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1 Introduction

We start out from the basic observation that no machine or human can
process all signals from the real world that it or (s)he receives. Machines
and men focus on a small subset of the available signals. These are the facts
in focus. Facts are used to form concepts, and concepts are used to form a
picture of the world, in the shape of some kind of relational database, say.
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Call this the recognized world. We assume that for purposes of reasoning
and learning, the relational database is somehow transformed into a kind of
deductive database. Call this the realized world. In this paper we produce a
picture of what this transformation from recognized world to realized world
may look like.

2 Concept Analysis with Lattice Theory

It is generally agreed that concepts are crucial for thinking. A formal analy-
sis of the notion of a concept was proposed by R. Wille (see [18, 19, 20, 21]).
For a general introduction for the uses of lattice theory in concept analysis,
see [3, Chapter 11]. Further applications of concept analysis are data analy-
sis (see [13, 16, 4, 23, 22, 5], [12]) and the analysis of inference in conceptual
knowledge systems [24],[7].

3 The Basics of Concept Theory

We start with some definitions from Wille [18], namely the definitions of
the extent and the intent of a concept, and the definitions of the operations
V, A on concepts. Let O be a set of objects and A a set of attributes. Then
any relation W C O x A is a set of facts, where (0,a) € W is read as: the
fact that object o has attribute a is a fact of world W. We say that W
is the recognized world, that O is the recognized object set and that A is
the recognized attribute set. Each (0,a) € W is a fact. Now consider two
functions p and ), defined as follows.

for M C A p(M) def {o | Yae M (0,a) e W} (1)

for XCO AX) % {a | VzeX (z,0) e W} (2)
Obviously,

M C Mp(M) (3)

if M CN then Ap(N) C Ap(M) (4)

Ap(Ap(M)) = Ap(M) ()

There is a Galois connection between the power sets of O and A, that mean
there are two functions p and A from the power set of A to power set of O
and from the power set of O to the power set of A such that:

if M C N then p(M) D p(N)

if X C Y then A(X) 2 A(Y)

M C Xp(M)
X C pAX)
pAp = p
ApA = A



p(UMj) = ﬂp(Mj)
)‘(UXj) = ﬂA(X,-)

A subset M of A (X of O) is called closed if Ap(M) = M (pA(X) = X).
For all M C A, all X C O the subset p(M) and A(X) is closed and is called
generated by M (generated by X).If M is closed and p(M) = X , then
the cartesian product C = X x M is called a concept (a W-concept), and
M is called the intent of C, denoted by int(C), X is called the extent of
C, denoted by ezt(C). In other words, a W-concept is a maximal rectangle
inside the recognized world W. If C = X x M and C' = X' x M’ and
X C X', then we say C is a subconcept of C' and denote it by C < C’, so
we have a lattice of W-concepts with the operations V and A on it.

(X x M)V (Y x N) = (XUY)x (MNN) (6)
(X x M)A(Y x N) = (XNY) x (MUN) (7)

We denote the minimum and the maximum of the concept lattice by W —
zero and W — unit or zero and unit (see [3] ).

Example 1 The recognized world consists of 7 objects with 11 possible at-
tributes. We use the rows for the objects and the columns for the attributes.

)

1C/RCIECIRCIRCIRE]
1CIEC/RCIRCIRCIEC]
1CIEC/RC/RCIRCIRC!
1 CECIRCIRCIRE
1CIRC/RCIRE;

SCIRC]
]
a

SCIRC]
aqa

A
In Example 1 we can distinguish a concept (call it “clubsuit”) as follows.

o

a3
q a3
PP P 3G
PP P 3
Lk k JE JRCIRE
L K R R R
Lk kK

3

]

A

W contains all places filled by © or &. The concept consists of all places filled
by &, which is a maximal rectangle in the object/attribute matrix. Just the
names of the concepts and the relation < are not enough to reconstruct the
recognized world W. For this reconstruction we need some new relations.
Suppose a is an element of A and C a concept. Then we stipulate that
azi(C,a) holds if int(C) is a closed subset of {a}. (Here azi(C,a) stands
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for: ‘{a} is an axiom of C.) azi(C, a) holds iff it holds that if C' is a maximum
concept with intent containing a (that mean int(C) is minimum containing
a). Suppose z is an element of O and C is a concept, then we stipulate that
gen(z, C) holds if ext(C) is closed subset of {z} (gen(z, C) stands for: ‘ {z}
is generator of ezt(C)’). Thus, gen(z,C) holds iff C is a minimum concept
with extent containing z, so z is in ext(C). See [17] for the operations 7y
and p. We define imp(C,C") as the relation, which holds between C' and
C' iff C < C' and there is not another C” such that C < C” and C” < C".
Thus, the relation < is the transitive closure of the relation imp. We find
that if azi(C,a) and imp(C,C") and gen(C’,z) then (a,z) € CNC'. In
this way we can reconstruct every concept from the three relations azi, gen,
imp. Notice that C in the three relations is only a symbol, not a concept
(as a rectangle in the W), whence it is called a concept symbol. Instead
of concept lattice the machine has to put into its memory three relations,
but the first two are functions.

Def. The three relations together are called the triple of W or W-triple.

Notice that the diagram of a concept lattice (see [18]) is the map of “imp”,
and that there are two different worlds, with the same diagram of concept
lattice, but with different triples.

Example 2 [Triple T¢ of the world in Ezample 1]

Here are the concepts with its extents:

C:  with extent {z:1}
Cy  with extent {z2}
Cs  with extent {z3}
Cs  with extent {z4}
Cs  with extent {z1, 22}
Ce  with extent {z1, 23}
C; with extent {z1,24}
Cs  with extent {z2, 23}
Cy  with extent {z2, 24}
Cio with extent {z1, 20, 23,74}
Ci1  with extent {z1, 29,3, T4, T5}

C12 with extent {z1, 29,23, 4,5, T6}

Here are the triple of the concepts (the gen, azi, imp relations for the
concepts):

gen(z1, C1), gen(za,Cs), gen(zs, Cs), gen(zs, Cs), gen(zs, C11),
gen(ze, C12),

azi(Cs,a1), azi(Cs,a2), azi(Cra,a3), azi(Ci2,as), azi(Ci2,as),
azi(Ch1,ae), azi(Cio,ar), azi(Cr,as), azi(Co,ag), azi(Cs,a10),
axi(CSaall))

imp(C1, Cs), imp(C1, Cs), imp(Ch, Cr), imp(Ca, Cs), imp(Ca, Cs),
imp(Ca, Cy), imp(Cs, Cs), imp(Cs, Cs), imp(Cs, C7), imp(Cy, Co),
imp(Cs, C1o), imp(Cs, C10), imp(Cr, C1o), imp(Cs, C1o), imp(Cs, C1o),



imp(Cho, C11), imp(Ci1, C12).

The three relations can be represented in a schema as follows (where the
rectangles represent the diagram of concept lattice, the arrows between the
rectangles represent the imp relation, the arrows from the circles to the
rectangles represent the gen relation, and the arrows from the rectangles to
the circles represent the azi relation).

o0

C._ =unit
12

@& 1 ®
®

11

T

10

%/ ol g0
\\KW 7

4

& ‘\\®//76

Diagram of the Triple TC

Example 3 [Triple of diagonal] A is the diagonal in the B X B.Then the
A-concept is the rectangle {b} x {b} for all b belonging to B. Thus, the A-
triple consists of gen(b, {b} x {b}), azi({b} x {b},b) and nothing for “imp”,
ezxcept for imp(zero,.) and imp(., unit).

Example 4 [Triple of partition]

If W is an equivalence relation on B, then a W-concept is a rectangle M x
M ,where M is an equivalence class, and the W -triple consists of gen(b, M x
M), azi(M x M,b) for all b € M, M is an equivalence class and nothing
for “imp”, except for imp(zero,.) and imp(.,unit). We see that the triple
is “somorphic” to triple of the diagonal of B/W .

Example 5 [Triple of function] Suppose W is the map of a function f from
O to A.Then the W -triple consists of gen(z, X x{a}), azi(X x{a},a), where
X is f~1(a), and nothing for “imp”, except for imp(zero,.) and imp(., unit).



Having constructed the three relations azi, gen, imp and put them in mem-
ory, the machine can reconstruct all the concepts and therefore reconstruct
the recognized world W. The three relations together form realized world.

DUALITY.

Notice that A and O play the same role, so we can exchange them and arrive
at the dual situation. This show that axi and gen are dual concepts.

ANTICONCEPT.

Analogously, considering the relation O x A — W, we have the definition of
anticoncept, antiintent,antiextent, antiaxi, antigen, antiimp. And
from the last three relations we can reconstruct the relation O x A —W and
then W itself.

4 Building Concept Towers

From the world W we constructed the three relations gen, azi, imp and
now we can construct the triple for these relations, and so on. Notice that
since gen and azi are fuctions, so we can temporally ignore them. After
having constructed the “tower” of concepts, we attach them again to the
tower. First of all, let us look at the following example:

Example 6 [the triples of triples]. (see Example 2).

Constructing the triple Tp of the diagram of T¢, we have 12 concepts as
follows:

D1 is {01} X {05, 06, 07}
Dy s {C} x {Cs5,Cs,Co}
D3 is {Cg} X {067 Cg}

D4 is {04} X {C7, Cg}

D5 is {05, 06, C7, Cg, Cg} X {CIO}

D6 is _ {Clo} X {Cn}

Dy is {011} X {012}

Dg is {Cl, C2} X {05}

Dg is {01, 03} X {06}

D10 is {01, C4} X {07}

D11 is {Cz, 03} X {Cg}

D,y is {Cg, 04} X {Cg}

and the triple T'p of these concepts is :

gen(C1, D1), gen(Ca, D3), gen(Cs, D3), gen(Cs, Da), gen(Cs, Ds),
gen(Cg, Ds), gen(Cq, Ds), gen(Cs, Ds), gen(Co, Ds), gen(Cho, Ds),
gen(Ch1, D7), gen(Cia,unit)

azi(D1, zero), axi(Ds,zero), azi(Ds, zero), azi(Ds,zero), azi(Ds, Cio),
azi(Dg, C11), azi(Dz,Ch2), azi(Ds,Cs), azi(Dy,Cs), azi(D1o,Cr),
a:IJi(Dll,Cg), a.’L‘i(Dlg,Cg) imp(Dl,Dg), imp(Dl,Dg), imp(Dl,Dlo),
imp(Ds, Dg), imp(D2, D11), imp(Da, D12), imp(Ds, Dg), imp(Ds, D11),
imp(D4, Dlo), imp(D4, D12)



Diagram of the concept lattice in the triple Tp

Constructing the triple Tg of the diagram of the triple Tp above, we have
9 concepts:

Eyis {D1} x {Ds, D9, D10} Eyis  {Ds} x {Ds, D11, D12}

E3 is {D3} X {Dg, D11} E4 is {D4} X {D101D12}
E5 is {Dl, Dg} X {Dg} Es is {D1,D4} X {DIO}
E7 is {DQ, D3} X {Dn} Eg is {DQ, D4} X {Dlz}

Eg is {Dl, D2} X {Dg}

and the triple Tg of these concepts is:

gen(D1, E1), gen(Da, E;), gen(Ds, E3), gen(Dy, E4), gen(Ds, unit),
gen(Dg, unit), gen(Dz,unit), gen(Ds,unit), gen(Dg, unit), gen(D1o, unit),
gen(D11, unit),

a.’Di(Eg,Dg), a:I)i(E5,Dg), a.’l)i(EG,Dlo), ami(E7,D11), a.’L‘i(Eg,Dlz),
azi(zero, Dy), axi(zero, Dy), azi(zero, D3), azi(zero, Dy), azi(zero, Ds),
azxi(zero, Dg), azi(zero, D7),

imp(E\, Es), imp(E1, Es), imp(Ea, E7), imp(Es, Eg), imp(E3, Es),
imp(Es, E7), imp(E4, E¢), imp(Es, Eg)

zero

Diagram of the concept lattice of the triple T

If we perform the construction once more, then we have 9 concepts, with
the same arrow pattern (the same function imp).

Question: for which triple, does it hold that it and its triple are the same ?.



Def. The diagram of all the azi-relations, all the gen-relations, all the imp-
relations is called the Concept Tower of the world W. And the diagram
of all the azi-relations, gen-relations and the last imp-relation is called the
Skeleton of the Concept Tower.

Let us look at the Skeleton of the Concept Tower of W from example 1, in
the following figure:

for E

for C

] O B

The Skeleton of Concept Tower related with the world w

(The scheme without true’s and false's)

The Skeleton of the Concept Tower of W gives us “complete” information
about W.

Proposition 1 From the azi-functions,gen-functions,and the last imp-
relation we can reconstruct the world W.

For example,
en en en m; 1 1 en 1 en 1 ]
18D ETE S Dy G Ds ™ 010 De ™ C11 &

ae

Notice that imp(C, C") holds iff there are D, D' such that gen(C, D), imp(D, D'),
and azi(D',C").
Def. In a diagram of concept lattice the pair of sets of concept symbols

Ci,...,Ck and C1, ..., C}, is called a section of the diagram iff:

(a) if imp(C, C") is in the diagram, and C is in the first set then C' is in the
second set

(b) if imp(C,C") is in the diagram, and C’ is in the second set then C is in
the first set

(c) considering the relation imp in the union of the two sets as a graph, then
the graph is completely connected (that is, for any “note” C and C' in the
graph there is a path from C to C').



Lemma 2 For two concept symbols C and C’ in one set of a section
there is not more than one concept symbol C” in the other set
connected with both of C and C’' by imp.

Proof. If C and C' are in the first set and imp(C,C”) and imp(C’',C”)
then C” = C Vv C', if C and C' are in the second set and imp(C”,C) and
imp(C”,C") then C” = C A C".

Proposition 3 If in a section each part has more than one concept
symbol then the diagram of the section is isomorphic to itself.

Proof. By the lemma each new concept D is defined by one concept symbol
C in the first set (so we can refer to D by C,), or by one concept symbol C
in the second set (so we can refer to D by C*). And we have imp(Cy, C*) iff
imp(C', C). Thus the section is isomorphic to its diagram of concept lattice.

Proposition 4 The diagram of a section has only one element iff one
of its parts has only one element

Notice that in the triple of a diagram of concept lattice, the concept symbols
in two different sections are not “related” by imp. Thus we have:

Proposition 5 In the triple of a diagram of concept lattice, a path
from zero to unit goes through at most two concepts.

Because of Proposition 5 no tower has more than 3 stages.

Notice that a Ferrers relation W (satisfying the condition: if (z,a), (y,b) €
W then (z,b) or (y,a) is in W) has a chain as its concept lattice (see [23]),
the concept lattice of this chain is a set — no relation ¢mp, except for con-
cections with unit or zero), and the concept lattice of that set has only one
concept,except zero and unit.

5 Accepting a New Fact

Now we consider the situation, in which a machine receives a new fact (z, a)
and changes its memory to “incorporate the new fact”.

First of all, the machine looks for any concept C such that gen(z, C).
(2.A).

If it fail, then z is not in the recognized object set A, so the machine looks
for any azi(C',a).

(2.A.a).

If it fails, too, then a is not in the recognized attribute set O, (that is a is
new, too, and (z,a) stands apart in the recognized world). Inthis situation
the machine have only two news items: azi(C*,a), gen(z,C*), and nothing
for imp.



Example 7 The new fact (z,a) is on the upper right corner.

)

[y

g a3

A

The new concept is the rectangle {z} x {a}

(2.A.b).

If there is azi(C, a), we have only one new concept C’, and the machine put
the following into its memory :

azi(C',a), (and erases azi(C,a)),

gen(z,C"),

gen(y,C"), (iff there is gen(y, C)) and we erase gen(y,C),

imp(C, C") (iff there exists b and C' such that b # a, azi(C’,b) and
either C' is C or imp(C’, C)).
Example 8 The new fact (z,a) is in the first row.

0]

3
Lk R

SCIRE]
a

LCIRC!
1CIRC]
]

C is the ‘clubsuit’ rectangle.

(2.B).

If there is gen(z,C). The machine looks for azi(C’,a), too.

(2.B.a).

If the search fails we have the dual of case (2.A.a).

(2.B.b).

If, on the other hand azi(C’, a) is found, we have the following subcases.
(2.B.b.i).

If there is azi(C,a) and gen(z,C’) and Imp(C,C") then (z,a) is in C, and
is in C’,t00.This mean that (z,a) is already in W. In this case nothing has
to be changed.

(2.B.b.ii).
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In the other case, there is something to be changed

Example 9 The new fact (z,a) is the “clubsuit” in the site (3,2).
0]

Q Q@
VARV

3
qa

%
@

A

The machine now has to change all concepts concerned with a or z.

The algorithm is complex but the idea is simple: only a new concept C* is
created if there are two concepts C' and C” such that int(C') = {a}U
int(C”) and ext(C')U{z} = ext(C”)and C* = ext(C”) x int(C’). Then
we also have imp(C’,C*) and all imp(C*, C*) such that imp(C*,C”).

In this case we have 2 new concepts

{.’132} X {a17 az,0as3,as, aﬁ}

{2, z3} x {a2,a5}

So,we have:

Proposition 6 There is an algorithm for adding one more fact into
the machine’s triple.

Erasing facts.

Using anticoncepts we can erase a fact.

6 Operations on Triples

We have the definition of W-triple. Now we give some definitions of opera-
tions on triples.

Def. A Preconcept is a rectangle in the product O x A

Def. A Preconcept System is a set of preconcepts on O x A closed under
the operations V and A.

Def. A Pretriple on O x A is a set of three relations {att, isa, sub} :

att CCx A

1sa CO x C
where C is a new set,and it becomes an ordered set with the relation sub.
(a) For an element C € C we denote by:
Dom(C) the set {z | 3C’ such that : isa(z,C") and sub(C’,C)}

11



Att(C) the set {a | 3C’ such that : att(C’, a) and sub(C,C")}

Then a name C define a preconcept rec(C) = Dom(C) x Att(C). Denote
by W the union of all the concepts.

(b) Construct new preconcepts from the preconcepts rec(C) with the name
defined by the name of the preconcepts and the sign V and A, and construct
the corresponding relation att, ¢sa, sub. We have a new preconcept system.

We have the proposition:

Proposition 7 In a preconcept system,each rectangle is maximal for
the C iff it is a W-concept.

Proof. Of course, any W-concept is maximal for the C. Now let X x M
is maximal.Suppose the W-concept Y x N contain the X x M.For (y,b) €
Y x N, there is a rectangle R, 5 containing (y,b).Then

forally R, = AyRy; containsall (y,b) €Y x N

R = VyR, containsall(y,b) €Y x N

R is belong to the preconcept system and X x M is maximal, then R =
XxM

Proposition 8 There exists an algorithm to construct a triple of the
world defined by a pretriple.

(1) Construct the rectangles defined by the preconcept.

(2) Construct the world W beeing the union of the rectangles, construct
the preconcept system ( the names of new concepts are constructed by the
elements of C and the signs V and A)

(3) From the preconcepts (old and new), all maximal preconcept are marked.
(4) Construct three relation azi, gen, imp.

The three relation azi, gen,imp is defined as following:

For a name C of a marked rectangle we have azi(C, a) iff

Att(C) is smallest of all C’ such that att(C',a),

and in the same way we have gen(z, C) iff

Dom(C) is smallest of all C’ such that isa(z,C"),

and we have imp(C, C") iff

Dom(C) C Dom(C'") and there is not another C” such that Imp(C,C”)
and Imp(C”,C").

Then {azi, gen,imp} is the triple of the world W Now, we give the definition
of “union” and the “intersection” of two triples.

Defs.

12



(1.a) Union of two preconcept systems {R; | i € I} and {Ry | k € K} is
the preconcept system generated by {R; | j € (I U K), and denote it by the
Sign “U”

(1.b) Intersection of two preconcept system {R; | i € I} and {Ry | k € K}
is the preconcept system generated by {R(;x) | i € I,k € K} and denote it
by the sign “N”

(1.c) Cartesian Product of the two preconcept system in O x A and in
U x B consist of all (X XxY) x (M x N)iff X x M and Y x N are the
preconcepts of the two system.Denote it by the sign “x”

(1.d) Disjoint Union of the two preconcept system is the union of them
when consider ONU =@ and ANB =0

For example, the case (2.A.a) in the example 7 of the section 5: the new
preconcept system is disjoint union of the old one and the rectangle {z} x{a}.

(1.e) Join of the two preconcept system on O x A and on A x B is generated
by all rectangles X x H such that there are two concepts X x M and N x H
satisfying the condition: (M N N) # @

Then the join of the two preconcept system on O x A and on A x B consists
of all rectangles X x H such that {z,b) € X x H iff there exists a € A
satisfying the conditions:“ (z,a) in a rectangle of the first system,and (a, b)
in a rectangle of the second one”.

(1.f) Iterative of the preconcept system on A X A is the result of the “join”
enough times such that it become stable under the “join”.

From the operations of preconcept systems we have the corresponding op-
erations of triples.

(2.a) A Morphism from the triple (gen,azi,imp) on (O,A, C) to the
triple (gen', azi',imp') on (O, A',C’) is a mapping from O to O’, from A to
A, from C to C’ such that:

f(unit) = unit

f(zero) = zero

if gen(z,C) then gen'(fz, fC)

if azi(C,a) then azi'(fC, fa)

if Imp(C, C") then Imp(fC, fC").

(2.b) Cartesian Product of two triples 71 and T3 is a triple such that:

gen((z,y),(C,D))  iff gen(z,C) and  gen(y,D)
azi((C,D),(a,b)) iff azi(C,a) and azi(D,b)
imp((C,D),(C’,D’)) iff imp(C,C’) and imp(D,D’)

We have the projections pri, pro from the triple to 71 and to Ty:

Proposition 9 All triples with their morphisms form the category of
triples, which has cartesian product . (see [2]).

(2.c) Suppose W and V are two worlds on O x A and on U x B, and ONU=0,

13



AN B=@. The W U V-triple is called the disjoint union of the W-triple
and the V-triple.

For example, the case (2.A.a) in example 8 of section 5: the new triple is
the disjoint union of the old one and the {z} x {a}-triple.

(2.d) Suppose W and V are two worlds on O x A and on O x B, and ANB=0Q.
The W U V-triple is called the halfdisjoint union of the W-triple and the

V-triple. (analogously, we have a halfdisjoint union of two triples on O x A
and on U x A). We have:

Proposition 10 Suppose W and V are worlds on O X A and on O X B,
then a subset X of O is an ertent of a W U V-concept C iff there
are W-concept C’ and V-concept C” such that X = ext(C')Next(C”)
(int(C) = (int(C") Uint(C”))

Proof. Suppose that C = X x (M UN) is a W U V-concept (M, N is subset
of A,B), then X x M CW and X x N C V. Let denote by C' = X' x M’
and C” = X” x N” the concepts generated by X in W and in V, then
X'D X, M D> M, X" > X, NN D N. Denote by Y the intersection of
X' and X” then we have Y x (M'U N”)isin WU V. Thus Y = X,and
M' =M, N’ =N.

Vice versa, let C' = X' x M' be a W-concept and C” = X” x N” be V-
concept, and X = X'NX”. Then X x (M'UN”) CWUV. If {z} x (M'U
N”)C (WUV) then {z} x M' C W, and z € X', analoguosly, z € X”. We
have X = X' N X”.

Notice that if C’ is a W-concept then C' and unit define a W U V-concept,
which has the same int as C’, so we can denote it by C’ itself.

In the section 3, the case (2.A.b) as an example for cohalfdisjoint union and
the case (2.B.a) as an example for halfdisjoint union.

7 Accepting a New Rule

Suppose W is a relation on O x A, and T is its triple with the diagram
of concept lattice is D;, now we add a rule Cy « C4,...,Cg,that is the
intersection of the concepts C4, ..., Cy has its

domain in the domain of Cy. If ext(C1) N ... Next(Ck) € ext(Co) then there
is nothing to be changed. See the example 2, the rule Cy « Cj5,Cg. If
ext(C1) N ... Next(Cy) and ext(Cop) is uncompairable in the lattice then we
add the edge from C; A ... A Ck to Cp. See example 2, the rule C4 «— C5,Cg
. The edge from C; (which is the concept Cs A Cg) to Cy is added, and the
edges frem zero to Cy and from Cs to Cg erased.The effect of tihs is that
the facts (z2,as) and (z2,a9) are added to the world W.
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Add the rule

If there is an edge from Cp to C1 A... ACj in the concept lattice then the two
concepts are merged into one. In the example situation the rule Cy < Cr7, Co

will identify two concepts Cy and Cj.
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Add one more rule C;<=—0C, G

If the rule introduces a new concept then it add the new concept into the
diagram the suitable edges, for example the added rule is C13 « Cg, C14,then
we add three concepts Ci3, C14 and CgAC14 with three edges : from CgAC14
to Cg, to C13, to C14.Thus, we can get one more fact or rule at any
stage in the Skeleton of concept tower.

8 Structure on the Attribute Set

Now we introduce some extra structure on the attribute set, in order to cope
with more complex cases.

8.1 Cartesian Product

Instead of A, now, we consider the product A; x Ay. For any h of Ay we
have a world section Wy, = {(z,a) | (z,a,h) € W}

For this relation we have a triple T}, = (azip, geny, impy). For the subset H
of Ag, we construct from the triple (azip, genn,impy) the intersection T
of them. The intersection triple define the world, which is the intersection
of the worlds defined by the component triples. If we start out from the
definition of concept on (O X A;) x Ag, a concept is a pair of a subset of A
and a triple on O x A;. If we consider the product O x (A; X Ag), then we
have the situation that the concept is a pair consisting of a subset of O and
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a triple on A; X As. Thus we arrive at the following four cases:
1- the product O x A; x Ag

2- the product (O x Ag) x A;

3- the product (O x A;) x A

4- the product O x (A; x As2)

With every product we can consider two kinds of concepts depending on our
choice of objects and attributes. Thus we have 7 kinds of triples for this
world. For the first case, we consider the concept as a maximal 3-dimension
rectangle inside W. For the second, the third and the fourth case we consider
the concept as a pair of a set and a triple.

8.2 Cover

Now, with A we consider a cover of A, that is a set Ay, ..., A, of subsets of
A such that A is the union of Ay, ...,A,. And we have the relation W* as
follows:

W*=WuU{(o,A;)| Ja€ A;: (0,a) e W} (8)

The second part of W* is denoted by W’'. A W'-concept (its intent) is
a relation scheme, the W'-triple is the database scheme. Let R = X X
{Ai,, ..., Ai,} are W'-triple and B = U¥,_; 4;,,, the W N (X x B) is called
a relation r over R. Then we arrive at r-relation. (see [8]).

9 Using Concept Triples in Reasoning: Logic Pro-
grams

We use the notation of Apt [1], Lloyd [9], [10], [11] with some modifica-
tions. Suppose our first-order language has an alphabet without function
symbols. Instead of the terms we have concepts in a triple. In fact, every

program will be related to a particular concept triple. The alphabet consists
of

-constants (including objects and attributes of the triple)
-concept symbols of the triple that the program is about
-variables

-relation symbols

-connectives V, A, «

-punctuation symbols

If p is an n-ary relation symbol and Ci, ..., C, are variables or concept sym-
bols then p(Ch,...,Cp) is an atom.

A clause is a list of the following form:
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Al,...,Ak — Bl,---an
where A1, ..., Ay, By, ..., B, are atoms.

A4, ..., Ay are called conclusions of the clause, Bi, ..., By, are called premises
of the clause. A disjunctive logic program is a finite nonempty set of clauses,
with a nonempty conclusions (see [15]). In the general case as in normal logic
programs we have to work with an infinite set of terms, in our application
to triples we only have a finite set of concepts.

We consider the function Imp in a triple. The following program defines it:
Imp(X, X) «

Imp(X,Y) — imp(X,Y)

Imp(X,Y) — imp(X,Z),Imp(Z,Y)

Imp(0, X) «

Imp(X,1) «

-Imp(1,0) «

where 1,0 are unit and zero of the concept lattice.

Semantically, the Imp make concepts ordered set, but we can’t prove this
by mean of the program.

As another example, we consider the predicate “equality”.
equ(X,X) «—

equ(X,Y) — equ(Y, X)

equ(X,Y) — Imp(X,Y), Imp(Y, X)
equ(X,Y) — equ(X,Z),equ(Z,Y)
imp(X,Y) — imp(X, Z),equ(Z,Y)
imp(X,Y) — imp(Z,Y), equ(X, Z)
-equ(0,1)

—equ(X,Y) — imp(X,Y)
—-equ(X,Y) — -Imp(X,Y)
—-equ(X,Y) — imp(X, Z),Imp(Z,Y)

Next example: a program for the funtion fac(z,a) (it gives the facts (z, a)
in our triple). The program is :

fac(z,a) — gen(z, X), Imp(X,Y),azi(Y,a)

The fuction obj(z, X) (for: z is an object of concept X) has the following
program:

obj(z, X) «— gen(z,Y), Imp(Y, X)

Next, we consider the operations V and A in the concept lattice. The pro-
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gram for vee, which defines V:
upv(X,Y,Z) — Imp(X, Z),Imp(Y, Z)
Imp(X,Z) — upv(X,Y, Z)

Imp(Y,Z) — upv(X,Y, Z)
—upv(X,Y,Z) — =Imp(X, Z)
-upv(X,Y,Z) — ~Imp(Y, Z)
upv(X,Y,Z) «— vee(X,Y, Z)
-wee(X,Y,Z) — upt(X,Y,Z)
Imp(U,V) — vee(X,Y,U),upv(X,Y,V)
Similarly, for A.

Now suppose we have two worlds W and V, W on O x A, and V on U X B.
A relation between W and V is given by a program .

(i) For example, if U = O and A N B=0 then we can take the halfdisjoint
union of two triples, as in the following program.

gen(z,(X AY)) « gen(z, X), gen(z,Y)

azi((X A1l),a) « azi(X,a)

azi((1AY,b) — azi(Y,b)

Imp(XAY),(X'AY")) — Imp(X A X"),Imp(Y AY")
imp(XAY),(X'AY)),equ((X AY), (X' AY)) — imp(X, X')
imp(XAY),(XAY"),equ((X AY),(X AY")) — imp(Y,Y")
obj(z, (X NY)) « obj(z, X),o0bj(z,Y)

=0bj(z,(X AY) « —obj(z, X)

=0bj(z,(X NY) — —obj(z,Y)

(ii) If A = B, and O N U=0, we have the cohalfdisjoint union. See the
following program.

gen(z, (X V 0)) « gen(z, X)

gen(u,(0VY)) — gen(u,Y)

azi((X,Y),a) «— azi(X,a),azi(Y,a)

Imp(X VY, X'VY') «— Imp(X,X"), Imp(Y,Y")
imp(X VY, X' VY),equ(X VY, X'VY) — imp(X, X")
imp(X VY, XVY'),equ(X VY, X VY') — imp(Y,Y")

(iii) The disjoint union of a W-triple and a V-triple is given by :
gen(z, X) — genw(z, X)
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gen(z, X) «— geny(z, X)

—-gen(z, X) — —genw(z, X), ~geny (z, X)
and similarly for azi and for imp.

(iv) The join of a triple Ty on O x A and a triple Ty on A x B is given by:
gen(z, X) — genw(z, X)

~gen(z, X) — —genw(z, X)

azi(X,b) «— aziy(X,b)

—azi(X,b) « —geny(X,b)

imp(X,Y) — impw(X,Y)

imp(X,Y) — impy(X,Y)

imp(X,Y) — aziw(X,a),geny(a,Y).

(v) Consider an extreme halfdisjoint union of Ty and Ty: for any V-concept
D there is a W-concept of C such that ext(C) = ext(D). In this case the
triple of Twyy is the result of adding aziy to the triple Tyy. We say: there
is a dependency of Ty from Tp.

(vi) Consider another extreme of the halfdisjoint union notion: for any W-
concept C and V-concept D ext(C) # ext(D). In this case the triple Tywyuy
is the cartesian product of Ty and Ty. We say that T¢ and Tp are inde-
pendent.

9.1 Monadic Predicate Logic
9.1.1 Atoms, Conjunctions and Universal Quantifications

Consider A as a set of “relation symbols”, and (z,a) € W as a holds in z.
Then a W-concept X X M is considered as a pair of of theory M and its
model X: all universal propositions belonging to M are valid in X and all
universal propositions valid in X are in the set M. Suppose a1, ...,a, are in
A, and M in the closed set of {a1,...,an}, and by, ...,bxy € M, we write

al&...&an - bl&...&bk (9)

This formula has the meaning of the following formula of monadic predicate
logic:

V(a1 (z)&...&an(z) — bi(z)&...&bk(z)) (10)

We have used C, U, N for sets, <, V, A unit, zero for latices and now we use
—, |, & for implication, disjunction and conjunction in monadic predicate
logic.

The —-relation has the following properties:

(1) reflex
a1 &..&an, — a1&...&a,

20



(2) union

Zf al&...&an g bl&&bk
and a1&...&a, — c1&...&¢
then a1 &...&a, — b1&.. . &br&ci&...&c

(3) cut

if a1&...&ap, — b&.. .&bi&.. &by
then a1&...&a, — b1&...&b;

9.1.2 Negations

Now for any a € A we add a new sign —a. Along with the world W we
consider the world W_, defined as follows:

foralla € A (z,-a) € W. iff (z,a0) ¢ W (11)

Then we can form W U W_-concept X x (M U N-) when (z,a) with a € M
mean that a holds in = and (z, a) with a € M- mean that a does not hold in
z. By this way, the concept is considered as a “model” for the “propositions”
a1 A ... Nap A by A ... A by with M = {ay,...,an} and N = {by,...,bx}. See
[14].

9.1.3 Disjunctions and Existential quantifications

Suppose M = {a1,...,an} is a subset of A then we add to A a new element
M* and add to W some new “facts” as in the part “Cover” of section 8.2
(8). Thus M* has the same meaning as the disjunction ai]...|a, See [15].
Thus we have:

Proposition 11 If stating from W C O x A we add W_, then consider
the power set of M U M_, and construct W” as above, we get the
Boolean Lattice of W”-concepts.(see [3]).

By duality, we have the existential case: if for the subset z1,...,z, of O we
add a new object X*, then the fact that a holds at X* means that 3i such
that a holds at {z;}.

9.1.4 Possibility

See [6]. In this part we consider W UW-. Suppose ay, ..., an is a subset of A
and M is its W U W_-closed set. Assume M-, is the intersection of M and
A_. If by, ..., b is a subset of A and for all i: —b; € M-, we write:

al&...&an — bl&&bk (12)
Then — means the “possibility”, or in other words:
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Jz(a1(z)&...&an(2)&bi ())& ... &3Iz(a1(z)&..&an(z)&br(z)) (13)

This <—-relation has the same three properties as — in 9.2.1 .

9.1.5 Higher-order logic

We have interpretes of first-order logic in concept lattices. Instead of concept
lattices we consider concept towers have shall have intepretes of higher-order
logic, because we shall work with concepts of concepts,ect...See section (4),
we have, for examples:

Do& D19 — Ds
Es&FEg — Ej

(instead of a1&...&an, we write C iff int(C) is closure of {a1,...,an}.)

9.1.6 Counterfactual Conditions

Consider the example of “penguins are birds, birds fly,penguins do not fly”.
See [6] One way to think about this situation is as follows. Think of: “ If
there weren’t any being characterized by ‘penguin’, then birds fly”. The
counterfactual condition in this proposition is about the world, not about
objects. Then we consider here conditions about the world: something is
included into or excluded from the world. Now we consider the case with —.

(1) Suppose ay, ...,a, € A and M is its closure set, and X x M is a concept
C. From W we exclude all facts of z such that gen(z,C), and we arrive at
W~. If in the W~ -concept we have a ‘theorem’ p, then we write:

ezcl(a1&...&an) ~ p (14)

(If W~ is an unreal world, then ezcl(a1&...&a,) is a counterfactual condi-
tion). Thus, we can write:

ezcl(penguins) ~ (birdsfly)

See example 1: {as,ag} defines the concept C:
C = {z1, 22,3, 24,75} X {a3, as,05,06}

and gen(zs,C), and if erase zs from the world then {as,as} defines the
concept

{z1, 29,3, 24} X {a3,04,0a5,06,0a7}

then we have:
ezcl(as&ag) ~ (az&ae — ar)
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(2) Suppose p is a formula (as a rule). If the world W accepts p as a new
rule (see section 7) we have an unreal world W, and if in W we have a
valid formula ¢, then we write:

incl(p) ~q (15)

For the examples in section 7, we can write:

incl(C5&06 i 04) A (02 — 04)
incl(C5&Cﬁ - 04, 07&09 — Cz) > (04 - 05)

10 Conclusion

This concludes our introduction to the use of lattice theory in formal concept
formation. In fact, the approach outlined here has many more connections
with theories of concept analysis from philosophy and artificial intelligence
than we have been able to point out. It is our hope that the lattice theo-
retic approach to the subject outlined in this paper may one day serve as a
common framework to compare and evaluate such theories.
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