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Abstract

In this paper we show that the equation, describing transport in a porous medium, is not uniquely defined
in points of the domain where the velocity of the fluid is zero. This is due to the fact that the hydrodynamic
dispersion tensor is defined as a not sufficiently differentiable function of the fluid velocity. The implica-
tions of this non-smoothness for the numerical simulation of fluid flow and transport in porous media will
also be discussed.
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1. INTRODUCTION

In this paper we show that the equation, describing transport in a porous medium, is not uniquely defined in
points of the domain where the velocity of the fluid is zero. This occurs only when the fluid velocity is zero
at isolated points such as stagnation points or centers of vortices. It does not happen when the velocity is
zero in a finite region. The fact that the hydrodynamic dispersion tensor is not differentiable when the velo-
city is zero, is the cause of these singularities. It can be shown that when the velocity is zero in a certain
point, the transport equation will result in two different partial differential equations in one space dimension
and an infinite number of partial differential equations in two and three space dimensions. Only the two
dimensional case will be discussed in this paper.

In Section 2, we discuss a model of two dimensional fluid flow and transport in porous media. Section 3
deals with the singularities caused by the hydrodynamic dispersion tensor and in the final section, Section 4,
we briefly discuss the consequences for the numerical simulation of fluid flow and transport in porous media.
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2. MODEL OF FLUID FLOW AND TRANSPORT IN POROUS MEDIA

We consider a model for unsteady, isothermal, single-phase, two-component saturated flow in a porous
medium in two space dimensions. This model contains two conservation laws, namely one for the mass of
the whole fluid, i.e. water and solute and one for the mass of solute only. The mass conservation of the fluid
supplemented with Darcy’s law for the velocity field is given by

F k
5,0 + V-(p0) = 0. q-= —;(Vp -0, q4=(q1q9)", g=(ng), @I

where n is the porosity of the porous medium, p is the mass density and q the velocity vector of the total
fluid. The permeability of the porous medium is denoted by k, w is the dynamic viscosity, p the pressure and
g the acceleration of gravity vector. The mass conservation law of solute and Fick’s law for the dispersive
mass fluxes are given by

%(npw) +V.(poq + J) =0, J=-pnDVe, J =00, 2.2)

where w is the concentration of solute and J the dispersive mass flux vector. D is the hydrodynamic disper-
sion tensor defined by

_|Pu D
Dy Dy’

qq”

nD = (nd, + or|qI + (o - ap) al’ la| = (@"9” D (23)

where o, denotes the longitudinal and ay the transversal dispersivity and d,, the molecular diffusion. I is
the 2 x 2 identity matrix. The parameters n, d,,, o, o7 and k in this model are assumed to be constant.
Temperature and compressibility effects are neglected in this model, as well as sources, sinks and deforma-
tion of the porous medium. To complete the model we have an equation of state for the fluid mass density p:

P = Po exp (Yw), (2.4)

where py is the reference density and y is a coefficient obtained from laboratory experiments.
After some elementary calculations (2.1) can be written as

nyaa—(:) +vq.Vo + V.q = 0, 2.5)
and (2.2) as
Jw
pn? + pq. Vo + V.J = 0. (2.6)

In cases of a low concentration of solute, (2.5) and (2.6) are only weakly coupled. Therefore, the flow can
then be regarded as being independent from the density gradients caused by differences in the concentration
of solute since these gradients prove to be negligible. The flow field is then considered to be divergence free.
Hence, (2.5) reduces to V. q = 0. If this is the case then (2.5) and (2.6) can be solved separately where (2.5)
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has to be solved only once to compute the flow. However, when the concentration of solute is high, the flow
is not independent from the density gradients and the coupling between (2.5) and (2.6) is no longer negligi-
ble. In this case, (2.5) and (2.6) have to be solved together at each time step.

With this model we have followed Hassanizadeh and Leijnse [3] in the description of solute transport,
except for Darcy’s law and Fick’s law. In our paper these laws are used in their classical formulation, valid
for low concentration cases. For the purpose of our paper, the precise form of this model is, apart from (2.3),
of little importance, since the singularities can occur at all times, regardless of concentration values,
compressibility effects, source terms etcetera. In the next section we will show that the mathematical
definition of the hydrodynamic dispersion tensor (2.3) is the cause of the previously mentioned singularities.

3. SINGULARITIES CAUSED BY THE HYDRODYNAMIC DISPERSION TENSOR

In this section we show that the mathematical definition of the hydrodynamic dispersion tensor, given by
(2.3), causes singularities at the points where the velocity q is zero, or to be more precise, where Vp - pg
vanishes, in case q is given by (2.1). When this happens, (2.6) will not denote a single partial differential
equation but infinitely many partial differential equations. This singularity is caused by the fact that the ele-
ments of the dispersion tensor are not sufficiently smooth functions of the velocity vector components g, and
q.- We will see that this occurs only when V p — pg is zero at isolated points, not when V p — pg is zero in a
region.

Using the definitions of the previous section we can rewrite (2.6) as

w onDy,  onDp jo onD;  dnD2n jw
n— + (q, - - )5 + @/ - -
at dx dy ~ ox dax dy “dy
dw > W Jw ow
—ynD () = 2ynD 3 ———— —ynD pp(—— )’ 3.1
dx dx dy dy
2 2 2
-nD,,a—"z’-an,2 0 _p,, 2 < -0
dx dxdy ay

Here, the identity nD,, = nD, was used, since the dispersion tensor is symmetric. In order to investigate
(3.1) when the velocity components g, and g, are both approaching zero, we first examine the behavior of
the dispersion tensor elements and their partial derivatives with respect to the spatial co-ordinates. The
definition (2.3) can be rewritten as

1 5
nD,, = nd, + m(a,_qf +07rq3), 3.2)
1
nD,, = W(O‘L - ar)q.9z, (3.3)
1
nDy, = nd, + —l(‘l—l(aﬂﬁ +0.q3). (34

Using (3.2)-(3.4) and applying the chain rule we obtain

onD y, _ 99, 99,
ax = |q| 3{[(20‘L —O‘T)CIM% + an?]_ax + [Qar “GL)CI%CIZ + OlTCI%] ax b (3.5)
anD |, _ 9q, aq,
PP lq| (o —aT){q%—ax +q?_6x b (3.6
onD 12 3 3 aql 3 3‘72
—_— = B - 53— + g1 —— 3.7
5, = lal @ -antai5 - raln, (3.7)



onD 5, - dq, 9q,
by lq|{[or - ar)q.1q5 + GTQ?]'a—y“ + [Qay - ar)giq, + an%]_a;}' (38)

It is easy to see that in case q,, g,—0, the velocity-dependent parts of the dispersion tensor will vanish. The
elements of the dispersion tensor are then given by

nD“ = nd,,,, IlD]Z = 0, nDzz = nd,,,. (3.9)

The behavior of the partial derivatives of the dispersion tensor elements for g, g,—>0, depends on the
behavior of functions like, for example, |q| 3[Qoy - ar)q1q3 + o,q1] which are present in (3.5)-(3.8). If
we substitute |q|cos(9), |q|sin(¢), for g, g, respectively, then we will have

la| ?[Roy - ar)g .93 + arql] = (2o - ap)cos()sin®(¢) + oy cos® (¢), (3.10)

where ¢ = tan"!(g,/q,). We can conclude from (3.10) that the values of these functions when g, g,—>0
depends on how q, and g, tend to zero relative to one another. In other words, this value at the point where
g1, 9> =0 depends on ¢. Since ¢ can take any value, this means that these functions can have infinitely
many different values, so they are not uniquely defined. Assuming that the partial derivatives of the velocity
components, dq,/dx, dq,/dy, dq,/dx and dq,/dy, are continuous functions at a point where g, g, = 0,
then it is clear that the partial derivatives of the dispersion tensor elements, given by (3.5)-(3.8), are also not
uniquely defined at this point, unless dq,/dx, dq,/dy, dq,/0x and dq,/dy are all equal to zero. The latter
will occur when the velocity is zero in a region, but not necessarily when the velocity is zero at isolated
points. This means that the transport equation (3.1) results in infinitely many different partial differential
equations at a point where q,, g, =0.

To illustrate this, we consider the case of steady flow in a confined aquifer in which a well is operating.
The total flow is then determined by the superposition of the natural flow in the aquifer and the flow pro-
duced by the well. We assume that the well is placed at x=0, y =0 and that the natural flow in the aquifer is
in x-direction and with a constant speed q,. Further, we assume that the density variations are negligible in

(2.5), meaning that the flow field is assumed to be divergence free. According to Bear and Verruijt [2], the
velocity field is then given by

X 0 y

2mnB x* + y?’ 2= = oumB x2+y?’

41 = qo - (3.11)

where Q is the production of the well, n is the porosity and B is the thickness of the aquifer. In this case,

there will be a stagnation point at x=Q/(2nnBq,), y=0. The partial derivatives of the velocity components
at the stagnation point are continuous and given by

99 _ 2B 3 99 _ 0, 992 _ 0 992 _ _ 2nnB 2 3.12)
dx 0} dy ax dy 0

In the vicinity of this point, the velocity components are approximated as

_ 2nnB

9= =5 (- g

2nnBq o,

_ZT[HB 2

)y 42= 0 q0y- (3.13)
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Using (3.5)-(3.9) and (3.12) and substituting once more |q|cos(¢), |q|sin(¢)’ for q,, g, in (3.5)-(3.8), the
transport equation (3.1) at the stagnation point will then be given by

"%’ - [(2ay, - ar)cos(d)sin’(9) + arcos’ ()] 2::53 2

2nnB
0

dw ow *w 9%

- ynd,(—)? - ynd,,(—)* = ndp—y - ndp— = 0,
Yn (ax) Y"m(ay) ndn =3 nmayz

Iw
bd

“ox
+[(20y, - ar)cos?(@)sin(9) + arsin®(@)] T2 g3, g—“y’ (3.14)

¢ = tan” () = fan” (——L—).
91 Y- 0
2nnBq

From this equation we conclude that ¢ determines how g, tends to zero relative to g, or from which direc-

tion in the domain the stagnation point is approached. Since ¢ can take any possible value, (3.14) denotes
infinitely many different partial differential equations for w at the stagnation point.

4. THE CONSEQUENCES FOR THE NUMERICAL SIMULATION OF FLOW AND TRANSPORT IN POROUS MEDIA

We have showed that the mathematical definition of the dispersion tensor (2.3) can cause singularities in
the domain. This happens when the velocity is zero at isolated points such as stagnation points or centers of
vortices. At such points the partial differential equation, describing transport in porous media given by (3.1),
is not uniquely defined. This is due to the fact that the partial derivatives of the dispersion tensor elements
are depending on the direction of the flow field and need not necessarily tend to zero when the velocity tends
to zero. In the vicinity of a point where the velocity is zero the direction of flow can vary considerably.
Hence, dnD,/dx, dnD ,,/dx, dnD |,/dy and dnD ,/dy exhibit strong variations in this region if this is the
case.

With respect to the consequences of this to the numerical simulation of fluid flow and transport in porous
media, we note the following. When the concentration of solute is high and the flow field depends on the
concentration gradients, then the equation for the flow field (2.5) and the transport equation (3.1) need to be
solved together at each time step. After the spatial discretization of these equations and using an implicit
time stepping scheme, we have to solve a system of nonlinear algebraic equations at each time step. The
situation can then arise that the numerically computed velocity becomes relatively small in a part of the
domain or at an isolated point. In practice, it will rarely occur in such a case that the velocity becomes
exactly zero. The velocity will usually retain some small nonzero value. Hence, the transport equation will
then be uniquely defined and formally there will be no mathematical complications. However, when the
velocities are small, then the direction of the flow is prone to large changes, leading to strong variations in
the derivatives of the dispersion tensor elements. The transport equation (3.1) will then possess strongly
varying coefficients. To which extend this affects the convergence of the iteration process when this occurs
while solving the system (2.5), (3.1) depends on the magnitude of the remaining terms of (3.1), such as the
terms containing the molecular diffusion. Nevertheless, when the direction of the flow changes while itera-
tively solving the nonlinear system of equations, one can encounter serious convergence problems. We have
come across problems of this kind, solving brine transport problems in porous media containing inhomo-
geneities [4] and solving the HYDROCOIN, case 5 test problem [1]. In inhomogeneous porous media stag-
nation points or points where the velocity becomes very small can easily occur near interfaces. Convergence
problems can also arise when vortices are developing. This happens in the HYDROCOIN, case 5 test prob-
lem where salt is released to the overlying groundwater system from a part of the lower boundary of the
domain. In time the salt forms a plume flowing upwards and to the right and two vortices develop along the
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lower boundary of the domain. The convergence problems may be overcome by solving (2.5) implicitly for
the pressure and after that solving (3.1) explicitly for the concentration values. This is a so-called IMPES
scheme. Nevertheless, when the velocity becomes relatively small in a part of the domain, then numerical
factors like the space discretization scheme of the PDE as well as the boundary conditions, the time stepping
scheme and the errors caused by iteratively solving (2.5), can have a considerable effect on the numerically
computed direction of the flow in that region. Since the direction of the flow is very important to the tran-
sport equation, this means that in this case, the numerical factors determine which partial differential equa-
tion (3.1) is solved. This makes the numerical result highly sensitive to the applied spatial and temporal
discretization schemes etc. which implies that an accurate numerical simulation of transport in a porous
medium is unlikely in such a case.

As far as low concentration cases are concerned, we note that the flow field is known a priori and only
(3.1) needs to be solved. Serious convergence problems are not to be expected here, because the velocity is
known at each grid point and has a fixed direction, meaning that (3.5)-(3.8) and therefore also the transport
equation (3.1) are uniquely determined, unless of course a grid point is positioned exactly at a point where
the velocity is zero. However, when a grid point lies very close to such a point, then which transport equa-
tion we have to solve depends very much on the position of a grid point relative to the zero-velocity point
(cf. 3.14). So, even though there will be no numerical difficulties solving (3.1) in this case, the validity and
accuracy of the numerical simulation of transport in the vicinity of such a point is questionable.
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