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Abstract

In this report we implement a domain decomposition technique for the nu-
merical solution of 1-D semiconductor device equations on a Cray S-MP
System 500 Matrix Coprocessor with 28 processing elements. A total work
expression is constructed for comparison with the actual computing time of
the parallel technique. We examine the behaviour of the numerical method
by using different configurations of the processing elements within the par-
allel machine. We perform experiments on a number of devices including
p-n junctions and thyristors.
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1. Introduction

Although the numerical simulation of 2-D semiconductor devices is well
established, many of the numerical techniques used are not suited to imple-
mentation on parallel computers. Divide-and-conquer algorithms have been
demonstrated most suitable for such simulations on coarse-grained parallel
computers. A typical example of divide-and-conquer algorithm is domain
decomposition methods. Ideally, one would require that the computational
or the physical domain be split into a number of subdomains, yielding a
family of independent subproblems of lower computational complexity. The
solutions of these independent subproblems form the contributions to an in-
terface problem of which the numerical solution is required. Such a technique
has been employed to solve a series of 1-D semiconductor device problems
on a serial machine [2]. In this report, we only deal with nonoverlapped
subdomains and study the performance of such a method on a shared mem-
ory coarse-grained parallel computer, namely, the Cray S-MP System 500
Matrix Coprocessor with 28 processing elements located at CWI [4].

The organisation of this report is as follows. First, we briefly describe
the mathematical model governing the electrical behaviour of semiconductor
devices in an off state and obtain a nonlinear boundary value problem which
describes the physical situation. Second, we describe a domain decomposi-
tion method which, when applied to the nonlinear boundary value problem,
gives rise to an interface problem. This is solved numerically by means of a
fixed point iteration technique. Third, we briefly describe the main features
of the Cray S-MP System 500 Matrix Coprocessor and construct a total
work expression and compare this with the actual computing time on the
Coprocessor. We also present a number of basic computational properties
for this kind of parallel architecture. Finally, we present a number of nu-
merical examples including p-n junctions and thyristors.

2. The Mathematical Model

The set of partial differential equations which governs the electrical be-
haviour of 1-D semiconductor devices [1] is given by

Vi =-1(T+p-n) (1)
Op 1
3= VIR (2)
on 1
5 =gV (3)

Here 9 denotes the electrostatic potential, J, and J, the hole and electron
current concentrations, respectively, R the net recombination rate, g the



electric charge, € the permitivity of the device material, I' the doping func-
tion, p the hole concentration, and n the electron concentration.

The hole and electron current concentrations are derived from the Boltz-
mann transport equation [1] and are given by

Jp = —qDpVp — quypVep (4)
Jn =qDrVn — qunnVy (5)

where D, and D, are the diffusion constants for holes and electrons, re-
spectively, and p, and pu, are the mobilities for holes and electrons. We
introduce the quasi-Fermi potentials ¢, and ¢,, defined by

n= nie(d)—%)/VT (7)

where Vr denotes the thermal volts (Vr = KT'/q), K is Boltzmann’s con-
stant, T" is the absolute temperature, and n; is the intrinsic concentration of
electrons in the device. Substituting into the current equations (4) and (5)
yields
Jp = —quppVe, (8)
Jn = —qunnVo, (9)

In this report, we only consider junctions in an off state, in which case
there is no current flowing through the contacts and it is sufficient to model
[1] the physics by using the nonlinear elliptic partial differential equation in
(1). For computational reasons, the equations and variables are scaled to
obtain dimensionless quantities. The symbols of the above unscaled vari-
ables are adopted as the symbols of the scaled variables in the subsequent
scaled equations. Therefore for 1-D semiconductor devices in an off state,
we require the solution of the following scaled nonlinear two-point boundary
value problem :

d*y
dz?
subject to the Dirichlet boundary conditions ¥(0) = V and 9%(w) = V,,
where V and V,, are given constants. Here we have measured v in units of

thermal volts, z in units of the Debye length (L? = eKT/q*n;), Q(z, %) in
units of n;. The source term, Q(z, ), is given by

Q(z, %) = T(z) + e@o=¥) — e(¥—¢n)

where I'(z) is measured in units of n;. Assuming Boltzmann statistics,
we apply the condition I' + p + n = 0 together with the scaled thermal
equilibrium condition pn = 1 at the boundary [1] to obtain the scaled quasi-
Fermi potential boundary values as

+Q(z,¥)=0 € Q={z:0<z<w} (10)

6,(0) = Vo +1n [—F(O) 12+/(00)/2)7% + 1] (1)
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and
6a(w) = Vi —In [I‘(w)/Q +/(Cw)/2) + 1] (12)

Since the current through the contact is zero, we have from (8) and (9) that
d¢p/dz = 0 and d¢, /dz = 0 which imply ¢, and ¢, are constant. Therefore
the quasi-Fermi potential boundary values given in (11) and (12) fix the
values of the quasi-Fermi potentials throughout the device assuming that
the device is in an off state.

3. The Numerical Scheme
3.1 The Domain Decomposition Method

We consider a nonoverlapped domain decomposition method for the non-
linear two-point boundary value problem (10). The domain  is split into
s + 1 nonoverlapped subdomains, Q, £k =1,2,---,s+ 1, such that

Q = {UH1 4} U{U T} (13)

where Qi = {z|zx—1 < z < z} and I'y = {zx}. Under such decomposition
of the physical/computational problem, the resulting subproblems defined
in the subdomains can be completely decoupled from each other and are
particularly suited to implementation in a coarse-grained parallel compu-
tational environment. Each of the subdomains has the following related
nonlinear two-point boundary value subproblem,
2

T 1 QEw)=0 € 9 (14
subject to boundary conditions ug(zx—1) = Ak—1 and ug(zk) = Ak, and
zo = 0 and z,41 = w, u1(0) = Vp and ust1(w) = Vi Let up = ug(z; A)
denote the solution of (14) where A = [A\; Ay --- X]. In order to obtain
unique values of ¢¥'(z), £k = 1,2, -, s, we require a vector A such that the
following vector defect equation is satisfied,

D(N) = [Du(V)] = [y us(@iX) — 5o vea(osi V] =0 (19)

The continuity of the function v across the interfaces is implicit in (14).
The vector defect equation represents the reduced interface problem and
guarantees the continuity of %’ across the interfaces. In the two subdomain
case, the defect equation is a scalar equation involving one interface and
thus only one unknown. In the multidimensional case, the Jacobian matrix
J(A) = D'(A) is a nonsymmetric tridiagonal matrix. If A = A* is a root of
D(A) = 0, then the function

k-1 T = Tk-1
(z) =4 w(m;A*) Tre1 < T < Tk, k=1,2,---,8+1 (16)
Ak T =Tk

where A\g = Vg and A}, = V,,, is a solution of (10).



3.2 Solution of the Interface Problem

In order to solve the interface problem, i.e. the defect equation (15),
without computing the matrix coefficients of the Jacobian matrix, J(A), a
fixed point iteration technique is applied. The general fixed point iteration
scheme for the solution of D(A) = 0 is given by

Alm+1) — \(m) _ ar—nll)()‘(m)), m=0,1,2,--- (17)
Here a,, is an adaptive parameter given by

(m)y _ (m-1)
am — am—l ”D(A ) (71)—(1? )” , m = 1, 2, e (18)
DA™=

where ||.|| denotes some norm and ay is chosen as the reciprocal of an arbi-
trary small positive real number. For comparison purpose we use a quasi-
Newton scheme, i.e. by choosing a matrix update for o, based on Schubert’s
scheme [3],

DAL
m = - UL ) = 1127"' 1
“ m—1+ < Sm-1,Sm-1 > m (19)

where < .,. > denotes an inner product and s;,—1 = Alm) _ A(m"l), and ag
is chosen as a diagonal matrix such that every diagonal element is equal to
the reciprocal of an arbitrary small positive real number.

3.3 Solution of the Subproblems

In order to evaluate D(A(™), we need to solve s+ 1 subproblems each of
which is defined by (14). Since the boundary value subproblem is nonlinear,
we apply a Newton iteration scheme to (14) which leads to

d2 BQ v v—1 d2uk(u—1) v—1
(d—x—2~+6u)(k —u ) =-22 - Q@w™Y)  (20)

Here v denotes the number of the Newton iteration steps for the solution of a
subproblem, and clearly v = v(m, k). We use a second order finite difference
scheme to discretise (20) which leads to a set of tridiagonal equations to be
solved. Let Uy denote the discrete approximation of uy; we use the initial

approximation Uy 0=y 4(z; A1) in the iteration scheme (20) and iterate

until |U ,E") -U ,&" Y|y < 6. Our experience shows that the number of up-
dates required to obtain a converged solution for X using either (18) or (19)
does not vary a lot for different values of § < 0.01. Furthermore v is usually
1, except when m = 1, if § is chosen as 0.01. Therefore in choosing § = 0.01,
one can minimise the computational work involved in the Newton iterations.

Note that in the case s = 0, the original problem given in (10) is also
solved by the method described in this subsection, in which case a Newton



iteration is applied to (10) instead of to (14). The notation »(0,1) is used
to denote the number of Newton iteration steps required to solve such a
discretised system.

4. The Matrix Coprocessor

The Cray S-MP System 500 Matrix Coprocessor at CWI is connected to
a SPARC processor. The Coprocessor is a shared memory MIMD parallel
computer with an 8-Kbyte data cache in each of the processing elements.
The architecture of the Coprocessor at CWI consists of seven matrix buses,
each of which supporting up to a maximum of four processing elements.
The Coprocessor thus has a maximum of twenty eight processing elements
for parallel computation. Let B denote the number of matrix buses and P
the number of processing elements per bus. The processing elements can be
configured [4] in such a way that 1 < BP < 28, for all integers 1 < B < 7
and 1 < P < 4. Each processing element in the Matrix Coprocessor is based
on an Intel’s i860 64-bit microprocessor. The processing element is a single
VLSI chip that produces up to 80 MFLOPS of single-precision performance,
60 MFLOPS of double-precision performance. Each matrix bus provides a
peak bandwidth of 160 MBytes per second. At a given time, only one pro-
cessing element on each bus can access the 32 MBytes shared data storage
area. In a 7-bus Matrix Coprocessor, up to seven processing elements can
simultaneously access the shared data storage area. The total data transfer
rate is thus 1.12 GBytes per second. More details of the hardware can be
found in [4] and [5].

The machine described above provides a suitable environment for the
domain decomposition method in such a way that each subproblem is al-
located to one of the processing elements. An advantage of the machine
is that each processing element has a data cache of 8 KBytes. This data
cache allows a subproblem to be solved within a processing element once the
necessary data has been transferred from the shared memory to the cache.
Suppose Ni denotes the number of grid points in the subdomain Q. From
Section 3.3, we know that each subproblem involves the solution of tridiag-
onal linear systems which requires O(Ny) floating point operations and that
the data, in words, transferred from the main storage area to the cache is
also O(Ny). Therefore the data locality [5], which is defined as the ratio be-
tween the number of floating point operations and the words transferred, is
a constant and so independent of N and the number of subdomains. When
Ny is small, the data cache is often not fully occupied. As a result, only a
small amount of computation is performed in the first processing element of
a matrix bus, and it will remain idle until the second processing element of
the same bus has finished communicating with the main storage area before
it is allowed to communicate with the main storage area again. Therefore
even though the subproblems require an equal amount of computational



work, the overall computational time will be affected more and more by the
accumulation of the idle time when the number of subdomains increases.
We expect that the idle time will become significant in this case. When Nj
increases, the communication time between the processing element and the
main storage area increases. Therefore we expect the communication time
becomes significant when Ny is large.

We now construct an expression for the total work in order to compare
with the actual computing time of solving nonlinear elliptic boundary value
problems on the Coprocessor. Let N denote the total number of nodes in
the entire computational domain and Nj the total number of nodes in the

subdomain € so that
s+1

N=1+) (Ny-1)
k=1

One work unit is defined as the computational work required to solve the
sparse finite difference discretisation of an equation similar to (20) obtained
by applying a Newton iteration scheme to (10) with N — 2 unknowns on one
processor. Let v(0, 1) denote the number of Newton iteration steps required
to solve the nonlinear two-point boundary value problem (10) without do-
main decomposition. Now suppose the original problem is subdivided as
given in (13) and that each subproblem is assigned to one of the processing
element of the Matrix Coprocessor; then we may assume that most of the
computational work comes from the solving of subproblems. Assuming that
s+ 11is equal to the number of matrix buses, and that each matrix bus con-
tains one processing element, the total work for solving the defect equation
D(A) = 0 using the iteration scheme (17) is given by

s Ny —2
T= Zl \Jpax {5 v(mk)} (21)

where v(m, k) is the number of Newton iterations required to solve the k-
th subproblem during the m-th update of the interfaces, m;; is the total
number of updates along the interfaces. Thus, it follows that the parallel
algorithm described in this section is an efficient algorithm if 7 < »(0,1).
However, this argument does not hold for more than one processing element
along a matrix bus.

In view of the architecture, we expect that the computing time of a
general domain decomposition algorithm strongly depends on B and P, and
exhibits the following properties. The first property is due to the fact that at
any time only one processing element along a matrix bus is allowed to access
the shared storage area. The second property is a consequence of Property
1 for the case when the configuration satisfies BP = s+ 1. The third prop-
erty is also a consequence of Property 1 for a general configuration BP. In
such cases, the subdomains are divided into a number of blocks, each block
consisting of BP subdomains except possibly the last one. In order for two



different configurations with a constant value of P to exhibit approximately
equal computing time, the last block should be able to distribute across any
of the two configurations in such a way that the maximum number of pro-
cessing elements along a matrix bus is equal for both configurations.

Property 1 : If P is a constant then the computing time for solving a
problem with s+ 1 subdomains on a configuration BP, in general, increases
as B decreases except for the case as described in Property 3.

Property 2 : The computing time for solving a problem with s + 1 sub-
domains on a configuration BP = s + 1 is minimal by choosing B maximal
(and hence P minimal).

Property 3 : Suppose that in solving a problem with s + 1 subdomains on
a configuration BP, the number of processing elements P per matrix bus
is taken to be a constant. Let b € N be fixed and consider the set B of
B-values such that [$$4] = b . Then for any two different configurations

of B1 P and By P, with By, By € B, the computing times are approximately
equal if ["H] = [3“

Note that in Property 3, b is the number of times that BP processing
elements are working in parallel on the solution of BP subproblems, but in
the b-th step, there may not be enough work to keep all the processing ele-
ments busy. The maximal number r of processing elements per bus used in
that step is given by r = [#5}] — (b— 1) P. We perform tests to demonstrate
the above Properties. Although it is possible to decrease the computing
time by using Property 1, a similar property by keeping a constant value
of B while decreasing P is not trivial for a general domain decomposition
algorithm. We provide experiments to exploit the efficiency in this respect
of the present parallel algorithm.

5. Numerical Examples

Three different doping functions taken from Ref. [2] are tested. First,

—-N, 0<z<wm
T(z) ={ —Ng+ (z‘fgf) (z-—w) wi<z<w (22)
Ny wy<z<w

where N, is the acceptor concentration and Ny is the donor concentration.
Second,

T15(z) = —N,e~™%" 4 N e m2(w=2) (23)

where m; = w—lglnNc, mo = w—lgdlnNc, the width of the device is w = wg + wg,

1Tz] denotes the smallest integer > .



I'(z) | ¥(0) (w) | wL | other widths acceptor/donor
xVr (pum) (pm) concentration (pm)~3

'Y 0 10 180 w1 L =30 Ngn; = Ngn; = 1480
weL = 150

1o 0 10 180 w1 L =10 Ngn; = Ngn; = 1480
'sz =130

Tz | 0 10 | 180 | weL=70 | N.n;=1480/(1—e 1)
wyL = 110

I'so 10 0 700 | wpeL =27.5 Npen; = 10°
wpL = 37.5 Ngyni = 2 x 107
'wpeL =125 Nnbni =40
wrp L = 510 Npen; = 2 x 107
WossL = 60

Table 1: Numerical constants used in the tests.

and the acceptor and donor concentrations are equal to N.. Third,
Fao(-’l?) — Nnee—m122 + pre—mz(a:+woff)2 + Npp — Npee—ma(w—l‘)z (24)
where

M2 = o rametin ) (Nos/ Nob)

w

wore\2
my = my (1 + —"—:ei) + 1;ig;ln(Nne/pr)

m3 = w—lg—mln(Npe/Nnb)

and the total width of the device is w = wne + Wpp + Wnp + Wpe. Here
I'p and T’y are p-n junctions and I'sg is a thyristor. In the subsequent
tests, we have used silicon as the semiconductor material of which the per-
mitivity is e = 1.1 x 10718F(um)~!. We restricted the ambient temperature
as a constant at 300°K, thus we have n; = 1.48 x 107?(um)~3. Taking
K =1.38x 1072J°K~! and ¢ = 1.6 x 1071°C, we can evaluate the normal-
isation constants.

Table (1) shows various numerical constants used in the doping functions.
Various dimensionless quantities are multiplied by their respective normal-
isation constants to give the corresponding physical values. All tests were
performed using double precision and solved on the entire domain without
decomposition as a standard set of results for comparison with the sub-
sequent domain decomposition results. We use superscript S to denote a
symmetric doping profile. Table (2) shows the total number of grid points
N and its corresponding mesh size h that were used in the tests. In the case
of computations performed on the entire domain, the stopping criterion is



| Problem Mesh
LT N = 91 181 361 721 1441
| T | h= 2000 1.000 0.500 0.250 0.125
L T
T3 |N= 701 1401 2801 5601
h= 1.000 0.500 0.250 0.125

Table 2: Meshes used in the tests.

|@®) w1, < 5, where ¥ is the discrete approximation of 3. In the case
of domain decomposition, the stopping criterion is [|A(™ — AMm=V||, < 7.
Here 7 is chosen as 0.5 x 10719 to avoid getting too close to the machine
accuracy of double precision arithmetic which is usually around 12 digits.
The initial approximation, A%, is a vector [,\§°),\§°’ e A&O’]T with the values
of these vector components being taken as the values of ¥(®) at the corre-
sponding positions, such that ¥(®(c) = (¥(0) + ¥(w))/2 where c satisfies
I'(c) = 0 and that it is either ¥©)(z) = min{¥(0),¥(w)} if [(z) < 0 or
U0 (z) = max{4(0), ¢ (w)} if I'(z) > 0. Timings are obtained by means of
Cray S-MP built-in timing routines [5] and are recorded in seconds.

s+1 N
91 181 361 721 1441
Number 2 1 1 1 1 1
of 4 N.A. 6 6 6 7
Iterations 6 11 11 10 10 10
Myt 10 17 17 16 16 14
20 N.A. 29 30 23 22
30 | oscillate 129 108 87 69
Total 1 11 13 13 13 13
Work 2 4.449 4475 4986 4.993 4.997
T 4 N.A. 3.441 3.719 3.734 3.992
6 2.989 3.078 3.123 3.145 3.156
10 2.247 2.374 2.437 2469 2.385
20 N.A. 1654 1.847 1.558 1.579
30 | oscillate 4.134 3.799 3.231 2.776

Table 3: m;; and 7 for Problem I“fo.

We present results for Problem I'{; with the subdomains being evenly
distributed plus the restriction that £ = w/2 being an interface. Table (3)
shows the valuess of n;; and 7 obtained for Problem I'f;. Note that the first
row of of the total work given in Table (3) is in fact v(0,1) and that the
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figures given there are independent of the number of processing elements.
From Table (3), the present algorithm is faster than solving the original
problem without domain decomposition when B = s+1 = 2, 4, 6, assuming
one processing element per matrix bus. However, we cannot comment, with-
out taking into account the communication costs and the configurations, on
the cases when s+ 1 > 7 because the maximum number of buses available is
seven. A number of tests as shown below are used to verify the Properties
given in Section 4.

First, Table (4) shows the computing time obtained by varying B and
keeping a constant value of P for s + 1 = 10, 20. In general, the computing
time increases as B decreases for a constant value of P, thus verify Property
1. It is observed that the computing times for BP =7x1,6x1,and 5x 1
when s+ 1 = 10 are similar, and also for BP =6 x 3, 5 x 3 when s+1 = 20.
In the former case, the subdomains are divided into two blocks (b = 2) for
parallel computations and we find that r = [#£1] - (b—1)P=1for B =71,
6, and 5. Similarly in the latter case, the subdomains are divided into two
blocks (b = 2) and we find that r = 1 for B = 6 and 5. A further decrease in
B causes the subdomains being divided into more blocks, which in turn in-
creases the computing time following Property 1. It is also observed that the
computing times for BP = 7x2, 6x 2, and 5 x 2 when s+1 = 10 are similar,
and that for BP = 7 x 4 and 6 x 4 when s+ 1 = 20 these are not, but follow
Property 1. In the former case we find that r = [#5}] =2 for B =7, 6, and
5 but in the latter case r = [#5}] = 3 and 4 for B = 7 and 6, respectively.
This verifies Property 3. Finally it is found that, by removing the similar
timings discussed above from the Table, the ratio of the computing times
for (B —1)P and BP lies in between 1.2 and 1.5, except when B = 2 where
the ratio obtained is about 1.9. In fact the values 1.2 and 1.5 are approxi-
mately the ratios 7:6 and 3:2 and the value 1.9 is approximately the ratio 2:1.

Second, Table (5) shows the computing time obtained by taking s+ 1 =
BP. Property 2 can easily be verified. The ratios of computing times follow
the same pattern as that mentioned above despite P is not a constant.

Third, Table (6) shows the computing time obtained by keeping a con-
stant value of B and varying P for s + 1 = 10 and 20. It is obvious that
the computing times are similar when s + 1 < BP. In the cases when
s+ 1 > BP, the computing time decreases, in general, as P decreases for
a moderate number of grid points. However, as the number of grid points
increases, data transfer between the data cache and the shared memory in-
creases which increases the total computing time as demonstrated by taking
N = 1441.

We now restrict to P =1 in the tests for Problems I'yg, I'19, and I'3g in
order to compare the pattern of the actual computing times and the pattern
of the total work given in (21). In Problem I'yg, the subdomains are evenly
distributed without any restriction. Table (7) shows the values of my, T,

11



s+1|BxP N

91 181 361 721 1441
10 7x2 |0.027 0.040 0.072 0.117 0.206
6x2 | 0027 0.040 0.072 0.117 0.211
5x2 |0.028 0.041 0.074 0.120 0.217
4x2 |0.035 0.055 0.100 0.165 0.296
3x2 |0.043 0.067 0.122 0.202 0.373
2x2 |0.063 0.083 0.152 0.254 0.465
1x2 |0.097 0.154 0.287 0.485 0.899
10 7x1 |0.024 0.037 0.070 0.117 0.210
6x1 |0.023 0.037 0.071 0.117 0.220
5x1 |0.024 0.038 0.071 0.120 0.220
4x1 |0.032 0.051 0.097 0.164 0.300
3x1 0039 0.064 0.121 0.205 0.384
2x1 |0.047 0.079 0.151 0.256 0.475
1x1 | 0088 0.150 0.289 0.495 0.922
20 7x4 | NA. 0.066 0.100 0.127 0.219
6x4 | NNA. 0.081 0.123 0.157 0.270
5x4 | N.A. 0.081 0.124 0.159 0.277
4x4 | NNA. 0.095 0.148 0.193 0.340
3x4 | NA. 0.125 0.196 0.256 0.448
2x4 | NA. 0.169 0.271 0.356 0.632
1x4 | NA. 0320 0.519 0.691 1.232
20 7x3 | N.A. 0.065 0.098 0.126 0.218
6x3 | NA. 0.077 0.121 0.157 0.273
5x3 | NA. 0.077 0.121 0.159 0.280
4x3 | NNA. 0.093 0.146 0.192 0.339
3x3 | NA. 0.122 0.194 0.257 0.454
2x3 | NA. 0.166 0.267 0.355 0.632
1x3 | NA. 0316 0.515 0.688 1.232

Table 4: Computing time for Problem I'j, keeping P constant.
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s+1|BxP N

91 181 361 721 1441
1 1x1 |0.030 0.071 0.142 0.285 0.570
2 2x1 |0.016 0.031 0.067 0.134 0.268
1x2 |0.029 0.057 0.125 0.246 0.492
4 4x1 | NA. 0.026 0.053 0.103 0.218
2x2 | N.AA. 0.038 0.074 0.143 0.343
1x4 | NA. 0.069 0.135 0.262 0.566
6 6x1 |0.016 0.026 0.047 0.090 0.175
3x2 |0.025 0.041 0.071 0.134 0.260
2x3 |0.034 0.055 0.094 0.177 0.343

Table 5: Computing time for Problem I'{, taking s + 1 = BP.

s+1|BxP N

91 181 361 721 1441
10 7x4 |0.029 0.042 0.073 0.117 0.206
7x3 |0.028 0.041 0.072 0.116 0.205
7x2 |0.027 0.040 0.072 0.117 0.206
7x1 |0.024 0.037 0.070 0.117 0.210
10 5x4 |0.029 0.042 0.074 0.119 0.214
5x3 | 0.028 0.041 0.073 0.118 0.214
5x2 |0.028 0.041 0.074 0.120 0.217
5x1 |0.024 0.038 0.071 0.120 0.220
20 7Tx4 | N.A. 0.066 0.100 0.127 0.219
7x3 | NA. 0.065 0.098 0.126 0.218
7x2 | NA. 0.061 0.096 0.127 0.224
7x1 | NA. 0.054 0.090 0.123 0.223
20 5x4 | N.A. 0.081 0.124 0.158 0.276
5x3 | NNA. 0.077 0.120 0.157 0.278
5x2 | NA. 0.075 0.118 0.156 0.277
5x1 | NNA. 0.066 0.111 0.153 0.280

Table 6: Computing time for Problem I'{, keeping B constant.
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and computing time, obtained for Problem I‘fo. In Problem I';s, the sub-
domains are chosen with interface restriction. For s + 1 = 2, we choose the
interface at £L = 70um, for s + 1 = 3, we choose the interfaces at L = 50
and 100um, and for s + 1 = 4, we choose the interfaces at L = 50, 100,
and 140pum. The reason for choosing these interfaces is to avoid putting
any interface into a depletion layer, since a numerical divergence occurs if
a depletion layer consists of an interface [2]. Table (8) shows the values of
m;t, T, and computing time obtained for Problem I';5. For Problem I'sq, the
subdomains are evenly distributed without any restriction. Table (9) shows
the values of m;, 7, and computing time. All Tables containing total work
computed by using (21) reflect the actual computing times.

Finally, we apply a quasi-Newton scheme as given in (19) to solve the
interface problems obtained by applying the domain decomposition method
to Problems I'y5 and I'3g. For Problem I'y9, the interfaces are chosen as
that given previously, and the results m;; and 7 are presented in Table (10).
For Problem I'sp, the subdomains are distributed evenly, and the results
m;; and T are presented in Table (11). Unlike the results obtained for lin-
ear equations [3], the results here compare unfavorably with the adaptive o
technique. In fact some of the results demonstrate that m;; increases when
Schubert’s scheme is used. Furthermore, a tridiagonal system of equations
has to be solved during every update along the interface and thus increases
the overhead. It should be noted that the scheme is not necessary a conver-
gent scheme for nonlinear problems.

6. Conclusion

We have studied a nonoverlapped domain decomposition technique ap-
plied to a number of semiconductor devices on a Cray S-MP System 500
Matrix Coprocessor. A number of properties relating configurations and
the number of subdomains are postulated and verified. A further property
concerning the relation between the computing time and the number of ma-
trix buses is also exploited. We have also demonstrated that the adaptive o
technique is better than Schubert’s scheme for nonlinear problems.
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s+1 N
91 181 361 721 1441

Number of 2 7 7 7 8 9
Iterations 4 N.A. 12 11 10 11
My 6 26 28 24 21 20
Total 1 11 13 13 13 13
Work 2 7416 7.458 T7.978 8.488 8.994

T 4 N.A. 4916 4958 4.730 5.239

6 5.348 5.832 5.423 4.965 4.983

Computing | 1x1|0.030 0.071 0.142 0.285 0.570
Time on 2x1|0.028 0.063 0.110 0.230 0.484
Configuration | 4 x 1 | N.A. 0.038 0.072 0.135 0.286
BP=s+1 |6x1]0.030 0.051 0.084 0.144 0.278

Table 7: my, T, and computing time for Problem I'yq.
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! s+1] N
| |91 181 361 721 1441
Number of 2 8 8 9 8 8
Iterations 3 16 15 14 16 14
on 4 36 31 28 26 21
Total 1 16 16 16 16 16
Work 2 12.742 12.788 14.031 13.433 13.438
T 3 10.079  9.737 9.451 12.028 11.154
4 12.944 11.771 11.306 11.624 10.259
Computing |1x1| 0.053 0.107 0.216 0.432 0.866
Time on 2x1| 0046 0.089 0.191 0.362 0.722
Configuration | 3 x 1| 0.041 0.072 0.133 0.329 0.603
BP=s+1 |4x1]| 0059 0.093 0.165 0.324 0.562
Table 8: m;;, 7, and computing time for Problem I';5.
s+1 N

701 1401 2801 5601

Number 2 31 31 30 30

of 4 31 31 31 30

Iterations 5 37 36 37 36

Mt 7 66 56 52 48

Total 1 29 29 29 29

Work 2 27.960 27.980 28.990 29.495

T 4 13.940 13.970 14.734 14.742

5 12.528 12.564 13.181 13.191

7 12.888 11.522 11.262 10.988

Computing |1x1| 0.801 1.603 3.206 6.543

Time on 2x1| 0740 1467 3.025 6.145

Configuration | 4 x 1| 0.378 0.744 1.553 3.091

BP=s+1 |5x1| 0346 0.676 1.399 2.781

Tx1] 0374 0639 1.222 2.358

Table 9: my, 7, and computing time for Problem I'zg.
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s+1 N
91 181 361 721 1441
Number of 3 29 23 23 21 19
Iterations m; 4 31 24 30 21 21
Total 1 16 16 16 16 16
Work 3 15.775 13.268 13.437 14.246 13.374
4

T

11.596

9.855 11.858 10.241 10.259

Table 10: m;; and 7 for Problem I'15 using Schubert’s scheme.

s+1 N
701 1401 2801 5601
Number of 4 30 30 30 29
Iterations 5 Oscillate
Mt 7 Oscillate
Total 1 29 29 29 29
Work 4 13.691 13.721 14.484 14.492
T 5 Oscillate
7 Oscillate

Table 11: m;; and 7 for Problem I'sg using Schubert’s scheme.
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