
are needed, viz., 5 multigrid iterations for MGD5V and 6 iterations for MGD1V. After that number of itera-
tions the Euclidian norm of the residu is less than 107°. All the mentioned codes use a fixed multigrid stra-
tegy. Therefore the particular choice of the test problem is not important. Only the required number of mul-
tigrid iterations depends on the problem. Except for the twisted factorizations, MGD5M operates in a similar
way as MGD5V. In [10] Van der Vorst remarks that parallel incomplete decompositions often lead to a
decrease in the number of iteration steps. For more complicated problems such as the convection-diffusion
or the anisotropic diffusion equation, this might be an extra reason to use MGDS5M instead of MGD5V. We
plan to pay attention to this phenomenon in the near future. For a detailed discussion on the robustness of
MGDS5M, we refer to [8].

5.2. Performance of the twisted factorization and relaxation

In MGD5M the twisted LDU-factorization on the level of horizontal grid lines has been introduced. As men-
tioned before this technique has only been applied at the finest grid. The ILLU is performed by the subrou-
tines ILLUDC and ILLUDT. The latter performs the twisted LDU. In Table 1 the Megaflop rates of three
different runs are listed. In the first two columns results of MGD5V by De Zeeuw[12] and the vector-
MGDS5M are shown. The third column shows the performance of ILLUDT executed on two processors.
Actually, three processors were involved then. During the twisted decomposition one processor is computing
the non-twisted decomposition on coarser grids. We will return to this way of parallelism later on. The
results presented have been obtained by runs on seven and eight levels of discretization. For both cases the
coarsest grid consists of 5x5 grid points. Dealing with seven levels, we have a finest grid of 257x257 grid
points, on which the twisted factorization is carried out. For the eight level case the finest grid contains
513x513 points, and leads to a parallel speedup for the twisted form of S, = 1.85.

Number MGD5V MGD5M
of
grid points Vector Vector p=2 S,
257 x 257 54 59 91 1.54
513 x 513 56 61 113 1.85

TABLE 1. Mflops of ILLUDC and ILLUDT: Influence of parallel overhead.

The parallel overhead caused by autotasking plays an important role in the performance of the Cray Y-
MP. We have timed three different parallel and one vector implementations (see Table 2) of the solution rou-
tine SOLVE performing (4.6a-b). The three parallel variants are illustrated in Figure 3.

( XX S G G “
X X X I

gridline 1 gridline 2 gridline 3

FIGURE 3. The Parallel Variants of SOLVE.
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First we observe that apart from the bidiagonal systems which have to be solved, other operations must be
carried out in this routine. Those operations can easily be distributed over more than two processors. How-
ever, we have not measured a reduction in the wall-clock time when four processors were used instead of
two. The Megaflop rates we observed for this variant can be found in the second column (Parallel I). A
second approach (Parallel II) divides the computational work per grid line into two equal parts using the
parallel CASE-construction (see [1]). The best performance (Parallel III), however, is achieved when the
backward sweep on grid line j is immediately followed by the forward sweep on grid line j+1 performing
(4.6a). Thus, the synchronization point has been moved to the beginning of the grid line loop. This reduces
the parallel overhead by a factor of 2. In a similar way (4.6b) has been implemented.

Vector Parallel I Parallel II Parallel III
257 x 257 39 49 52 59
513 x 513 41 59 65 70

TABLE 2. Mflops of SOLVE: Influence of parallel overhead.

5.3. Execution times

Finally, we review the total execution time of the main computational parts. In Table 3 the times achieved for
computation on 7 levels are listed, whereas Table 4 gives results on eight levels. In the first column the
results of original MGDSV by De Zeeuw[12] are given. The second and third column show the times of runs
with the vector-MGDS5M, and the vector speedup as defined by (5.1). The columns 4 till 7 show the perfor-
mance of MGD5M on p = 1,2,3,4 processors and the parallel speedup defined by (5.2). -

The highest speedup factor (vector as well as parallel) is achieved by Galerkin. In [6] Lioen describes how
for the Galerkin approximations the amount of work per grid point can be reduced from 191 (cf. Wessel-
ing[11]) to 74 floating point operations. Moreover, this strongly improved implementation appears to be
highly parallel. On four processors we obtain a parallel speedup of 3.70. In Tables 3 and 4, the time needed
to compute the decompositions on all grids is given. The decompositions on different grids are independent,
so we may execute them concurrently. The time needed to compute the decompositions on all grids except
the finest is about one third of the time needed to decompose the finest. This implies that the decomposition
time for all grids together can be made approximately equal to the time for the twisted decomposition on the
finest grid when using three or more processors.

From Tables 3 and 4 we may conclude that the main gain in performance for the multigrid iteration pro-
cess denoted by MG-cycles arises from parallelization and not from vectorization. MGDS5V, originally tuned
for the Cyber 205, turns out to be efficient on a one-processor Cray Y-MP, too. We observe that the parallel
speedup increases with the number of processors, although the most time-consuming part, the ILLU-
relaxation is optimal for two processors. This is caused by the other well parallelized techniques applied in
the multigrid smoothing process, such as prolongation and restriction. MGD1M uses exactly the same opera-
tors to transfer values from a fine grid to a next coarser grid and vice versa. For the performance on the Cray
Y-MP4 of the routines PROLON and RESTRI, which perform the prolongation and restriction, respectively,
we refer to Louter-Nool[7].

Finally, we want to make a small comparison between MGD1M and MGDSM. From Sonneveld et al.[8]
we know that MGD5M is more robust than MGD1M: there exist problems that can be solved by MGDSM
and not by MGD1IM. Provided MGDIM can solve the same problem as MGD5M with similar convergence
rate, which method is to be prefered at a Cray Y-MP4? For eight levels the minimum execution time for one
iteration step of MGD1M is .272/6 = .045 and of MGD5M .647/5 =.129, or in other words a MGD1M itera-
tion step is about three times faster than a MGD5M iteration step. The ratio for the original codes is 1.64.
This indicates that for the Cray Y-MP MGD1M becomes more and more attractive compared to MGD5M,
provided that MGD1M can solve the problem with the same accurency as MGD5M.
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MGD5V MGD5SM

Vector Vector | Speeor | P=1 | p=2 | p=3 | p=4
Galerkin .037 .010 .010 .005 .005 .004
Speedup 3.70 2.00 2.00 2.50
Decompose .064 059 .064 .046 .034 033
Speedup 1.08 1.28 1.73 1.79
MG-cycles .305 279 .303 198 .188 185
Speedup 1.09 1.41 1.48 1.51
Total 406 .348 377 249 227 222
Speedup 1.17 1.40 1.53 1.57

TABLE 3. Wall-Clock time in seconds and speedups for 7 Levels.

MGD5V MGD5SM

Vector Vector | Syeer | P=1| P=2 | p=3 | p=4
Galerkin 130 .037 .037 .019 013 010
Speedup 3.51 1.95 2.85 3.70
Decompose 239 221 227 153 102 .101
Speedup 1.08 1.44 2.17 2.19
MG-cycles 1.133 1.045 1.099 .689 .660 647
Speedup 1.08 1.52 1.58 1.62
Total 1.502 1.303 1.357 .861 775 758
Speedup 1.15 1.51 1.68 1.72

TABLE 4. Wall-Clock time in seconds and speedups for 8 Levels.
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