(o

Centrum voor Wiskunde en Informatica

REPORTRAPPORT

Procedural dynamic semantics, verb-phrase ellipsis,
and presupposition

D.J.N. van Eijck, N. Francez

Computer Science/Department of Software Technology

Report CS-R9311 February 1993



CWI is the National Research Institute for Mathematics and Computer Science. CWI is part
of the Stichting Mathematisch Centrum (SMC), the Dutch foundation for promotion of
mathematics and computer science and their applications. SMC is sponsored by the
Netherlands Organization for Scientific Research (NWO). CWI is a member of ERCIM, the
European Research Consortium for Informatics and Mathematics.

Copyright © Stichting Mathematisch Centrum
P.O. Box 4079, 1009 AB Amsterdam (NL)
Kruislaan 413, 1098 SJ Amsterdam (NL)
Telephone +31 20 592 9333

Telefax +31 20 592 4199



Procedural Dynamic Semantics, Verb-Phrase Ellipsis, and
Presupposition

Jan van Eijck!? & Nissim Francez®

LCWI, P.O. Boz 4079, 1009 AB Amsterdam, The Netherlands
20TS, Trans 10, 3512 JK Utrecht, The Netherlands

3 Department of Computer Science, The Technion, Haifa, Israel

Abstract

In this paper, we study Verb-phrase Ellipsis (VPE) and show its relationship to presupposi-
tion and its failure. In doing so, we use a novel representation of VPE by means of a dynamic
semantics approach, using an extended version of Dynamic Predicate Logic which includes
procedures, scope rules and functions. We focus on the representation of the strict/sloppy
ambiguity in connection with ellipsis constructs, which comes “for free” in a procedural con-
text. We also provide independent justification for our representation of VPE in terms of
procedure definitions and their invocations. The relationship of VPE and presupposition
also sheds some new light on the arguments about the question whether VPE is syntactic or
semantic in nature, as well as on the relative order of meaning determination and presuppo-
sition determination.

1991 CR Categories: 1.2.7.

Keywords and Phrases: Dynamic semantics, Verb-phrase ellipsis, Strict/Sloppy ambiguity, Pre-
supposition, Procedures, Static and Dynamic binding.

1 Introduction

In this paper, the relationship between Verb-phrase Ellipsis (henceforth abbreviated to VPE)
and presupposition—and in particular presupposition failure—is studied. As far as we know, no
such relationship has been considered before in the literature. Note though, that the idea to look
at VPE as procedure invocation is not new (it can be found in [7]). We show that the famous
ambiguity in VPE, namely the distinction between strict reading vs. sloppy reading, is related
to presuppositions and their failure. We formalize our theory using an extension of Dynamic
Predicate Logic (DPL) [8], as well as its axiomatization via quantified dynamic logic (¢dl), both
as presented in [4, 5]. For that purpose, both formalisms have to be extended. The extension
we propose includes the following constructs:

Report CSR?311

ISSN 0169-118X

CcWI 1

P.O. Box 4079, 1009 AB Amsterdam, The Netherlands



e Procedures with simple parameters (without recursion)

e Scope rules for free variables in procedures (dynamic vs. static scoping)

The full formal development of these extensions appears in a companion paper [6]. Here, we rely
on the intuitive understanding of these concepts as they are used in programming languages.
The examples provide a level of detail sufficient for understanding the arguments made.

We would like to stress one methodological issue, not directly related to presuppositions and

their relation to VPE. Incorporating procedures into a dynamic semantics account of VPE has
a two-fold advantage:

1. It provides a succinct representation of VPE which naturally accounts for the famous
ambiguity of strict/sloppy readings of certain VPEs, and moreover, it does so in terms of
scope-rules that are well understood in programming languages semantics. The binding
mechanisms involved turn out to have an independent justification in a broader context,
rather than being an ad-hoc construction for VPE representation only.

2. It provides new grounds for a possible answer to a question often raised in the literature,
where it tends to generate a heated argument:

Is VPE resolution a syntactic process, depending on syntactic reconstruction of
unrealized syntactic material, or is it a semantic process, directly interpreting the
ellipsis based on some semantic representation of the realized syntactic material?

Two recent papers, taking opposite views on this issue, are [2] for the semantic view and
[10] for the syntactic view.

A question often asked by the proponents of the syntactic view, raised as an argument
against the semantic view, is the following:

How can a semantic representation be assigned to an unrealized syntactic con-
struct?

In the debate, this question is a rhetorical one, of course. On the syntactic view, this can
simply not be done. According to this syntactic view, it is mandatory first to reconstruct
the unrealized syntactic material by a process of ‘copy and paste’, and then to apply
ordinary semantic interpretation to the reconstructed material.

Well, procedures and their invocations (in programming languages) are an example par
excellence of a construct exhibiting exactly the puzzling characteristics being questioned.
A procedure is a one definition - multiple use construct. The procedure definition is
assigned some meaning by the semantics of the programming language. Then, every
single invocation is directly interpreted: it inherits the meaning of the procedure, possibly
adapted in accordance with parametrization and scope considerations. The view that
reconstruction always takes place before interpretation of a procedure, would correspond
to a macro expansion view of procedure invocation. This view prevailed in the early
days of programming languages, but has yielded long ago to the perspective of direct
interpretation with its many possibilities for richer semantic contents (e.g., recursion).

Thus, our development can be seen as a re-enforcement of the semantic view of VPE.
On the other hand, we concede to the defenders of the syntactic view that there is a key



difference between procedure invocation in programming and VPE in natural language.
While in programming it is always clear which procedure is being invoked, an elliptical
verb phrase in natural language refers to a ‘procedure’ that has to be reconstructed from
the previous context.

In Section 2 we explain the way in which VPE can be modelled by means of procedures (in
DPL) and their invocations, and the way in which the strict/sloppy ambiguity manifests itself
in the dynamic vs. static binding distinction. In Section 3 we consider the relationship between
VPE and presupposition, and the way this relationship is captured by our representation.

2 A Procedural Representation of VPE

One of the most basic observations regarding VPE is the ambiguity between strict readings and
sloppy readings, in the presence of an anaphoric pronoun. Consider example 1

1 John loves his wife and Bill does too.

Most of the examples of VPE consist of a conjunctive coordination, where the full conjunct
(usually the first one) is the source clause, while the ellided conjunct (usually the second one)
is the target clause. Under the strict reading, the interpretation of the target clause is that Bill
loves John’s wife, while under the sloppy reading the interpretation is that Bill loves his own
wife.

As already mentioned, a question which is often raised in the literature is, what is the source of
this ambiguity? This question is also related to the question whether VPE is a syntactic or a
semantic phenomenon. Below, we indicate how our representation improves on the solution to
these issues t00, as a side effect of correctly accounting for presuppositions in VPE.

In the first accounts of VPE, where VPE is viewed as mainly a syntactic phenomenon, the ambi-
guity was attributed to the source clause [14]. Thus, for the example above, two different logical
forms were assigned to John loves his wife, each yielding a different target clause interpretation
when completing the target clause accordingly:

Az : love (z, the-wife-of (§))(J)
Az : love (z, the-wife-of (z))(j)

Note that in the assumed LF language, we have represented the possessive by means of a term
with a function symbol. In our extended DPL language, to be used in the sequel, we will use
. assignments (commands to assign an individual that uniquely satisfies a given property to a
variable) for this purpose. Note that we represent NL verb phrases or common nouns R with
corresponding symbols R in the representation language.

In more recent approaches, where the semantic nature of VPE is stressed, the ambiguity is

not attributed to the source clause; rather, the interpretation process itself yields multiple in-
terpretations for the target clause. A notable example is the VPE resolution via higher-order

3



unification [3], by which two different solutions for an equation (derived from the source clause)
are obtained, each inducing a different interpretation of the target clause. In both cases, there is
an intimate relationship between the strict/sloppy dichotomy and the referring anaphora/bound
variable anaphora dichotomy.

In the approach advocated in this paper, the ambiguity is pushed even further. We generate a
unique representation of the target clause in the form of a procedure in (the extended) DPL,
this representation itself having multiple interpretations, according to the policy of binding free
(global) variables in procedure bodies. What is known (in the study of programming languages)
as static binding, whereby free variables are bound at the level of the definition of the procedure,
will yield the strict reading; on the other hand, dynamic binding, whereby free variables are
bound at the level of procedure invocation, yields the sloppy interpretation. Of course, we now
have to explain why in certain cases only one of these readings is available. Our account is in
line with the idea that the strict/sloppy identity should be analyzed in terms of the difference
between binding in a global or local environment; see the concluding remarks of [7].

In passing, we note that interpreting the procedure as even more global (to both the defining
environment and to the invoking environment) generates the deictic interpretation of example 1,
accounting for the (well-known) fact that the pronoun may refer deictically to the same referent
in both clauses.

We note here, that in the realm of programming languages, the procedure construct has two
major characteristics:

Abstraction: The procedure encapsulates the details of representation.

Single definition - multiple use: The procedure is defined once only, but activated (possibly
parametrized) as often as needed.

It is especially this second characteristic that suggests representing VPE by means of procedures
and their invocations. Ellipsis can be viewed as a way of referring more than once to a construct,
though in contrast to what is the case in programming languages, surface structure contains no
explicit definition of the construct. The definition of an appropriate procedure has to be derived
from the first use of the procedure, so to speak, during interpretation, and included in the
semantic representation.

By having the ambiguity (when present) associated with the (unique) representation of the
target clause, we achieve a modelling of the semantic representation in a way much closer to the
surface structure of the sentence, which we view as an advantage over previous accounts. This
improvement is in line with the whole of the modern approach to natural language semantics,
generically referred to here as dynamic semantics, by which semantic methods that proved
themselves in defining programming languages are successfully adapted to natural language. Our
approach extends the scope of programming language constructs which induce representations
for natural language constructs, by including procedures, scope rules and binding rules among
the former.

Suppose we want to construct a representation for example 1 above. Without entering here into
the details of a systematic translation from NL to DPL (see [1, 11] for that), we describe the
resulting representations only.



First, from the source clause the following procedure definition! is obtained by abstraction?:

p(z) : 1z wife-of (y, 2); love (z, 2)

The procedure has one formal parameter, z, representing the subject. The procedure has also
one global (i.e., free) variable y, the binding of which depends on the binding semantics chosen,
as explained below. This global variable represents the pronoun in the source sentence. Finally,
the procedure has also a local (i.e., bound) variable z, for which definiteness is represented
by means of the ¢ operator [4], a representation internalizing the functional connection, our
representation of possessives. This local variable is also the representation of the object of the
clause.

Next, we get the following representation for the source clause.

new y; y:= j; p(j) end

In this representation, a new scope unit (commonly called a block in programming languages) is
created, declaring a variable y local to that unit. Then the constant j (denoting John) is assigned
to y, signaling its exposure to anaphoric references, much as a discourse marker does in DRT
[9]. Finally, the procedure p(z) is invoked with an actual parameter j. The parameter-passing
semantics assumed here is the simplest one, directly binding the formal parameter (z in this
case) to the value of the actual parameter (j in this case). We do not bother with the full power
of parametrization present in programming languages. Next, a representation for the target
clause is constructed, very much like that source clause, with the sole change of the constants
involved.
new y; y:=b; p(b) end

Here the constant b is assumed to denote Bill. This similarity of representation between the two
clauses is also separately motivated by the need to form cascaded VPE (an example appears in
the next section).

We now turn to a recovery of the strict/sloppy ambiguity of this example. We distinguish
between two cases, inducing two different evaluations of procedure invocations in general, and
of p(b) (the example target clause representation) in particular. For the sake of the exposition,
let us denote by v, y1 and yo the external variable y (existing outside the representation of the
whole VPE), the y of the source clause and the y of the target clause, respectively.

Static binding: In this case, the global variable y of the procedure body is taken as yi, as
the binding takes place at the point of the definition of the procedure, and therefore y
is still referring to j, the value of y; obtained by the assignment in the representation
of the source clause. The second assignment, that of b to yo (within the target clause
representation) remains unsensed, so to speak, not having an effect on the outcome of the
procedure invocation. Thus we get the strict reading.

!Note that we switch here to a i-representation for functionality, for which an error-state semantics, needed
for calculating presuppositions, is provided in [4].

2The actual mechanism of abstraction involves the source clause, the target clause(s) and parallelism among
their components, very much like the higher-order unification mechanism used to solve equations derived from
the clauses in [3]. For the use of parallellism in explaining empirical facts about VPE see [12].



p(z): tz: wife-of (Z, z); love (z, 2)
A M

¢ )

p(i); p(b)

Figure 1: The external binding -deictic reading

new y;

p(z) : 1z: wife-of (y, 2); love (z, 2)
’ “\

y=74; p() ">~

~

~ new y;

-

y :=b; p(b)

Figure 2: The static binding - strict reading

Dynamic binding: Here, the global y of the procedure body is rebound to y2, as the binding
takes place at the point of invocation, referring now to b, the value of yo obtained via the
assignment to y immediately prior to the procedure invocation. We thus get the sloppy
reading.

We may summarize the discussion by the graphic representation of Figures 1 through 3.

In Figure 1 we see the external binding of the free variable y; independently of whether binding
is static or dynamic this yields a deictic reading, interpreting ‘his’ in the source and target clause
as the value of yo, the current denotation of y. Note that since no ”local” anaphoric references
for this pronoun are intended, no local scope unit is created (and no assignments to y occur
prior to procedure invocation; cf. next two figures).

In Figure 2 we have the static binding, where in both procedure invocations y is bound in the
same way. By a calculation (relying on the formal semantics not given here), the invocation p(b)
gets a meaning equivalent to that of

1z : wife-of (j, z); love (b, 2)

Finally, in Figure 3 the dynamic binding is assumed, binding the invocation p(b) to the innermost
y. Here the meaning of the invocation p(b) turns out to be equivalent to

1z : wife-of (b, z); love (b, z)

as expected.



new y;

p(z): wz: wife-of (y, 2); love (z, 2)
I’ RS

yi=7; p(d) . ,

new y

~
~

N
y :=b; p(b)

Figure 3: The dynamic binding - sloppy reading

Note that in the simpler cases where no free pronoun is used in a VPE, our representation
produces procedures without global (i.e., free) variables in their body. This co predicts the
unambiguity in the interpretation of such simple VPEs. Thus, consider

2 John loves Mary and Bill does too

The resulting abstracted procedure is
p(z): love (z, m)
The representation of the two clauses is, as before,

new y; y:=j; p(j) end

and
new y; y:=b; p(b) end

respectively. However, since the body of this procedure has no free occurrence of y, there is
no difference in meaning resulting via a difference in the binding semantics. These redundant
assignments can be optimized away (similar to simplification obtained in Montague semantics
by applying A-reductions).

Note that the wholle representation here is oversimplified in a certain way, for the sake of not
complicating the discussion by orthogonal issues. The problem is the locality of the object
variable (to the procedure body), rendering this object unaccessible to anaphoric reference out-
side the procedure. In reality, such anaphoric references are possible, very similarly to subject
accessibility. Thus, consider

3 John loves his wife. Bill does too. She is beatiful.

Clearly, ’she’ refers here anaphorically to the object of the second sentence in the sequence above.
It seems that in the preferred reading of the whole sequence, the use of ’she’ is disambiguating,
imposing a strict interpretation of the VPE. The less preferred interpretation is the sloppy
reading of the VPE, where ’she’ refers to the object of the second sentence. We believe that the
sloppy reading where ’she’ refers to John's wife is unavailable.

7



new y; v;
p(z, u): vz wife-of (y, 2); love (z, 2); u:= z;

y:=Jj; p(j; v)
new y, v
y:=b; p(b, v)
Figure 4: Object representation
new y;
p(z): vz wife-of (y, 2); love (z, 2)
y = Jj; p(j)
new y
=5 (mu: man(u); y = u; —p(u))

Figure 5: Quantified NP representation

To accomodate the accessibility of the object in the procedural interpretation, a certain extension
is needed. We augment the procedure with another formal parameter, of a result type, to which
the local object is assigned, and hence accessible outside the procedure. The full representation
has the form as in Figure 4.

The value of v is the object. Since the second assignment to v overides the first one, this explains
the ruling out of the anaphoric reference of ’she’ to John's wife in the sloppy case.

For simplicity, we remain for the rest of the paper with the original, simplified representation.

There are several situations, mentioned in the literature, in which one of the two interpretations
of VPE is blocked, resulting in an enforced disambiguation. In the next section, we identify
presupposition failure as one source of blocking VPE ambiguity (not considered hitherto in the
literature). Most of the reasons for blocking mentioned are either syntactic, or semantic and
related to licensing anaphoric reference, e.g., to quantified NPs, or to negation. We show how
our procedural representation handles those situations. For example:

4 Every man loves his wife and John does too

Here only the sloppy reading is available, due to the impossibility of an anaphoric reference to
the quantified N P. The representation of the source clause for the quantified case is as indicated
in Figure 5.

Dynamic negation is not present in conventional programming notation. Here, we adopt its
common destructive use in dynamic semantics: the value of u, and hence of y, does not exist
outside the scope of the negation. Hence, any attempt to impose a strict reading would result

8



in attempting to access the value of an uninitialized variable, thereby ruled out.

Another example is
5 John despises himself and Bill does too

Here too only a sloppy reading is available, due to the fact that the source clause has a reflexive
pronoun instead of an ordinary one. In the interpretation process, the recognition of a reflexive
pronoun results in a different procedure being the result of the abstraction. We get

p(z) : love (z, x)

This procedure also has no free occurrence of a variable in its body. Thus, in the target clause
representation
new y; y :=b; p(b) end

the assignment to y has no effect, and the meaning obtained is equivalent to
love (b, b)
the expected sloppy one.

A different kind of blocking is presented in [13, 12], where the discourse structure, and in
particular the parallelism induced by it, blocks one of the readings (or more, in case of the
greater ambiguity arising in discourse-related VPE).

6 John likes his hat. Fred likes it too, and ‘Susan does too

Here only the strict reading is available for the third clause, because of the chained ellipsis,
whereby the second clause (which has no sloppy reading) enforces the strictness on the third
clause (which would be ambiguous if following the first clause directly ). The details here are
similar the the previous example where overiding of assignments took place.

A genuine limitation of our representation is its inability to handle a certain kind of plural
pronouns. Consider

7 John loves his wife. Bill does too. They are faithful husbands

It would be impossible to generate a reference to ‘they’ since nowhere are both subjects coac-
cessible. A more significant extension is needed to cope with this problem, left for a different
opportunity.

As a final note about procedural interpretation, we would like to point out another advantage
it has, independently of VPE representation. Consider the sentence

8 *Mary avoids herself



This sentence is considered unacceptable because ‘avoid’ is assumed to require non-coreferring
arguments (at least for a simple context like the example). This would be reflected in our
representation as a restriction (derived from lexical information) on procedural abstractions
derived from ‘avoid’. They have to have the form

p(z) : avoid (z, y)

with the condition z # y, a condition that prohibits procedure invocations violating it. This
condition and the blocking imposed by it are commonly known as the no aliasing condition for
procedures in programming languages. It is often assumed to obtain simpler program verifica-
tion. Thus, we see again a connection to a familiar phenomenon, independently justified. By
the way, it is very tempting to regard this condition as a (lexical) presupposition of ‘avoid’ (and
its procedural representation), rather than part of its meaning.

3 VPE and Presupposition

In this section we present an informal account of the relationship between VPE and presupposi-
tion (and its failure) as we view it. We briefly recapitulate some of the main background issues
of presupposition theory, as needed for presenting our views. The basic fact about them can be
introduced with the following example.

9 John loves his wife

As is well-known, in order to assign a truth value to 9, the following presupposition needs to
hold:

10 John has a (unique) wife

In case 10 does not hold, 9 is said to be undefined, or to exhibit a truth-value gap. One way to
set a grounds for a theory of presuppositions is to abandon two-valued logics in favoyr of three-
valued logics, or partial-logics. A more recent approach [4] uses a dynamic semantics with error
states for that purpose. We view here the treatment of presupposition as a semantic problem,
in contrast to other views that consider it to belong to the pragmatics.

There are two basic issues studied in presupposition theories, as described below. Both of them
will turn to need modifications to correctly apply to VPE.

Projection: The projection problem is the problem of the determination of the presupposition
of a compound sentence, given the presuppositions of its components, as well as their
meanings. Thus, a successful solution to the projection problem supposed to be formu-
lated in terms of a compositional presupposition theory. Note that no information (either
linguistic or other) that does not arise from the components may be used in computing
the projected presupposition.

Cancellation: Here the main issue is to account for cancellation of presupposition depending on
contertual information. By context here we shall mean other sentences from the discourse
from which the analyzed sentence is drawn.

10



3.1 Presupposition Projection and VPE

When trying to calculate the presupposition of VPE sentences like 1, one immediately faces
a problem: in attempting to apply whatever rule is available for projecting conjunctions, the
second conjunct (the target clause) does not have an independent presupposition, similarly to
not having an independent meaning. Two conclusions follow.

1. The determination of presupposition can not be done solely by projection. At least for
VPE, a process of presupposition inducing (of that of the target clause by that of the
source clause) takes place. Presupposition of the target clause depends on the meaning of
the source clause.

9. The processes of meaning determination and presupposition determination can not be
ordered, as suggested in [15] (which does not consider VPE), but have to be interleaved.
As seen from the previous point, presupposition of the target clause may depend on the
meaning of the source clause. However, as will be shown here, the opposite also holds: the
meaning of the target clause may depend on presuppositions of the source clause.

We envisage the following way to incorporate presupposition (and its failure) in our procedural
DPL representation language. A presupposition is assigned to every definition of a procedure.
This procedural presupposition may be expressed by referring also to the formal parameters of
the procedure, as well as to its free variables, in addition to its local variables. A consequence
of this provision is explained below. Then, every specific procedure invocation is assigned its
own presupposition, derived from that assigned to the procedure, possibly adapted for actual
parameters and scope rules. Thus, the relationship between a procedure and its invocations are
parallel both for meaning determination and for presupposition determination.

Let us first consider the situation in which no presupposition failure is involved. Consider again
the representation of example 1 above.

The presupposition associated with the procedure p(z) is

31z . wife-of (y, 2)

Note that, as already stated before, the presupposition also has a free variable, y. We want this
variable to be the same as that in the procedure body. We thus impose the following rule:

A presupposition associated with a procedure is always evaluated in the same binding
as the procedure itself.

In the determination of the presupposition of the invocation p(j), due to the assumption that y
is bound to y; with value j, we get the presupposition

31z . wife-of (j, 2)
i.e., that John has a unique wife, which is what one expects.

Let us assume that this presupposition indeed holds.

11



Next, the interpretation and presupposition of the target clause are constructed. Under static
binding, the global variable y is still bound to y; and has a value j. Thus, we get the same
presupposition for the target clause as for the sour This is a characteristic of the strict reading.

Now, consider the dynamic binding. Here, assuming that y is rebound to ys with value b, the
presupposition turns out to be
3z : wife-of (b, 2)

this time assuming that Bill has a unique wife. This shift of presupposition characterizes sloppy
readings of VPE. -1z In both cases, first the presupposition of the target clause gets determined.
Only then can projection take place and can the presupposition of the whole be computed. Under
the strict reading, we get just the shared presupposition of the two components. Under the sloppy
reading, we get (assuming a natural conjoining rule for conjunction of the two presuppositions:
both John and Bill are assumed to have unique wives.

Next, we turn to presupposition failure. Suppose that the contextual information implies that
Bill is a bachelor. In this case, the presupposition under the sloppy reading would fail. We stip-
ulate that under such circumstances, the sloppy reading is blocked, and the ambiguity resolved
in favour of the strict reading. Thus, the meaning may depend on presupposition failure. A
question, which at this point we leave as unresolved, is what happens in case the presupposition
of the source clause fails (i.e., John is a bachelor). Under the OTAT assumption? [4], namely the
propagation of error states, we would expect the interpretation of the whole sentence to abort
in an error state. This should be the case even if the target clause is computed as the sloppy
reading, and possibly having a non-failing presupposition. A forteriori, this is the expected
result for the strict reading, in which both presuppositions of the clauses fail.

The interplay between meaning determination and presupposition determination exhibited by
these examples casts a serious doubt on attempts at the pragmatic handling of the latter. We
see that the semantic machinery is necessary for that purpose. Still, this does not preclude that
pragmatic factors may be involved too.

3.2 Presupposition Failure and Meaning Postulates

Consider another example discussed frequently in the literature:
11 Mary corrected her mother's mistake before she did

Usually, the discussion focuses on the strict/sloppy interpretation of the pronoun ‘her’, where
the pronoun ‘she’ is assumed to anaphorically refer to ‘her mother’. Why is the reference of
‘she’ to ‘Mary’ ruled out? The answer is, that the sentential adverb ‘before’ is assumed to be
non-reflexive. In other words, in a sentence of the form p before g, if time ¢; is associated with
p and time i, is associated with g, t; < ty is assumed. On a reading in which ‘she’ anaphorically
refers to ‘Mary’, we would get a meaning equivalent to that of

12 Mary corrected her mother's mistake before Mary corrected her mother's mistake

3Acronym for Once a Thief, Always a Thief.

12



and assuming that the two occurrences of ‘mistake’ refer to the same mistake, this would lead
to a self-contradictory proposition under the non-reflexivity assumption. -

In a Montegovian set-up, this assumption would be brought about by a meaning postulate,
excluding models with reflexive interpretations of ‘before’. However, it is also possible to regard
this assumption as a presupposition of sentences of the above form*. Adopting such a point
of view allows for a more uniform explanations of blocking of readings, in this case for VPE.
It allows also for considering arbitrary models, correctly predicting the interpretation in "bad”
ones as an error state, reflecting presupposition failure.

4 Conclusions

In this paper, we have inspected Verb-phrase Ellipsis and investigated its relationship to pre-
supposition and its failure. We proposed a novel representation of VPE by means of a dynamic
semantics approach, using an extended version of Dynamic Predicate Logic which includes pro-
cedures, scope rules and functions. Thus, we show that rather strong relationships between
natural languages and programming languages may be pointed out, bringing to intuitively ap-
pealing ways of semantical representation. We have focused on the representation strict/sloppy
ambiguity of VPE, showing that it may be viewed as resulting from the well-known distinction
between static binding and dynamic binding of free variables in procedure bodies, a phenomenon
often encountered in computer science. We also have provided independent justification for this
representation. The main justification is in its ability to accommodate direct interpretation of
constructs with non-fully-realized syntactic material., Thereby, we believe we have strengthened
the case of the semantic conception of VPE interpretation and resolution.

Regarding presupposition failure, we showed that it causes disambiguation of VPEs with oth-
erwise strict/sloppy ambiguity. Therefore, we view the relative order of meaning determination
and presupposition determination as non-fixed, and we argue for a set-up where those two ac-
tivities are interleaved.

We hope that this paper adds to the understanding of both VPE and presupposition, and that
it shows the advantage of dynamic semantics over more traditional LF-based representations.

Acknowledgements

This work was initiated during a visit of the second author to CWI, sponsored by a grant
from project NF 102/62-356 (‘Structural and Semantic Parallels in Natural Languages and
Programming Languages’), funded by the Netherlands Organisation for the advancement of
research (N.W.0.).

At the Technion, work of the second author was partly supported by a grant from the joint
fund from the Technion - IIT and Haifa university, a grant from the Technion vice-president for
research (Formal semantics for natural language) and by the fund for the promotion of research
in the Technion.

4Note that in such sentences, this presupposition is not projected from the component sentences p and g, but
it enters the picture as a lexical presupposition of before.

13



References

(1] O. Bouchez, O. Istace, and J. van Eijck. A strategy for dynamic interpretation: a fragment
and an implementation. Proceedings EACL 93, Utrecht, 1993.

[2] Mary Dalrymple. Against reconstruction in ellipsis. Technical Report TR, Xerox PARC,
Palo Alto, CA, 1991.

[3] Mary Dalrymple, Stuart M. Shieber, and Fernando C.N. Pereira. Ellipsis and hlgher—order
unification. Linguistics and philosophy, 14, 1991.

[4] J. van Eijck. Presupposition failure — a comedy of errors. Manuscript, CWI, Amsterdam,
1992.

[5] J. van Eijck. Axiomatizing dynamic predicate logic with quantified dynamic logic. In J. van
Eijck and A. Visser, editors, Logic and Information Flow. Kluwer, Dordrecht, to appear.

[6] J. van Eijck and N. Francez. Dynamic logic and error state semantics — draft. Manuscript,
CWI, Amsterdam, 1992.

[7] C. Gardent. Dynamic semantics and vp-ellipsis. In J. van Eijck, editor, Logics in AI / Euro-
pean Workshop JELIA ’90 / Amsterdam, The Netherlands, September 1990 / Proceedings,
Lecture Notes in Artificial Intelligence 478, pages 251-266. Springer Verlag, 1991.

[8] J. Groenendijk and M. Stokhof. Dynamic predicate logic. Linguistics and Philosophy,
14:39-100, 1991.

[9] Hans Kamp. A theory of truth and semantic representation. In Jeroen Groenendijk and
Martin Stokhof, editors, Formal methods in the study of language, pages 277 — 322. Math-
ematical Center, 1981.

[10] Shalom Lappin. The syntactic basis of ellipsis resolution. Technical Report TR, IBM T.J.
Watson research center, Yorktown Heights, N.Y., 1992.

[11] R. Muskens. Anaphora and the logic of change. In J. van Eijck, editor, Logics in Al / Euro-
pean Workshop JELIA ’90 / Amsterdam, The Netherlands, September 1990 / Proceedings,
Lecture Notes in Artificial Intelligence 478, pages 412-427. Springer Verlag, 1991.

[12] Hub Prust. On discourse structuring, VP anaphora and gapping. PhD thesis, University
of Amsterdam, 1992.

(13] Hub Prust, Remko Scha, and Martin van der Berg. A formal grammar tackling verb-phrase

anaphora. Technical Report CL-91-03, Institute for Language, logic and information(ILLC),
U. of Amsterdam, 1991.

[14] Ivan Sag. Deletion and logical form. PhD thesis, Massachusetts Institute of Technology,
Cambridge, Ma., 1976.

[15] Rob A. van der Sandt and Bart Geurts. Presupposition, anaphora and lexical contents.
Technical Report IWBS Report 185, IBM scientific center, Stuttgart, August 1991.

14



