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Abstract

A distributed system is self-stabilizing if it can be started in any possible global state. Once started
the system regains its consistency by itself, without any kind of an outside intervention. The self-
stabilization property makes the system tolerant to faults in which processors crash and then recover
spontaneously in an arbitrary state. When the intermediate period in between one recovery and the
next crash is long enough the system stabilizes. A distributed system is uniform if all processors with
the same number of neighbors are identical. In this work we study uniform self-stabilizing protocols
for leader election under read/write atomicity. Our protocols use randomization to break symmetry.
We first introduce a novel technique called the sl-game method for analyzing the performance of
randomized distributed protocols. Then we present two protocols for the case where each processor
in the system can communicate with all other processors, and analyze their performance using the
sl-game technique.
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1 INTRODUCTION

Leader-election is a fundamental task in distributed computing. Roughly speaking, a protocol that
solves this task requires that when its execution terminates, a single processor is designated as a leader
and every processor knows whether it is a leader or not. By definition, whenever a leader-election
protocol terminates successfully, the system is in a non-symmetric global state. Any leader-election
protocol that has a symmetric initial state requires some means of symmetry breaking. In id based
systems each processor has a unique identifier called the processor’s id, hence the system has no
symmetric global-state. In uniform' leader-election protocols all processors are identical, the initial
state is symmetric and symmetry is broken by randomization.

A distributed system is self-stabilizing if it can be started in any possible global state. Once started
the system regains its consistency by itself, without any kind of an outside intervention. The self-
stabilization property makes the system tolerant to faults in which processors crash and then recover
spontaneously in an arbitrary state. When the intermediate period between one recovery and the next
crash is long enough the system stabilizes.

Most of the algorithmic research in self-stabilizing systems assumes the semi-uniform model in which
a unique predetermined processor serves as a leader and prevents the existence of symmetric global
states. Observe that a uniform self-stabilizing leader election protocol can be viewed as a uniform
self-stabilizing protocol that converts a uniform system to a semi-uniform system. Hence, a uniform
self stabilizing leader election protocol enables, by using a fair protocol composition— a technique
presented in [DIM-90]— to convert any semi-uniform self stabilizing protocol to a uniform version of
the same protocol. Thus, a uniform self-stabilizing leader-election protocol considerably enlarges the
repertoire of uniform self stabilizing protocols.

In this paper we study self-stabilizing protocols in systems that assume only read/write atomicity.
In contrast, most other self-stabilizing protocols assume systems in which in one atomic step a process
may both read and write to the same register. As we pointed out in [DIM-90], self-stabilizing protocols
under read/write atomicity are much harder to design and to analyze. We propose a useful tool for
proving upper bounds on the time complexity. of randomized distributed protocols in an elegant way,
called sl-game. Then we present two uniform, self-stabilizing, leader-election protocols for systems in
which every processor can communicate with every other processor via shared memory.

It can be argued that the complete graph topology is too simple: In the id-based model there
exists a trivial self-stabilizing protocol for this topology in which each processor repeatedly appoints
the processor with maximal id as a leader. As often happens, it turns out that intricacy of the
problem depends on the exact assumptions made on the system. This paper indicates that uniform
self-stabilizing protocols are more subtle and maybe non-trivial even in such simple topologies.

In a forthcoming paper, [DIM-93], we extend the techniques presented here and present uniform,
self-stabilizing, protocols for leader-election and for ranking for systems in which not all processors
can communicate directly. A preliminary report on the results presented in both papers appears in
[DIM-91].

The complexity of our protocols is analyzed by the following two measures:

1. Time Complexity - We use round complexity which will be precisely defined in the next section.

2. Space Complexity - The maximal size of shared memory used by a processor.

The first protocol we present in this paper is a minimum space protocol in which each processor uses
one shared bit to elect a leader; the subtlety of self-stabilizing systems is demonstrated by showing a
somewhat surprisingly exponential lower bound on the round complexity of this protocol. The second
protocol uses space linear in n, the number of processors in the system; its round complexity is shown
to be, by using the sl-game, O(nlogn).

1Uniform systems are also referred to as anonymous.



We now survey previous work: Due to the abundance of related work both in non stabilizing
leader-election protocols and in self-stabilizing protocols, not for leader-election, this survey is by no
means complete. Deterministic, leader-election protocols in id-based systems are presented in [Ga-78,
Hu-84, KMZ-84, KKM-90]. Uniform, randomized, leader-election protocols are presented in [IR-81,
SS-89], these protocols are not self-stabilizing. semi-uniform, self-stabilizing protocols for mutual
exclusion are presented in [Dij-74, BGW-87, Bu-87, DIM-90]. id-based, self-stabilizing protocols for
mutual exclusion appear in [La-86, AG-90]. A uniform, deterministic, self-stabilizing, mutual exclusion
protocol for rings of prime size appear in [BP-88]. Randomized, uniform, self-stabilizing protocols for
mutual exclusion in a general graph and for ring orientation appear in [1J-90] and [1J-90a] respectively.
In [AKY-90], an id-based leader election protocol for general graphs is presented. In that work they
propose a way to convert their protocol to a uniform one but they do not give any proof. A uniform
self stabilizing leader-election algorithm for general graphs was obtained independently in [DIM-91].

The rest of this paper is organized as follows: In Section 2 we present the formal nic..i and
requirements for uniform, self-stabilizing protocols and in Section 3 we present the sl-game method.
Section 4 presents the minimum space protocol and Section 5 presents the polynomial time protocol.

2 MODEL AND REQUIREMENTS

A uniform distributed system consists of n processors denoted by Pi,P,,---,P,. Processors are
anonymous, they do not have identities. The subscript 1,2, ---,n are used for ease of notation only.
Each processor communicates with all other processors using a single writer, multi reader register
which is serializable with respect to read and write actions. For the sake of clarity we assume that
every processor knows the exact contents of the register that it is writing to?.

For ease of presentation we regard each processor as a RAM whose program is composed of atomic
steps. An atomic step of a processor consists of an internal computation followed by a terminating
action. Under fine atomicity the terminating actions are read, write and coin toss. Under coarse
atomicity a coin-toss is considered an internal action and does not terminate the atomic action con-
taining it. We assume that the state of a.processor fully describes its internal state and the value
written in its register. Denote by S; the set of states of P;. A configuration, c € (S; x Sy X - - -Sn)
of the system is a vector of states of all processors.

Processor activity is managed by a scheduler. In any given configuration the scheduler activates a
single processor which executes a single atomic step. To ensure correctness of the protocols, we regard
the scheduler as an adversary. We let the scheduler choose the next activated processor on line, using
the system configuration as its input. An execution of the system is a finite or an infinite sequence
of configurations E' = (cy, ¢y, - -) such that for i = 1,2, - -, ¢;;; is reached from c; by a single atomic
step of some processor. A fair ezecution is an infinite execution in which every processor executes
atomic steps infinitely often. A scheduler S is fair if for any configuration ¢, an execution starting
from ¢ in which processors are activated by $ is fair with probability 1.

In a distributed system each processor may execute atomic steps in any non constant rate. Various
processors might be slow in various parts of the execution. The following definition of round complexity
attempts to capture the rate of action of the slowest processor in any segment of the execution. Given
an execution £ we define the first round of E to be the minimal prefix of E, E', containing atomic
steps of every processor in the system. Let E" be the suffix of E for which E = E' o E". The second
round of E is the first round of E”, and so on. For any given execution, E, the round complezity
(which is sometimes called the execution time) of E is the number of rounds in E.

We proceed by defining the self-stabilization requirements for randomized distributed systems. A
behavior of a system is specified by a set of executions. Define a task LE to be a set of executions
which are called legitimate ezecutions. A configuration c is safe with respect to a task LE and a
protocol PR if any fair execution of PR starting from ¢ belongs to LE. Finally, a protocol PR is
randomized self-stabilizing for a task LE, if starting with any system configuration and considering

k)

20ne may assume that every processor refreshes the contents of its register periodically.



any fair scheduler, the protocol reaches a safe configuration within an expected number of rounds
which is bounded by some constant C. (The constant C' may depend on n, the number of processors
in the system)

3 SCHEDULER-LUCK GAMES

In this section we introduce a new method to analyze randomized distributed protocols, by using a
full information two player game, called sl-game3. An sl-game is a triplet G = (PR, Z, F) where PR
is a protocol, T is a set of initial configurations and F is a set of final configurations. In the context of
self-stabilization 7 is the set of all possible configurations and F is the set C of configurations which
are safe w.r.t. some task LE and the protocol PR, but this is not essential for using the method. The
players of G are called scheduler (or adversary) and luck, their opposing goals are to prevent PR from
reaching a configuration in F and to help it to reach such a configuration, respectively. The states of G
are system configurations of the protocol PR; each turn of G starts from some configuration c, in each
turn the scheduler chooses the next activated processor, which then makes an atomic step. If during
this step the activated processor tosses a coin, then luck may (but does not have to) intervene and
determine the result of the coin toss. When the atomic step is completed a new system configuration
¢ is reached from which a new turn begins. Each execution of G corresponds naturally to an execution
of the protocol PR. The execution of G terminates (if at all) when the system reaches a configuration
in F. The scheduler in an sl-game is required to be fair, but otherwise it is arbitrary. Our main result
in this section is to establish a relationship between winning strategies for luck and the expected round
complexity of PR. We begin the discussion with some definitions:

DEFINITION 1:

a: Let T be a directed tree: L is a length function for T if for every node v in T', L(T, u) is a nonegative
integer, and it satisfies the following properties:

1. If u is the father of v in T then L(T,u) < L(T,v).
2. If u and v have the same father in T then L(T,u) = L(T,v).
3. If T is obtained from T by addition of a leaf u then for every node v # u L(T,u) = L(T",u).

b: Let T be a binary tree and L a length function. For each node u in T let pr(u) be the probabiltiy
to reach v in T in a random walk from the root along directed edges. That is, pr(u) = 27°,
where b is the number of nodes with two sons on the path from the root to u. The characterisitic
probability of T, P(T), is the sum Y pr(u), taken over all the leaves u of T. The characteristic
length of T, L(T), is the sum " L(T,u) - pr(u), taken over all the leaves u of T. Note that if T
is finite then P(T") = 1, and that if P(T) = 1 then L(T) is the expected length of a leaf in T.

LEMMA 1: Let T and T' be two binary trees and let L be a length function. If 7" is derived from T
by addition of a new leaf as a son of a non-leaf node of T', Then L(T) > L(T").

Proof:  Let T and T” be as in the statement of the lemma, where T" is obtained from T by adding
a new leaf v as a son of a non leaf node u in T. Let U = {w : w is a leaf in T which is a descendant
of u}* and let P =3, .y pr(w).

Observe that every node in' T has the same length in T and in T, and every leaf in T which is not
in U also has the same probability in 7" and in T'. Also, for every node w € U, pr(w) = pr(w)/2,
and pr/(v) = P/2. Thus we have

L(T") - L(T) = L(v)- P/2 = ) L(w) - pr(w)/2.

welU

3A restricted version of this game appears in [Ab-88] for a different model and without any analysis.
4The set U might be infinite.



Since every w € U is a descendant of u and v is a son of u, we have that L(w) > L(v) for every such

w. This, and the fact that ) ., pr(w) = P, implies that the righthand side of the above equation
is bounded from below by

L(v)- P2 = L(v) - Y pr(w)/2 =0

welU

which implies the lemma. a

DEFINITION 2: Let G = (PR,Z,F) be an sl-game. We say that luck has an (f,r)-strategy for G
if for any initial configuration ¢; € 7 and for every scheduler S, G reaches a configuration ¢; € F in
expected number of at most r rounds, and within at most f interventions of luck.

Throughout the rest of this section we assume that the game G = (PR, Z, F) is fixed and that luck
has an (f,r)-strategy for G.

DEFINITION 3: let E be a given execution of PR.
a: The first block of E, B, is the prefix of E satisfying one of the following:

1. good block: B is the minimal prefix of F which is an execution of G under some scheduler
S which ends in a configuration in F (provided there is such a prefix), or

2. bad block: B is either (a) an infinite execution of G under some scheduler S which does
not reach a configuration in F, or (b) the minimal prefix of E which is not a prefix of any
sl-game as above. (In the latter case a bad block ends with an atomic operation which
contains a coin toss whose outcome is b € {0,1}, where the (f,r)-strategy for G requires
luck to set the outcome of the coin toss to —b).

b: Denote the first block of E by By. If B; is a good block, then when it terminates the system
reaches a configuration in F and F is terminated too. Otherwise, B; is a bad block. If By is
finite, let E' be the suffix of E defined by E = By oE’, and let B, be the first block of E’. Again,
if By is a good block then when it ends the system reaches a configuration in F. Continuing
this way, we associate with E a sequence B = (Bj, By, - -+) of blocks, such that B is either a
(possibly infinite) sequence of bad blocks, or B consists of I blocks, out of which the first I — 1
blocks are bad and the Ith block is good.

Let now the scheduler S be fixed. For each configuration ¢ € Z, define the sl-game tree of S and
luck starting from ¢, GT, = GT.(S,luck), to be the following directed tree: Each node in GT, denotes
a prefix of an execution of G. The root is the empty execution, and a node u in GT. has a son v
if v = w0 (a;), where immediately following the execution defined by u the scheduler S activates a
processor which executes the atomic step a;. In case that the processor activated by the scheduler at
u tosses a coin and luck does not intervene, u has two sons — one for each possible outcome of the
coin toss; otherwise u has one son. If u contains a good block then G is terminated and u is a leaf.
Each node u is associated with the probability, pgr, (u), to reach u in GT,: pgr,(u) = 2%, where b is
the number of nodes that have two sons in the path from the root to u in GTs.

In a similar fashion define the blocks tree BT, = BT,(S, luck) to be a directed tree whose nodes are
executions of PR starting from c. BT, contains all the nodes and links of GT,. In addition, for any
node v in GT, which corresponds to an execution in which luck intervenes, BT, has one additional son
which is a leaf. This additional son represents the execution in which the coin toss result differs from
the result fixed by luck. As before, we associate with each node u in BT, a probability ppr.(u) = 27°,
where b is the number of nodes that have two sons in the path from the root to u. Note that each
leaf in BT, represents a finite execution of PR under the scheduler S starting from ¢, consisting of
a single (good or bad) block, and for each such leaf u, the probability ppr. (u) is the probability of



the corresponding execution. In order to analyze the performance of our protocols, we say that an
execution F takes r rounds if r rounds are initiated in E. It is not hard to see that the function

L.(GT,,u), that counts the number of rounds in (the execution) u is a length function.
LEMMA 2: L,(GT.) is equal to the expected number of rounds in G that starts in configuration c.

Proof: Recall that there is 1-1 correspondence between the leaves of GT, and the executions of
G starting at ¢ which are good blocks. Moreover, for each such leaf u, L,(T,u) is the number of
rounds in u and pgr, (u) is the probability of u. First we show that P(GT,) = 1: This follows by
the assumption that the expected number of rounds until a configuration in F is reached in G is r,
hence the probability that G contains infinitely many rounds is zero®. Thus, with probability one, a
configuration in F is reached within a finite number of rounds. Therefore, P(GT.) = 1. This implies
that L.(GT.) is the expected length of a leaf in GT,. By the said above, L,(GT,) is also the expected
number of rounds in G. In particular, L,(GT,) < r. O

We now use the game tree and the block tree of game G to prove two lemmas which hold for execu-
tions of G scheduled by an arbitrary fair scheduler S, starting from an arbitrary initial configuration
cel.

LEMMA 3: Let E be an execution of PR. With probability at least 27/, the first block of E is good.

Proof:  Let U be the set of leaves of BT, which correspond to good blocks. We have to show that
Y wev PBT.(u) > 271, Since U consists of all the leaves in GT, the proof of Lemma 2 implies that
> wev PeT.(u) = P(GT.) = 1. Let u be an arbitrary node (leaf) in U. The path from the root to u
in BT, is identical to the path from the root to u in GT,, and each node v in these paths, which has
two sons in BT, but only one son in GT, corresponds to an intervention of luck in G. Since luck has
an (f,r)-strategy for G there are at most f such nodes on this path. In other words: if there are b
nodes with two sons on the path from the root to u in GT,, then there are at most b + f such nodes
on the path from the root to u in BT,. Thus for each u € U, it holds that ppr. (v) > 2 fper. (u).
The lemma follows. U

LEMMA 4: The expected number of rounds in the first (good or bad) block in an execution starting
at any configuration ¢ is at most 7.

Proof:  The expected number of rounds in the first block in an exceution starting from c is given by
L.(BT.). Thus we have to show that L,(BT,) < r. By Lemma 2, the existence of an (f, r)-strategy
implies that L.(GT.) < r. Thus, it is sufficient to prove that L.(BT.) < L,(GT.). BT, is derived
from GT. by adding a leaf to any configuration in GT, in which luck intervenes. By Lemma 1 any
addition of such a leaf may only decrease the expected number of rounds. The additional nodes may
be ordered by lexicographic order l,ls,---. Let Ty, T1,T3, -+, be a (possible infinite) sequence of
trees in which Ty = GT, and T;4; is obtained by addition of I; to 7;. By the above proposition it
holds that L,(T}) > L,(Ti4+1). The lemma follows by observing that the (possibly infinite) sequence
(L.(To), L.(T1),- - -) is a nonincreasing sequence which converges to L,(BT.). !

THEOREM 5: If luck has an (f,r)-strategy then PR reaches a configuration in F within at most r2f
expected number of rounds.

Proof: The existence of an (f,r)-strategy implies that for every initial configuration ¢ € Z, and
for every fair scheduler S, an execution that starts with ¢ contains a good block with probability 1.
We use Lemma 3 to further show that the expected index of the first good block in an execution is

5If this probability was p > 0 then the expected number of rounds until a configuration in F is reached would be
infinite.



at most 27. The above expected index may only increase if we assume that the probability that the
first block in an execution to be a good block is ezactly 2~F. In this case, the probability that all the
first 7 blocks in an execution are bad is (1 — 27f)?. Thus, the expected index of the first good block
is at most ) oo, i+ (1 —27F)i7l.2=f = 2f,

By Lemma 4 and the fact that expectation of a sum is a sum of expectations, the expected number
of rounds in an execution until the end of the first good block is at most 2 -r. The proof is completed
since when reaching the end of the first good block, the system configuration belongs to . O

4 MINIMUM SPACE PROTOCOL

In this section we present a simple protocol for leader election, in which each processor uses a shared
one bit register. This protocol is correct in the presence of coarse atomicity that assumes that a
coin toss is an internal operation which is not seperable from the next read or write operation.
The protocol appears in Figure 1. Each processor communicates with all other processors using a
single writer multi reader binary register called the leader register, where leader; denotes the leader
register of processor P;. Starting the system with any possible combination of binary values of the
leader registers, the protocol eventually fixes all the leader registers but one to hold 0. The single
processor whose leader value is 1 is the elected leader. The protocol is straight forward: Each processor
repeatedly reads all leader registers; whenever it sees that no single leader exists it tosses a coin and
assigns its value to its register. »

1 do forever

2 for j:=1to n—1 do leader;[j] := read(leader;);

3 if (leader; = 0 and {V j | leader;[j] = 0}) or
(leader; = 1 and {3 j | leader;[j] = 1}) then

5 write leader; := random({0, 1});

6 end

FIGURE 1. A minimum space protocol

We define the task LE to be the set of executions in which there exists a single fixed leader
throughout the execution. We define a configuration to be good if it satisfies:

1. For exactly one processor, say P;, leader; = 1 and Vj # i leader;[j] = 0.

2. For every other processor, P; # P;, leader; = 0, leader;[i] = 1.

In each good configuration there is a single processor that considers itself a leader. Moreover, it is

easy to see that any good configuration is safe. The stabilization time of the protocol is exponential
as shown in the next two lemmas:

LEMMA 6: The protocol stabilizes within at most 2°(*) expected number of rounds.

Proof:  We use Theorem 5 to show that the expected number of rounds before the protocol stabilizes
is bounded from above by 2n2™. To do this we present an (n, 2n)-strategy for luck to win the sl-game
defined by the protocol, the set of all possible configurations and the set of all good configurations,
respectively. The strategy of luck is as follows: Whenever some processor P; tosses a coin, luck
intervenes; if for all j # 7, leader; = 0 then luck fixes the coin toss to be 1, otherwise it fixes the coin
toss to be 0. Since we assume coarse atomicity the protocol implies that at the end of this atomic step



leader; holds the result of the coin toss. The correctness of this strategy follows from the following
observations:

e Within less than 2n successive rounds, every processor P; reads all the leader registers, and then
if needed it tosses a coin and writes the outcome in leader;.

o If within the first 2n rounds no processor tosses a coin, then the system reaches a good config-
uration.

e Under luck’s strategy it holds that after the first coin toss, there exists at least one leader
register whose value is 1. Moreover, once leader; = 1 for some j, there exists a k s.t. leader; =1
throughout the rest of the execution. To see this, let S be the set of processors whose leader
register holds 1 after the first coin toss. If there exists a processor P, € S which never tosses
a coin again, then leader; = 1 forever. Otherwise, every processor in S tosses a coin; in this
case we take Pj to be the last processor in S that tosses a coin. The strategy of luck guarantees
that during Py’s coin toss all the remaining leader values are 0, and hence luck sets the result
of P;’s coin toss to 1. From now on leader; = 1 and for j # k, leader; = 0.

e Every processor P; may toss a coin at most once: If the outcome of P;’s first coin toss is set by
luck to 0, then in all successive readings P; finds out that leader; = 1 (k the same as above),
and hence it will not toss a coin again. If the outcome of F;’s first coin toss was set to 1 then
by the time its coin toss was set to 1, the leader values of all other processors are 0. After this
atomic step P; finds out that it is the only processor whose leader value is 1, and hence it will
not toss a coin in this case as well (and, in fact, P; must be Py).

e Within the first 2n rounds, the leader value of every processor, except P, is 0.

Thus, we conclude that after at most 2n rounds and within at most n interventions at most one for
each processor) luck wins the game. The lemma follows. O

We have presented a simple proof, using the sl-game method, that the protocol stabilizes within
at most 2n2™ rounds. One may ask whether a more complicated proof-technique could yield a better
bound on the stabilizing time. This question is answered negatively by the next lemma:

LEMMA 7: The expected satbilization time of the minimum space protocol is 2%(*).

Proof: We present a fair scheduler, under which the protocol requires 2°4(™) expected number
of rounds to reach a safe configuration. A processor, P;, is said to be loaded if leader; = 0 and if
Vj # 1 leader;[j] = 0 as well, and if P; is about to toss a coin in its next step. Define ¢; to be the
configuration in which all processors are loaded. By the definition of LFE ¢, is not safe. The scheduler’s
strategy is to try to repeatedly get the system to ¢;. Whenever the system is in ¢; the processors are
activated cyclically. Assume that the system is in ¢; and that P; is the next processor to be activated.
When P; is activated it tosses a coin and assigns its result to leader;. The scheduler proceeds as
follows:

1. If P; assigns 0 to its leader register, the scheduler activates P; successively n-1 times during
which P; reads the leader registers of all its neighbors and becomes loaded once more. Once P;
is loaded the system is in ¢; once more and Pjodn)+1 is the next processor to be activated.

2. If P; assigns 1 to its leader register, the scheduler activates the remaining loaded processors,
by letting each of them toss a coin in cyclic order starting from Pjo47)+1, until an additional
processor tosses 1 and assigns it to its leader register. If this does not happen the execution is
completed; otherwise, the scheduler proceeds with stage 3:



3. Let P; and P; be the two processors whose leader values are 1. The scheduler activates both
processors n — 1 times during which they read all leader registers. Then the scheduler lets both
processors toss a coin (since each sees two processors with leader value 1). The coin tosses results
determine the behavior of the scheduler as follows:

(a) Both processors assign 1 to their leader register — in this case the scheduler repeats stage
3 until at least one of the processors assigns 0 to its leader register.

(b) Both processors assign 0 to their leader register — The scheduler activates every non-
loaded processor n — 1 times, in which it reads all registers and finds that all the leader
values are 0, and thus becomes loaded again. Once this is done the system reaches c; once
more.

(c) Only one of the leader registers is assigned by 1 — In this case the scheduler activates the
remaining loaded processors (if any), starting from Pj1, until (hopefully) another processor
assigns 1 to its leader register. In this case there are again exactly two processors with 1
in their leader registers, and stage 3 is repeated.

It is easy to see that the scheduler is fair — The only possible unfair runs are scheduled when in
step 3(a) the two processors toss 1’s forever. We now show that under this scheduler the expected
number of rounds until a safe configuration is reached is 2%(*). Clearly ¢; is not a safe configuration,
we now show that once the system is started in ¢;, the system reaches ¢; again an expected exponential
number of times.

Assume that the system is in ¢; and that the next processor to be activated according to the cyclic
order is P;. Let g; be the probability that the execution does not reach c¢; while activating processors
Py, -, P;_y, but it reaches ¢; upon activating P;. With probability 1/2 P; tosses 0 thus ¢; = 1/2. We
now compute go: With probability 1/2 P; tosses 1, in this case P, may cause the system to reach ¢; as
follows: with probability 1/2, the coin toss result of P; is 1. Next, both P; and P, discover that their
leader values are 1, and each of them tosses a coin. If both processors get 1 then they continue to toss
coins until at least one of them gets 0, thus with probability one at least one processor (eventually)
gets 0. Since the conditional probability of getting two 0’s in two coin tosses, given that at least one
of the coin tosses is 0 is 1/3 we get that g =1/2-1/3 =1/6.

We now compute ¢; for ¢ > 2: The assumption that the system is started from ¢; and that ¢ is
not reached before P; is activated, implies that P; tosses 1 and for every j, 1 < j < 4, there exists a
unique k = k(j), 1 < k(j) < j, such that when P; tosses, leadery(j) = 1 and the rest of the leader
values are 0. We claim that for ¢ > 2, ¢; = 1/2(5/6)*72(1/6): With probability 1/2 P, tosses 1 and
for j = 2,---,1— 1, with probability (1 —1/6) = 5/6 the activation of Py(;) and P; in (3), does not
yield ¢;. Finally, with probability 1/6 the activation of Py(;) and P; yields ¢;. Therefore if the system
is started from ¢; then the probability to reach it once more is equal to:

Xn:qi =1/2+41/2x1/6+1/2x(5/6)' x 1/6 +

i=1
1/2 x (5/6)> x 1/6+---+1/2 x (5/6)" "2 x 1/6 =
n—2 )
1/2+1/12) (5/6)" = 1/2(2 — (5/6)"7")
=0
and the expected number of times ¢; is reached before the system is stabilized is:

> [1/2(2 - (5/6)" 1)1 — 1/2(2 — (5/6)"71)}i = 2(6/5)"* — 1 = 2%
i=0
The lemma follows by observing that during a period in which ¢; is reached n successive times,

each processor is activated at least once, hence at least one round is completed. Thus, the expected
number of rounds until the system is stabilized is 1/n x 2¢(") = 2%(n) O



We conclude this section by proving, in the next lemma, that the protocol does not stabilize under
fine atomicity in which a coin-toss is a separate atomic step.

LEMMA 8: The minimum space protocol is not self-stabilizing under fine atomicity.

Proof:  The following strategy of the scheduler ensures that the protocol never stabilizes under fine
atomicity: Start the system in a configuration in which all leader registers hold 1. Let one processor
notice that it has to toss a coin. If the coin toss result is 1 let this processor toss a coin again until
the coin toss result is 0. Now stop the processor before it writes 0 in its leader register, and activate
another processor in the same way. Once all processors are about to write 0 let them all write. Now
all the leader registers hold 0, and the scheduler can force all processors to write 1 in their registers in
a similar way, and so on and so forth. Thus, this strategy ensures that the system never stabilizes.

5 A PorynomiaL TIME ProTOCOL
5.1 The Protocol

In this section we modify the constant space protocol and obtain a leader-election protocol that
reaches a safe configuration within O(nlogn) expected number of rounds and which is correct under
fine atomicity. The speed-up in the convergence rate is obtained by augmenting the constant space
protocol with a synchronization mechanism. This mechanism guarantees that eventually, between
every two successive coin tosses of P;, all the other processors read leader;. The modified protocol
appears in Figure 2. The synchronization mechanism consists of two synchronization subroutines
called synch and ack and a bollean function called ack_all. Whenever a processor completes a coin
toss it notifies all other processors by calling synch. Subroutine ack is called in every pass through the
main loop, in this subroutine the processor read the leader values and acknowledges new coin tosses
of other processors. Reading leader; is executed inside ack(j) to ensure that the acknowledged leader
value is the value of the most recent coin toss of P;. The predicate ack_all holds when the most recent
call to synch was acknowledged by all other processors.

1 do forever

2 write leader; := coin;

3  if (leader; = 0 and {V j | leaderj.local = 0}) or
(leader; =1 and {3 j | leader;.local = 1}) then

4 if ack _all then
5 coin; := random({0, 1})
6 write leader; := coin;
7 for j :=1 to n do synch(j)
endif
endif
8 for j:=1to n do ack(j)
end

FIGURE 2. The modified Protocol (for P;)

We prove the correctness of the algorithm in two stages: First we show that the synchronization
subroutines are self-stabilizing. Then, we use the sl-game method to show that the algorithm stabilizes
in O(nlogn) rounds.
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5.2 The Synchronization Mechanism

The synchronization mechanism ensures that in every execution eventually every processor receives
acknowledgments from all other processors between every two successive coin tosses. This mechanism
uses a data structure called arrow which is shared by two processors. Each pair of processors P; and
Pj share two arrows: the arrow of P;, denoted by arrow(i : j), and the arrow of P;, denoted by
arrow(j : i). arrow(i : j) is implemented by two ternary fields called arrow(i : §); and arrow(s : j);.
arrow(i : j) is directed from P; towards P; when arrow(i : j); # arrow(i : j);, otherwise arrow(i : )
is directed from P; to P;. Fields arrow(i : j); and arrow(j : i); are stored in a (1,1) atomic register
called r;;, which is written by P; and read by P;. Analogously register 7;; is written by P; and read by
P; and stores the fields arrow(i : j); and arrow(s : 4);. The local copy of arrow(i : §); (arrow(i : j);),
held by P; (F;), is denoted by arrow(i : j);.local (arrow(i : j);.local).

After it is stabilized the synchronization mechanism works as follows: Processor P; that tosses a coin
assigns its value to its leader register and then directs its arrows towards all other processors. Processor
Pj reads leader; as a part of the synchronization mechanism; immediately after reading leader;, P;
redirects arrow(i : j) back to P; to signal that the new value of leader; was read. To make sure that
the result of the coin toss was read by all other processors, P; waits until all its arrows are directed
back, before it considers whether to toss its coin again. To avoid deadlock every processor continually
reads other processors’ arrows (and leader variables) and redirects them whenever needed while it
waits for its own arrows to be redirected. The synchronization subroutines appear in Figure 3. The
function ack_all reads the arrow registers and computes the predicate ack_all. Under these definitions
ack_all holds for P; if for all 1 < j < n, j # i arrow(i : j); = arrow(i : j);.local. Procedure synch(j)
uses the register values read by ack all while ack(j) rereads the arrow register of P; once more.

Boolean function ack_all
ack_all := true
for j:=1ton
do
(arrow(i: j);.local, arrow(s : i);.local) := read (r;;)
if arrow(i : j); # arrow(i: j);.local then ack_all := false
endo

Procedure synch(j) (* arrow(i : j) := (4,7) *)
if arrow(i: j); = arrow(i : j);.local then
write arrow(i : j); := (arrow(z : j); + 1) mod 3

Procedure ack(j) (* arrow(y : 1) := (3,5) *)
(arrow(i : j);.local, arrow(j : i);.local) := read (r;;)
leaderj.local := read leader;

write arrow(j : 7); := arrow(j : i);.local

FIGURE 3. The Synchronization Mechanism (for P;)

Now we show that the synchronization mechanism, implemented by the arrows is self-stabilizing.
Configuration c is said to be safe for arrow(i : 5) if in any execution that starts from c it holds that:

1. The value of arrow(i : j); is changed every time P; executes synch(j).

2. Between every two successive changes in arrow(i : j); (arrow(i : 5);) there is a change in the
value of arrow(i : 7); (arrow(i : j);, respectively).
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In particular, it means that in every execution starting from c, P; reads r;; and leader; between every
two successive coin tosses of P;.

LEMMA 9: For every two processors P; and P;, P; executes ack(i) every 6n rounds. Furthermore,
within every 12n rounds, every processor completes an entire pass of the main loop.

Proof:  Execution of all atomic steps in the main loop requires 5n — 2 atomic steps: Execution of
line 2 takes one atomic step. Line 4 requires n — 1 atomic steps. Line 5 and line 6 require one atomic
step each, while execution of line 7 and line 8 take n — 1 and 3n — 3 atomic steps, respectively. Since
ack(i) is executed unconditionally in the main loop and since its execution takes 3 atomic steps, it is
executed every 5n + 1 < 6n rounds. This implies the first claim. The second follows since in any 12n
successive rounds, the first time that line 2 is executed occurs within the first 6n rounds, and within
the following 6n rounds the complete loop is executed. O

LEMMA 10:

1. Consider the following equation:
arrow(i : j);.local = arrow(i: j); = arrow(s : j);.local = arrow(i : 5); (1)

If Equation 1 holds in configuration ¢ for some 7 and j then c is safe for arrow(i : j).

2. Every execution whose length exceeds 307 rounds contains a configuration in which Equation 1

holds.
Proof:

1. Consider any execution that starts from c. If P; never executes synch(j) then the value of
arrow(i : j); is never changed; in this case the values of arrow(i : j);.local, arrow(i : j);
and arrow(i : j);.local are not changed either and c is safe for arrow(i : j) in a trivial way.
Otherwise, it is not hard to see that the only possible sequence of changes in the values of these
variables proceeds as follows:

(a) P; writes to r;; and changes the value of arrow(: : j); .

b) P; reads from r;; and assigns arrow(i : j);.local := arrow(i : j); .
J J

(c) P; writes to r;; and assigns arrow(s : j); := arrow(i : j);.local .

)

(d) P; reads from 7;; and assigns arrow(i : j);.local := arrow(i : j); .

Obviously this sequence satisfies the safe configuration requirements for arrow(i : j). During the
period between the first and last actions in this sequence it holds that
arrow(t : 7); # arrow(i : j);.local . Therefore during this period ack_all does not hold for
P;, and P; cannot toss a coin, or execute synch once more. When execution of the entire se-
quence is completed Equation 1 holds once more, and the same argument can be applied again.
Thus, starting from c, any sequence of changes in the values of the variable appearing in Equa-
tion 1 consists of a repeated execution the described sequence. Since this sequence satisfies the
condition for the stabilization of arrow(i : j) the proof follows.

2. Let E be an execution of the protocol that consists of 30n rounds. We now show that F contains
a configuration in which Equation 1 holds. Let E; be the first 24n rounds of E. Below we show
that F; contains a configuration c that satisfies:

arrow(i : j); = arrow(i : j);.local = arrow(s : j); (2)
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If in c it also holds that arrow(i : j); = arrow(i : j);.local, then we are done. If however in ¢
it holds that arrow(i : j); # arrow(i : j);.local, then there is a unique possible change in all of
the variables appearing in Equation 1, namely that P; reads arrow(i : j); and assigns its value
to arrow(i : j)j.local. This change occurs the first time past ¢ in which P; executes ack(j). By
Lemma 9 this change happens within the next 6n rounds, at this point Equation 1 holds and
the proof follows immediately from part 1.

We now complete the proof by showing that E; contains a configuration in which Equation 2
holds: Assume first that E; contains 6n successive rounds in which P; does not change the value
of arrow(s : 7); . In this case Lemma 9 implies that during these 6n rounds P; executes ack(?)
entirely at least once. By our assumption the value of arrow(i : j); is not changed during these
6n rounds and in particular during the execution of ack(z). During the execution of ack(i) P;
reads arrow(? : j); and assigns the value it reads to arrow(i : j).local and to arrow(i : j7);.
Immediately after P; terminates execution of ack(z), Equation 2 holds.

Assume next that within every 6n successive rounds of E; P; changes the value of
arrow(i : 7); at least once. Under this assumption P; changes arrow(: : 7); at least 4 times
during E;. We now show that before the fourth change in arrow(i : j); the system reaches
a configuration in which Equation 2 holds. Without loss of generality assume that in the first
change, P; sets arrow(i : j); to 0. P; changes the value of arrow(: : j); only during the execution
of synch(j). In this subroutine P; checksce whether arrow(i : j); = arrow(i : j);.local; if the
answer is positive then P; increases the value of arrow(i : j); by 1  (mod 3). Thus, between
every two successive changes of the value of arrow(i : j);, P; executes ack(j), reads r;; and
assigns arrow(: : j);.local := arrow(i : j);; then P; finds that ack_all holds and in particular
arrow(i : j)j.local = arrow(i : j);. Thus, during the first four changes of arrow(i : j);, P;
performs the following operations, in the specified order:

(a) Writes arrow(s: j); := 0.
(b) Reads and finds arrow(i: j); = 0.
(c) Writes arrow(i: j); :=1.
(d) Reads and finds arrow(z: : 5); = 1.
(e) Writes arrow(i : j); := 2.
(f) Reads and finds arrow(i : j); = 2.

From the values read in operations (b) and (d) we conclude that P; writes arrow(i : j); :=1
after (b) and before (d). Similarly, from the values read in operations (d) and (f) we conclude
that P; writes arrow(i : 7); := 2 after (d) and before (f). Thus, P; reads arrow(s : j); = 2 after
(b) and before (f). However, the only time between (b) and (f) in which arrow(i : j); = 2 is
between (e) and (f). We conclude that P; reads arrow(i : j); = 2 and writes arrow(i : j); := 2
after (e) and before (f). Immediately after P; writes arrow(z : j); := 2, Equation 2 holds. The
proof follows.

O

5.3 Correctness and Complezity

The set of legal executions of this protocol is defined precisely as in the minimum space protocol, that
is the set of executions in which there is exactly one processor with leader = 1 and this processor is
fixed throughout the execution.

We say that configuration c is decreasing if it satisfies properties P1-P3 defined as follows:

P1 There is at least one processor, say P;, with leader; = coin, = 1.
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P2 Vj,k (j # k), if leader; = 1 then the variable leader;.local of P equals 1 too.
P3 Vj, if leader; = 0 then coin; = 0.

Informally, in a decreasing configuration there is at least one processor whose leader value is 1,
and for each processor P whose leader value is 1, all other processors know that P’s leader value is
1. A decreasing configuration with exactly one j such that leader; = 1 is called critical. Let ¢ be
a decreasing configuration. Observe that in ¢ P; may toss a coin only if leader; = 1. Thus, once
a decreasing configuration is reached, the number of processors that hold 1 in their leader variables
may only decrease, until the system reaches a critical configuration (if at all). We now prove that
every execution reaches a safe configuration within expected O(nlogn) rounds. The proof follows the
following stages: First we prove that within O(n) expected number of rounds the system reaches a
decreasing configuration. Then we prove that within expected number of O(nlogn) rounds the system
reaches a safe configuration. We begin the proof by showing that if the system does not stabilize then
some processor tosses a coin:

LEMMA 11: Let E be an execution whose length is 19n rounds. If the system does not reach a safe
configuration during E then at least one processor tosses a coin during FE.

Proof:  Assume towards a contradiction that no processor tosses a coin during E and the system
does not reach a safe configuration. By this assumption line 5 is not executed during E. Execution
of line 5 is conditioned by the logical condition of the if statement in line 3, thus, each time this
condition is checked during F, it is not satisfied and lines 4 to 7 are not executed. The leader value
may be changed only in line 6. Since line 5 is not executed during E, a processor can change its
leader value only during the first round of F (if its first atomic step in F is in line 6). Thus, after the
first round of E no leader value is changed. Furthermore, after the first n rounds of E no processor
executes synch(j) any more. Let E; be the subexecution of 18n rounds of E in which the leader
values are constant and no processor executes synch(j). By Lemma 9 for every ¢ and j, i # j, P;
executes ack(j) during the first 6n rounds of E;. Let ¢; be the configuration reached after for all
t # Jj, P; acknowledged P;. By Lemma 9 every processor completes an execution of the main loop
within the next 12n rounds of E;. Hence every processor P executes line 3 after c;. Since the system
does not reach a safe configuration, it holds that during F; either there is more than one processor
with leader = 1 or the leader value of every processor is 0. In either case, some processor P; passes
the condition of line 3, and executes also line 4. Since all processors completed acknowledging each
other and since no processor calls synch during E;, P; also passes the condition in line 4. In its next

step P; tosses a coin, a contradiction. !

We now prove that the system always reaches a decreasing configuration within expected number of
O(n) rounds.

LEMMA 12: In every execution, the system reaches a decreasing configuration within O(n) expected
number of rounds.

Proof: Let G be the sl-game defined by the protocol, by the initial set Z of all possible configurations
and by the final set D of all decreasing configurations. The lemma is proved by the following (3, 61n)-
strategy for luck to win G: Wait until the system reaches configuration which is safe for all the arrows.
Then, wait until the first time (if at all) some processor, P, tosses a coin. Set the first three coin
tosses of P to 1. (If P tosses a coin less then 3 times, then luck intervenes less then three times).
Let E be an execution of G in which luck uses its strategy. We now prove that if E does not contain
a safe configuration then F reaches a decreasing configuration within at most 61n rounds. By Lemma
10 the system reaches a configuration ¢y which is safe for all the arrows within 30n rounds. If a safe
configuration is not reached within the next 19n rounds then, by Lemma 11, some processor tosses
a coin. Without loss of generality let this processor be P,. By its strategy luck sets the first three
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coin tosses of P; to 1. Due to the synchronization mechanism the system reaches a configuration ¢; in
which all other processors have executed ack(1) before P; tosses a coin for the second time. Note that
no processor whose leader value is 0 tosses a coin after executing ack(1l) and finding that leader; = 1,
thus both properties (P1) and (P3) hold in ¢;. These properties continue to hold as long as the leader
value of P, remains 1. Thus if the system reaches a configuration in which (P2) holds before the
leader value of P; is set to 0 then the system reaches a decreasing configuration.

Let E; be the maximal sub-execution that starts with ¢; during which leader; = 1. Since the
variable leader; .local of every processor equals 1, no processor with leader = 0 assigns 1 in its leader
during E;. Hence, if for all 7, j, P; reads leader; during E;, then the system reaches a configuration
in which (P2) holds. By Lemma 9 every processor P; executes ack(j) for all j # ¢ during any 6n
successive rounds. Hence if F; lasts at least 6n rounds then every processor P; executes ack(j) for all
j # 1 and (P2) holds.

Next we assume that E; lasts less then 6n rounds, and show that also in this case every p...essor
P; executes ack; for all i # j. luck’s strategy ensures that if E; lasts less than 6n rounds, then the
second and third coin tosses of P; occur during E;. Therefore, P; executes ack(1l) twice during Ey
(once before each coin toss of P;). Between the first and second execution of ack(1), P; must execute
ack(j) for all other j’s.

In both cases, within at most 6n rounds following configuration c;, a configuration satisfying prop-
erty (P2) is reached.

We conclude that the game G is finished with a decreasing configuration within at most 61n rounds:
at most 30n rounds until the arrows are stabilized, 19n rounds until the first coin toss past cp,
6n rounds until configuration ¢; is reached, and another 6n rounds required to reach a decreasing
configuration. O

We conclude this section by showing that the system stabilizes within O(nlogn) expected number
of rounds.

THEOREM 13: In every execution of the protocol, the system reaches a safe configuration within at
most O(nlogn) expected number of rounds.

Proof: By Lemma 12 the system reaches a decreasing configuration within O(n) expected number of
rounds. Let H be the sl-game, defined by the protocol, the initial set D of all decreasing configurations
and the final set F of all safe configurations. The theorem is proved by the following (1, knlogn) —
strategy (for some constant k) for luck to win H: Wait until a critical configuration is reached. If the
unique processor whose leader variable holds 1 tosses a coin, set the result of the coin toss to be 1.

We now prove that this is indeed a (1, knlogn) strategy. This is done by showing that if execution
E starts with a decreasing configuration then it reaches a critical configuration within O(nlogn)
expected number of rounds with no interventions of luck. Configuration c is a zero configuration if
in ¢ leader; = 0 for all ¢. Every execution that starts with a decreasing execution and reaches a
zero configuration after k coin tosses, has a subexecution that reaches a critical configuration after at
most k — 1 coin tosses. Hence the expected number of rounds until a critical configuration is reached
is bounded from above by the expected number of rounds required from the system to reach a zero
configuration which is analyzed as follows:

Let E be an execution that starts with a decreasing configuration whose last configuration is its
first zero configuration. By Lemma 9 P; executes lines 5 and 6 at least once every 6n rounds as long
as the condition of line 3 holds. Since all configurations of E except the last one are decreasing the
following holds for every ¢ during E: if leader; = 1 then P; tosses a coin at least once during every
6n rounds, and if leader; = 0 then P; does not toss a coin at all during a zero execution.

Thus, the system reaches a zero configuration once every P;, for which initially leader; = 1, tosses
a coin and gets 0 for the first time. For each such P;, the probability that leader; = 1 following £ - 6n
rounds (during which P; tosses the coin at least £ times) is at most (1/2). Hence, the probability to
reach a critical configuration following £ - 6n rounds is greater than (1 — (1/2)%)®, and the probability
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that the system reaches a critical configuration within 6n - 2logn rounds for n > 2 is greater than:
(1= (1/2)295™)" = (1 = (1/(n2))" > (1 — 1/n) > 1/2.
Therefore, the expected number of rounds until a critical configuration is reached is smaller than:
£Z,i-6n-2logn(1/2)! =2 - 10nlogn.

Now we show that if the system reaches a critical configuration then at most one intervention of
luck (according to its strategy) suffices to bring the system to a safe configuration. Let P; be the
unique processor with leader; = 1 in a given critical configuration c,. Since c, is decreasing, in any
execution E that starts in c,, the first processor to toss a coin (if any) is P;. Thus, If P; never
tosses a coin in E' then, by Lemma 11, the system reaches a safe configurations within additional 19n
rounds. Otherwise, P; tosses a coin, and then luck sets the result to 1. Let ¢, be the configuration
that immediately follows this coin toss. We show that c, is safe, by showing that in any execution
that starts from ¢, no processor tosses a coin, and hence in any such execution, it always holds that
leader; = 1 and for j # 4, leader; = 0.

In any execution that starts from c,, the first processor to toss a coin cannot be P;, since after its
last coin toss it reads all the leader values, and if none was changed it finds out that it is the unique
processor whose leader value is 1, and hence it does not toss a coin. However, as long as P, does not
change leader; to 0, the system remains in a decreasing configuration, and hence no processor P; for
which leader; = 0 will ever toss a coin. We conclude that no processor will ever toss a coin in an
execution that starts in c,, as claimed. Ol
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