A theory for simulator tools

H.P. Korver
Computer Science/Department of Software Technology

CS-R9302 1993

A Theory for Simulator Tools

Henri Korver
CWI
P.O. Box 4079, 1009 AB Amsterdam, The Netherlands

henri@cwi.nl

Abstract

This paper presents a possible formalisation of the notion simulator tool for process languages like ACP,
CCS, (u)CRL, LOTOS and PSF. First we give precise definitions for the notions simulator and simulation.
Then we can investigate the equivalence that a simulator induces on the explored process terms. This is
done by considering two processes, say p and g, equivalent if each simulation of p is also a simulation of
g and vice versa. It is proven that there is no ‘reasonable’ simulator inducing bisimulation equivalence.
Furthermore it is demonstrated that simulators inducing coarser equivalences, e.g. ready, failure and trace
equivalences, are unlikely to be computationally tractable. Our conclusion is that a practical simulator
induces an equivalence that is finer (less identifying) than bisimulation and even finer than graph isomor-
phism.

1991 Mathematics Subject Classification: 68Q55 (Semantics).

1991 CR Categories: D.2.5 (Testing and debugging), F.3.2 (Semantics).

Keywords & Phrases: Head Normalisation, Labelled Transition System, Simulation, Simulator, Structured
Operational Semantics.

Note: The author is partly supported by the European Communities under RACE project no. 1046,
Specification and Programming Environment for Communication Software (SPECS). This document does
not necessarily reflect the view of the SPECS project.

1 Introduction

Nowadays the so-called simulator tools can not be thought away in the validation of concurrent system
specifications. For instance a considerable amount of simulator tools have been developed in the area
of process algebra. In this setting a simulator can be considered as a tool that is used to explore the
underlying state space of process term in a certain language; one can think of simulators for CCS
[CPS90], (#)CRL [SPE92, Ver92], LOTOS [Eer91, vE89, Tre89, vEVD8&9] or PSF [Vel93]. The basic
operation of these simulators is as follows. From a given process term the set of one-step transitions
is computed. Subsequently one of these transitions is chosen and the next state, mostly given as a
process term again, is returned. Then the whole procedure can be repeated recursively for this next
state.

A considerable amount of manpower has already been invested in building simulator tools like the
ones mentioned above. But, it is remarkable that (as far as we know) there is no standard theory
about simulator tools. For instance, consider the following questions one can ask about simulator
tools:

1. What is a simulator (tool), i.e. can we define the notion of a simulator formally? Although there
are many simulator tools around now, the question what a simulator actually is has not been
answered yet.

2. What is the semantics of a simulator and how does it relate with established process models
like the bisimulation model? For example consider the two CCS processes a.a.0 + a.a.0
and a.a.0 + a.(a.0 + a.0) of which it is well-known that they are bisimilar. However a

1 INTRODUCTION

session with the CWB (Concurrency Workbench) [CPS90] that is displayed in table 1, shows that

the simulator does not respect bisimulation semantics. I.e. the CWB does not identify bisimilar

processes as already the first menus differ, e.g. M(a.a.0 + a.a.0)=[1: --- a -—-> a.0] and
M(a.a.0 + a.(a.0 + a.0))= [1: --- a ---> a.0; 2: --—— a ———> a.0 + a.0].
Clearly this simulator is more concrete than bisimulation semantics as it distinguishes two

The Edinburgh Concurrency Workbench
(Version 6.1, October 1, 1992)

Command: bi P
Agent: a.a.0 + a.a.0

Command: bi Q
Agent: a.a.0 + a.(a.0 + a.0)

Sim> sim
Agent: P

Simulated agent: P
Transitions:
1: -—— a ——-> a.0

Sim> 1
-—— a --->

Simulated agent: a.0
Transitions:

1: === a —==> 0

Sim> sim
Agent: Q

Simulated agent: Q

Transitions:
1: -—— a ——> a.0
2: ——— a -——> a.0 + a.0

Table 1: A session with the Concurrency Workbench.

a-transitions in the second menu. The question whether there exist practical simulators that
make the same identifications as the well-known bisimulation model does, is the main topic of
this paper. This question is useful because if the answer is positive then we can implement
simulators that do not distinguish more that bisimulation semantics. This would then imply
the existence of a simulator that does not confuse us with more details about processes than
bisimulation semantics allows.

In this paper, we try to answer the two questions stated above. As a possible answer the first question,
we formalise the notion of a simulator by defining it as a triple Sim = (C, M, R) of a conversion-,
menu- and a residue function. The conversion function C' maps a process term that is fed into the

simulator to the initial state of its exploration. The menu function computes the set of all possible
one-step transitions of a state in the exploration. The residue function R computes the next state
when one of the transitions in the menu is chosen. Then a simulation of a term p can be formalised
as an alternating sequence of menus offered by the simulator and choices ¢y, ca, ... from these menus,
ie. M(C(p)) 1 M(R(C(p),c1)) e2 M(R(R(C(p), 1),)) ..

As a possible answer to the second question, we define the semantics of a simulator as the equivalence
that a simulator Sim = (C, M, R) induces on process terms as follows. The equivalence induced
by a simulator is obtained by considering two process terms p and ¢ equivalent exactly when each
simulation of p is also a simulation of g and vice versa. We shall prove that in general there do not exist
simulators respecting bisimulation equivalence. Furthermore, we conjecture that simulators inducing
coarser (trace based) equivalences have a non-polynomial computational complexity. Our conclusion
is that the equivalence induced by a practical simulator must be finer than bisimulation and even finer
than graph isomorphism.

2 Acknowledgements

I am very grateful to Jan Bergstra for being the person really understanding and backing up my ideas.
Without his help and mental support this paper would have never reached its current form.

3 Preliminaries

3.1 Labelled Transition Systems

In this paper, we restrict ourselves to the ‘interleaving paradigm’ and consider labelled transition
systems as the basic model for processes.

Definition 3.1. A labelled transition system (LTS) is a 4-tuple T = (S, L,—,r), where:
e S is a set of states;
e [is a set of transition labels;

e »C S x LxSU{T} is the transition relations where T is a distinguished element called the
termination state;

e 7 is the root state.
The domain of LTS’s is denoted by LTS. O

An element (s,a,s’) €— is called a transition, and is usually written in a more ‘pictorial’ notation

s — s'. In this pictorial notation, the arrow — is also called an edge. We shall use the following
notations for transitions.

Notation 3.2. (1) s = s’ for s — s’ €— (2) s — for Is' : s —— s' (3) s —~ for not s — (4)
s forVa€L:s /A (5) s 57 s for s =52 ... 2 g,]

A state s is called a termination state if s = T. A state s is called a deadlock state if s # T and s —/ .

Definition 3.3. (Isomorphism.) Two LTS’s: g,h € LTS are isomorphic, notation g =~ h, if there
exists a bijective mapping between their sets of states which preserves roots, termination states (T)
and transitions. O

The notion of bisimulation equivalence plays a central role in this paper.

4 3 PRELIMINARIES

Definition 3.4. (Bisimulation.) Let g; = (Si, Li,—i,7:)(: =1,2) be LTS’s. A relation R C S1 X 59
is a (strong) bistimulation between g7 and go if it satisfies:

o 71 Rry;

if sRt and s —%»; s', then there is a t' € Sy with t —%4 ¢/ and s'Rt'.

— if sRt and t —>5 t', then there is a s’ € Sy with s 1 s’ and s'Rt’.

if sRt and s —; T, then ¢ 2 T.

— if sRt and t —2y T, then s 2T

LTS’s g1 and g9 are bisimilar, notation g1 & g9, if there is a bisimulation between them. Note that
bisimilarity is an equivalence relation. O

3.2 A Process Specification Language

As a running example, we here present the language of ACP [BW90]. ACP is chosen as one of the
many algebraic formalisms for specifying processes (LTS’s), like CCS, CSP and MEIJE, because I am
the most familiar with it. But of course the other candidates can be used equally well.

We consider the following ACP syntax:

p=6lp-plp+plpllplaléulp)|z where
e ¢ ranges over a finite set of actions A.
e HC A.

e z ranges over a finite set of constants Cons = {X,Y,...}. A constant is defined by a, possibly
recursive, constant definition x def p. A set A of constant definitions is called a constant decla-

ration. We here assume that, given a constant definition z def p, each occurrence of z in p is
guarded, i.e. x occurs only within subterms of the form a - ¢ of p. The set Cons(A) contains the
constants appearing in a declaration A.

The set of ACP terms generated by p is denoted by Terms(ACP) or just Terms when clear from the
context. A generic process is denoted by p,q,... The operators to built process terms are sequential
composition p-p, summation p+ p, parallel composition p || p and encapsulation §z(p) which renames
actions in H into 6. The constant 6 stands for deadlock. In a product p: g we will often omit the ‘dot’
(-). We take sequential composition (-) to be more binding than other operations and + to be less
binding than other operations. In case we are dealing with an associative operator, we also leave out
the parentheses.

Definition 3.5. (The LTS specified by an ACP term.) Suppose that an action set A, a communica-
tion function 7: A X A — A and a (recursive) constant declaration A are given. Then let — be the
transition relation defined by the action rules given in table 2. A term p € Terms(ACP) specifies the

LTS: 505(p) < (Terms(ACP), A, —, p). =

Usually, action rules like the ones presented in table 2 follow the structure of the process terms and
are therefore called SOS (acronym for Structured Operational Semantics) rules [Plo81].

Definition 3.6. (An LTS equivalence class model for ACP.) Let ~ be a given equivalence relation
on LTS. The equivalence class {g € LTS | g ~ S0S8(p)} is the interpretation of an ACP term
p € Terms(ACP) in the model LTS/ ~ . |

3.2 A Process Specification Language

a

a€ A o — T
p—T p—p
pg—gq pg—p-q
=T = p
N P p——0p

p+g—>T q+p—>T p+g—p q+p—p

p—p

plla—>9p'llg qllp—qllp

p—T

plla—>4q qllp—>gqg

If v(a,b) = c, then

!

I Sy g5y P T g T

pla—=7p"| ¢ pllg—=>T

p-5T ¢-2¢

rlla—=4¢ qllp—=¢

5 p—T a¢H p—p ag¢H
H a a
Ou(p) — T Ou(p) — Ou(p')
: PoT (XEpedr pSp (XEpea
Recursion = 2
X—T X —9p

Table 2: SOS rules for Terms(ACP).

6 4 A DEFINITION FOR A SIMULATOR

4 A Definition for a Simulator

In definition 4.1 below we formalise a simulator as a 3-tuple Sim = (C, B, R) consisting of a conversion-,
branching- (menu) and a residue function. For technical convenience, we shall define the menu function
via the more compact branching function.

Definition 4.1. (Simulator.) Let L = {p',p?,...} be an enumerable set of process terms, let Act =
{a',a?,...} be an enumerable set of actions and let S = {s',s2,...} be an enumerable set of states.
The function triple Sim = (C, B, R) where

C:L—S (Conversion function)
B:SxAct—N (Branching function)
R:SxActxN—SU{L, T} (Residue function)

is a simulator (for language L) if

e C, B and R are computable functions, i.e. (total) recursive (in the sense of [Rog67]) with respect
to the enumerations of L, Act and S.

e For each s € S the menu set M(s) := {a; € Act x N|0 < ¢ < B(s,a)} can be computed
effectively. That is, there is a function M : N — N defined by

M(k) = CI({{1,4) |0 < < B(s*,a")})
that is recursive with respect to the enumerations of Act and S.!
e a; ¢ M(s) < R(s,a,1)= L forall s€S,a€Actand i € N.
O

The intuition of the functions C, B, R is as follows. The conversion function C : L — S maps a process
term in L to its initial (root) state in S.

The branching function B : S x Act — N computes, given a state s and an action a, the number of
outgoing a-edges of s. The branching function determines a menu set M(s) := {a; € Act x N |0 <
1 < B(s,a)} for each state in S. The menu set M (s) displays all the actions a € Act that appear as
labels on the outgoing edges of state s € S. These actions are indexed with a natural number z > 0
for linking them uniquely to their corresponding edges. This is needed to distinguish actions that are
the same but appear on different edges (non-determinism). We assume that the menu set is finite and
that it can always be computed in an effective way.

The residue function R : S x Act x N — SU {1, T} returns, given a state s and an action a, the
(next) state to which the i** outgoing a-edge of s leads. The range of R includes two special symbols
1 and T. R(s,a,i) = L means that the i** outgoing edge of state s is undefined (denoted by 1).
R(s,a,i) = T means that the :** outgoing edge of state s leads to a termination state denoted by
T (see definition 3.1). If a termination state is reached, the simulator stops the exploration. It is
assumed that the residue function is only defined on choices from the menu as is formalised in the
definition.

Definition 4.2. (Polynomial simulator.) A simulator Sim = (C, B, R) is polynomial if the functions
C,B,R and M can be computed in time that is polynomial with respect to the size of terms in L,

Act, S and N.
O

!The canonical index (CI) of § is 0 and of {k1,k2,...,k;} it is the number 251 + 22 4 . 4 s¥1. An ordered pair
(k,1) is coded by 2(k? + 2kl + 1% + 3k +). See [Rog67].

5 An Example of a Simulator

Most simulator tools [CPS90, Eer91, vE89, Tre89, Vel93, SPE92] for process languages are imple-
mented via action (SOS) rules. An exception is the simulator for uCRL, developed by EMILE VER-
SCHUREN [Ver92], which is based on rewriting gCRL terms into head normal form.

As an example, we instantiate a simulator for ACP via the SOS rules given in table 2. This example
is a simplification but gives the underlying idea of the working of most existing simulator tools.

Simulator 5.1. (SOS simulator for ACP.) Let A = {a,b} and A = {P < abX + aa + b5, X &' a}.

Define a simulator Sim = (C, B, R) for Terms(ACP) as follows:
e S=1L = Terms(ACP), Act = A.
e C(p)=pforallpel

e Let Succ(p,a) :={p'|p =, p'} be the a-successor set of state p € S, where — is defined by
the action rules in table 2.

- B(p,a) = |Succ(p,a)|.

— Let <: Terms(ACP) x Terms(ACP) be an arbitrary but fixed strict ordering® on ACP
terms. Then define the residue function by
R(p,a,i) =p' ifVj. (i <j < p' <p’ and p’,p/ € Succ(p,a)).
The intuition is that R(p,a,s) is the i** element in the set Succ(p,a) with respect to the
<-ordering. For easy understanding of the working of this simulator that will be explained
below, we assume that the <-ordering satisfies: ¢ < b < X < bX.

O

Now let us try to understand the working of simulator 5.1. Let P e 4bX + aa + b6 (with X def a)
be a term in L that we want to explore with simulator 5.1. The initial state of process P is given by
the term C(P). The menu of C(P) is given by M (C(P)) = M(P) = {a1,a2,b1} expressing that the
initial state of P has three outgoing edges denoted by a1, ay and b;. By selecting the edge a;, the next
state is given by R(P,a,1) = a because a < bX. By selecting the edge as, we have R(P,a,2) = bX.
By selecting by, we enter a deadlock state: R(P,b,1) = é. This procedure can be repeated recursively
as pictured in figure 1 until a termination (T) or a deadlock (6) state is reached.

Without proof we remark that all the functions of simulator 5.1 can be computed in polynomial
time.

Proposition 5.2. Simulator 5.1 is polynomial. O

6 Defining a Session with a Simulator

A session of a term p with a simulator Sim = (C, B, R) is obtained by selecting an element a; from
the menu M (C(p)) and repeating this procedure recursively for the ‘next’ state given by the state
R(C(p),a,1).

Definition 6.1. (A session with a simulator.) Let Sim = (C, B, R) be a simulator for L with action
set Act and state set S. A session ¢ of a term p € L with simulator Sim is one of the following
alternating sequences:

2 A strict ordering is a binary relation that is transitive, irreflexive and total.

8 6 DEFINING A SESSION WITH A SIMULATOR

P abX +aa+b6, X €a

C(P)=P
M(P) = {al,a2,b1}

R(P,a,1)=a
M(a) = {a:1}

R(P,a,2) = bX
M(bX) = {b:}

R(P,b,1)=6
M(6) = {}

al bl

R(bX,b,1) = X
M(X) = {a1}

Figure 1: The working of the example simulator.

1. M(s®) ad M(s') M(s™) if M(s™) # 0 (partial session)

2. M(s%) a? M(s') M(s™) if M(s™) =0 (deadlock session)

3. M(s%) ad M(s') M(s™) a® if R(s™,a™,i") = T (lermination session)
where

a

Example 6.2. Below all the simulation sessions of P L 4bX +aa+bs (where X ef a) with simulator
5.1 are summerised.

{a1,a9,b1} partial
{a1,a2,b1} a1 {a1} partial
{a1,a2,b1} a1 {a1} a1 terminated
{a1,02,b1} az {b1} partial

{a1,a2,b1} ap {b1} b1 {a:1} partial
{a1,a2,b1} a2 {b1} b1 {a1} a1 terminated
{a1,a2,b:} by {} deadlock

NS ot W

For example, simulation session 7 above expresses that the initial state of the process graph of the
process P has two outgoing a-edges and one outgoing b-edge. By selecting the b-edge the process
evolves in a deadlock state. (End example.)

7 The Semantics of a Simulator

7.1 Sessions and Simulations

Definition 7.1. (Session set of a term induced by a simulator.) Let Sim = (C, B, R) be a simulator
for L. The session set of a process term p € L induced by Sim is given by

SESsim (p) = {¢ | ¢ is a simulation session of p with Sim }.

O

Definition 7.2. (Equivalence on terms induced by a simulator.) A simulator Sim = (C,B,R) in-
duces an equivalence =g;, on L as follows:

P =Sim ¢ <> SESs5im(p) = SESsim(q) for all p,q € L.

O

In the following, we show that if we leave out the menus in a session set we still have the same
identifications on process terms.

Definition 7.3. (Simulation.) Let ¢ be a session with a simulator. Define a simulation ¥ as follows:

er e af L if g = M(s%) af, M(s') ... af, ", M(s")
epEal . af tif g = M(s") af, M(s') ... af) M(s™) af,.

a

In words, a simulation ¥ is defined as session ¢ where the menus are left out. In case ¢ is a termination
session, a termination symbol } is appended. The empty stmulation A corresponds to the simulation
session ¢ = M (s°) where the menu of the initial state is displayed but no choice has yet been made.

Definition 7.4. (Simulation set induced by a simulator.) Let Sim = (C, B, R) be a simulator for L.
The stmulation set of a term p € L induced by Sim is given by the set

SIM sim (p) = {@| ¢ € SESs5im(p)}-

In respect with example 6.2, we have
SIMSim (P) = {A, a , a1a1'|'7 az, a2b1 , (1261 alT, bl }
Theorem 7.5. Let Sim = (C, B, R) be a simulator for L. For every p,q € L, we have that

SIMSim (p) = SIMSzm(q) — SESSim (p) = SESSzm(q)

10 8 SOUNDNESS AND COMPLETENESS OF A SIMULATOR

7.2 The LTS Explored by the Simulator

Below we give a possible definition of the LTS of a term that is explored by a simulator.

Definition 7.6. (The LTS of a term explored by a simulator.) The LTS of a term p € L ezplored by
a simulator Sim = (C, B, R) is given by LTS gim(p) = (S, Act,—, (A, C(p))) where — is defined by
the following rules (one for each a € Act,7 € N;s € S,0 € (Act x N)*):

(o,8) =T if R(s,a,7) =T
(0,5) = (0a;, R(s,a,)) if a; € M(s) and R(s,a,i) # T

O

This definition shall be used to formalise a semantic criterion for simulators in section 9. Note that
LTS gim(p) is always a tree and therefore we often call it the simulation tree of p.

In figure 2, one can see that a state, say ¢, in the simulation tree consists of two components
g = (0,). The first component o € (Act x N)* is the sequence of choices (simulation) leading to ¢. o
can be considered as a unique identifier for state g. The other component s € S is the information for
computing the next transitions of g. Note that once the simulation tree is built the second component
(s) can be left out.

The LTS of term P explored by simulator 5.1 is given in figure 2.

Corollary 7.7. Let Sim = (C, B, R) be a simulator for L. For every p,q € L, the following statements
are equivalent:

1. SES gim(p) = SES sim(q)-
2. SIM gim (p) = SIM sim (q).
3. LTS s5im(p) = LTS 5im (q).

4. p =gim q (by definition).

8 Soundness and Completeness of a Simulator

In this section we develop the machinery for relating the term-identification of a simulator with the
term-identification of the well-known process models which have been developed in process algebra
[Gla90]. The following definition says that a simulator Sim is sound with respect to a process model
M if the processes identified by Sim are also identified by M.

Definition 8.1. (Soundness.) A simulator Sim for a language L is sound with respect to a model M
if for all p,g € L it holds that p=gim ¢ => M Ep=g¢ O

Conversely, we say that a simulator is complete with respect to a model M if the processes identified
by M are also identified by Sim.

Definition 8.2. (Completeness.) A simulator Sim for language L is complete with respect to a model
M if for all p,q € L it holds that M Ep =g = p =gim ¢. O

The following definition gives insight in how the SOS simulator from section 4 is related with the
graph isomorphism model (LTS/~) and the bisimulation model (LTS/ =).

11

Figure 2: LTS gim(P) where P < 0bX + aa + b6, X ey,

Proposition 8.3. Let Sim be simulator 5.1.
1. Sim is sound with respect to LTS/~ as given in definition 3.6.
2. Sim is not complete with respect to LTS/ ~.
3. Sim is sound with respect to LTS/ = .

4. Sim is not complete with respect to LTS/ = .

Proof.

1. Straightforward by careful inspection of the definitions of simulator 5.1 and the graph isomor-

phism model LTS/~ .

2. LTS/ ~= aX + ab = aa + ab. But Sim distinguishes them: a1b1 € SIM gin(aX + ab) and
a1by & SIM gim(aa + ab). Note that this distinction is caused by the fact that simulator 5.1
respects the ordering a < b < X.

3. Immediate by 8.3.1 by using the fact that isomorphism is strictly finer than bisimulation (in
symbols: ~C <).

4. Immediate by 8.3.2. Or as follows: LTS/ < |=aa+ aa = aa + a(a + a). But Sim distinguishes
them: M (aa + aa) = {a1} and M(aa + a(a + a)) = {a1,a2}.

O

Proposition 8.3 says that simulator 5.1 induces an equivalence that is strictly finer than graph isomor-
phism and bisimulation. The following theorem states that in theory there exists a simulator that is
sound and complete with respect to bisimulation semantics.

Theorem 8.4. There exists a simulator Sim = (C, B, R) for Terms(ACP) that is sound and complete
with respect to LTS/ == as given in definition 3.6. |

12 8 SOUNDNESS AND COMPLETENESS OF A SIMULATOR

We shall proof this theorem by constructing a simulator with the required properties. In doing this
we need a projection operator which is given by the following syntax:

p:=... |m(p) withnéeN

The terms of ACP extended with a projection operator is denoted by Terms(ACP,PR). The opera-
tional semantics of the projection operator is given by the following SOS rules (one for each n € N

and a € A):

p—Pp

Tpt1(P) — 7, ()
Intuitively, 7, (p) allows p to perform n moves freely, and then stops it. The following lemma is the
core of the proof of theorem 8.4.

Lemma 8.5. There exists a computable coding function
.7 Terms(ACP,PR) — N
such that for all terms p,q € Terms(ACP,PR) and all n,m € N it holds that
" (p)T = "Tm(q)" = LTS/ 2 |= mn(p) = 7m(q)-
Now we can construct a simulator that is sound and complete with the bisimulation model.
Proof of theorem 8.4. Define a simulator Sim = (C, B, R) for Terms(ACP) as follows:

e Let S = Terms(ACP) x N and let Act = {a} where a is an arbitrary but fixed action (not
necessary in A). A state (p,n) € S determines the current projection m,(p) of the simulated
process p.

e C(p) = (p,1). The initial state of p is determined by its first projection 1 (p).

e B((p,n),a) = "mn(p)”. This definition implies that M((p,n)) = {a1,az,...,a x (p)7}. So, the
number of elements in the menu is exactly the encoding of the n* projection of p. By lemma
8.5 we know that this coding takes care that bisimilar terms are identified.

(pan + 1) if S '_71-71(p)_| and rﬂ-n(p)—l 72 ’_7rn+1 (p)-l
e B((p,n),a,i)=| T if "1a(p)" = "Tnga(p)”
L otherwise
The residue function takes care that the depth of the projection is incremented by one in each
step of the simulation. Note that a termination symbol (T) is returned when the projection
reaches a fixed-point: 7, (p) = 7r11(p).

O

So, the intuition of the bisimulation simulator is that the cardinality of the menu that is displayed
after n steps in the simulation of term p, exactly corresponds to the encoding of lemma 8.5. This
encoding takes care that bisimilar terms are identified. It is obvious that the working this simulator
goes far beyond any reasonable intuition and in the next session we shall develop an criterion to rule
out such simulator definitions.

On a scratch-pad we have proven a similar result as theorem 8.4 for graph isomorphism. However
we have not included the proof in this paper because it is very technical and does not really deepen
our insights here.

We conjecture that the computational complexity of bisimulation simulators and isomorphism sim-
ulators is quite involved as stated below.

Conjecture 8.6. If there exists a polynomial simulator Sim for Terms(ACP) that is sound and
complete with respect to LTS/ < or LTS/ ~ then NP=P.

13

9 The Non-Compatibility of a Bisimulation Simulator

We find that the working of the bisimulation simulator given in the previous section goes beyond any
‘reasonable’ intuition. And therefore we want to rule out such simulator definitions. This can be done
by imposing an extra semantic criterion, besides soundness and completeness, on the definition of a
simulator as follows.

Definition 9.1. (Compatibility of a Simulator.) Let LTS/~ be a model for language L given by the
interpretation function I : L — LTS/~ . A simulator Sim for language L is compatible with LTS/~
if for all p € L it holds that LTS s;m(p) € I(p).

We say that a simulator Sim respects a model M if Sim is sound, complete and compatible with

M. O

This definition says that a simulator is compatible with an equivalence class model LTS/~ if for each
simulated term p the corresponding simulation tree LTS g;m(p) is contained in the equivalence class
interpretation I(p) of p.

Notation 9.2. We write a™ for the n-fold sequential composition of an a € A with itself: a-a...-a.
We write Y., p; (where p; € Terms(ACP)) as a shorthand for p; +ps ...+ p,. As a special case, we
let Z?:l p; denote 6. |

Theorem 9.3. There are (finite) A, v, A such that there is no simulator Sim = (C, B, R) for language
Terms(ACP) that respects (is sound, complete and compatible with) LTS/ = . O

Proof. In [BK83, Tau89]it is shown that we can choose finite 4, v, A in such way that we can exhibit
a term U2CM,, € Terms(ACP) (for each n € N) whose LTS behaves like a universal 2-counter machine

on input n. Then LTS/< = U2CM, = X (where X . Xe€ A) iff the counter machine diverges.
This is a nonrecursive problem [HU79]: let K be a recursively enumerable but not recursive subset of
N, then n ¢ K < LTS/< E U2CM, = X.

Now suppose Sim = (C, B, R) is a simulator of the intended kind and let B(C(X),a) = k with

k > 1. And define the process Y = Ef;l U2CM, - b* by using notation 9.2. Then we have:

en € K= B(C(Y),a) > k + 1, because the initial state C(Y") of process ¥ has at least &+ 1
outgoing a-edges by compatibility with LTS/ <= .

e n¢g K= B(C(Y),a) =B(C(X),a) =k by completeness.

Combining the last two implications, we have B(C(Y),a) = k <= n ¢ K which establishes that B
can not be computable. O

We conjecture that we can prove similar (negative) results as theorem 9.3 in a setting of LTS/ ~pr
(failure trace), LTS/ ~pg (ready), LTS/ ~F (failure), LTS/ ~cr (completed trace).? However, there
do exist simulators respecting LTS/~ (trace) and LTS/ ~pgr (ready trace) as will be shown in the
next section.

10 The Compatibility of a Trace Simulator

In this section we show that there exist simulators which respect trace semantics. For technical
conveniance we shall use an LTS model which incorporates an empty process (¢) and therewith is
slightly different from the LTS model given in definition 3.5. The empty process can be added to the
syntax of ACP by the following production rule:

3The definition of these equivalences can be found in [Gla90].

14 10 THE COMPATIBILITY OF A TRACE SIMULATOR

p:=... e
The terms of ACP extended with € is denoted by Terms(ACP,).

Definition 10.1. (Another LTS model for ACP.) Let — be the transition relation defined by the
SOS rules given in table 3. Then, we define the LTS: SOS(p) := (Terms(ACP,), A s, —,p) as the

interpretation of a term p € Terms(ACP) in the LTS model. |
€ € v, T
a€A Ca s
a) Vv u)
pP—p p—T g—49q
pa—p 4 pa—dq
w /
—
+ p p

ptg—p q+p—>p

p—7p

pla—=7pllg gllp—qlp

pi)‘r qLT

Vi
pllg—T

a ! b 7
Pp—p qQ—4q

e 7a,b)=c
plla— 1| ¢q

p—p u¢H

on 92(p) = O (0

p-p (XEpea

Recursion

X 59

Table 3: SOS rules for Terms(ACP,).

Definition 10.2. (Trace equivalence.) The trace set of an LTS: g = (5, L, —, s) is given by the set

n

Tr(g) = {w| s =25}
Two LTS’s g,h € LTS are trace equivalent, notation g ~¢ h iff Tr(g) = Tr(h). |
Definition 10.3. (A Trace Model for ACP.) Define the equivalence class:

{g € LTS | g ~7 SOS(p)}

as the interpretation of a term p € Terms(ACP) in the trace model LTS/ ~7 . i

15

Figure 3: LTS gim(P) where P < 0bX + aa+ b6, X ey,

Notation 10.4. Let {pg,...,pn} be a set of ACP terms. We write Z p as a shorthand for
pe{po,..spn}
Ppo + ...+ pn. As a special case, we let Zp stand for é. O
ped

Theorem 10.5. There exist a simulator respecting the trace model LTS/~ as given in definition
10.3. a

Proof. Define a simulator Sitm for Terms(ACP) as follows.
o Let S = Terms(ACP,.) and Act = AU {/}.
e C(p)=pforallpel.

o Let Succ(p,u) = {p' | p — p'} be the u-successor set of p € S, where — is defined by the
action rules in table 3.

_B(p7u):<o if p /=)

1 ifp =
Yoo ifi=1
— R(p,u,7) = | peSuce(p,u) . Note how the residue function is defined by the
il otherwise

Y notation (notation 10.4). The X notation is used for taking the alternative composition
of all a-successor states of p. This is the way how this simulator determinises the next state.

To guide the intuition of this simulator, the simulation tree of term P 4 0bX +aa + b6 (with X def a)
is displayed in figure 3. O

The proof of the following theorem shows that things get more involved when we do not have an

empty process at our service.

Theorem 10.6. There exist a simulator respecting the trace model LTS/ ~7p as given in definition
3.6. |

Proof. Define a simulator Stm = (C, B, R) for L = Terms(ACP) as follows.
e Let S = Terms(ACP) and let Act = A.
e C(p)=pforall pelL.

e Let — be the transition relation defined by the action rules of table 2.

16 11 THE SEMANTICS OF AN EFFICIENT SIMULATOR

0 if s/
- B(s,a)=| 2 if(s5d£T)As-5T
1 otherwise

— Let Succ(p,a) = {p’ | p —= p'} be the a-successor set of p € S.
T if Suce(s,a) = {T}
* R(s,a,1) = Z s’ otherwise
s’ €Succ(s,a)
T f(s—>sZ£T)As—T
* R(s,a,2) = (L otl(lerwise z1))
* R(s,a,1)=Lifi>2.

There also exists a simulator respecting ready trace semantics.

Definition 10.7. (Ready Trace.) The ready trace set of an LTS: g = (S, L, —,s) is given by

ready-trace(g) = {Aoa14; ...a, A, |
350, ...y Sn 15 =50 — 51 D 5, 8 — = a€ A;,0<i<n}.

Two LTS’s g, h € LTS are ready trace equivalent, written g ~gr h, iff ready-trace(g) = ready-trace(h).
O

Theorem 10.8. There exists a simulator Sim for language Terms(ACP) respecting LTS/ ~grr (ready
trace semantics) as given in definition 3.6. O

Proof. Very technical and omitted. 0O

We expect that simulators respecting LTS/ ~7 or LTS/ ~pgr are in theory computationally in-
tractable as they are always based on some notion of transition determinisation. From automata
theory, we know that in general ‘determinisation algorithms’ are PSPACE-complete (see [HU79]).
But in [HUT9] it is also claimed that these determinisation algorithms only use exponential space in
rare circumstances. This suggests that the preformence of trace based simulators may be not that
bad in practice.

11 The Semantics of an Efficient Simulator

The only practical (polynomial) simulator we encountered in the previous sections was the SOS
simulator (simulator 5.1). However, we could not find a reasonable model with respect to this simulator
is sound and complete. So the existence of a reasonable semantic characterisation of simulator 5.1 is
still an open problem.

In this section, we show there exists a polynomial simulator that is sound and complete with respect
to an equational term model that is strictly weaker than bisimulation and graph isomorphism.

In table 4, we can find an equational system ACP™ that is a weakened version of the standard
equations of ACP (table 5).

The equations in Table 5 and Table 4 contain two auxiliary operators || (left-merge) and |
(communication-merge) for axiomatising the ||-operator. p|| g is p || ¢ but with the restriction that the
first step comes from p, and plq is p || ¢ but with a synchronisation action as the first step. The terms
of ACP extended with | and | is denoted by Terms(ACP,AUX). For handling recursively declared

Al™

A2
A4
A5
A6T

A7

CF1
CF2

CM1
CM2
CM3
CM4
CM5
CM6
CM7
CMS8
CM9

D1
D2
D3
D4

ax+by=by+axr ifa#bd
ar+b=b+ax ifaZb
a+by=by+z ifa#Zbd
at+y=y+z ifa#bd
(Z+y)+z=z+(y+2)
(z+y)z=zz+yz
(zy)z = z(yz)

r+é==z
btz==zx
br =46

alb = 7y(a,b) if y(a,b) |

a|b =6 otherwise

zlly=zly+yllz+zly
a|| z=az
azlly=a(z|y)
+ylz=zllz+yl|-
az|b = (alb)z
albz = (alb)z

az|by = (a|b)(z || y)
(z+y)lz==|z+ylz
z|(y +2) = zly + 2|z

Op(a)=a ifagH

Om(a) = 1f ac H

Om (z y) O (z) + Om(y)
Ou(z -y) = Ou(x) - Ou(y)

Table 4: Module ACP™~

17

18

11 THE SEMANTICS OF AN EFFICIENT SIMULATOR

Al
A2
A3
A4
Ab
A6
AT

CF1
CF2

CM1
CM2
CM3
CM4
CM5
CM6
CM7
CMS8
CM9

D1
D2
D3
D4

rty=y+z
(e+y)+z=a+(y+2)
r+r==zx
(z+y)z=xz+yz
(zy)z = z(y2)
z+b=1z

bx =106

alb = 7(a,b) if 1(a,b) |

alb =46 otherwise

zlly=zlly+yllz+aly
all ¢ =azx

az| y =a(z |l y)
+y)llz==zllz+yl>=
az|b = (alb)z
albz = (a|b)z

az|by = (alb)(z || y)
(z+y)lz=z|z+y|z

z|(y +z) = zly + 2|z

Og(a)=a ifa¢g H
Ou(a)=6 ifa€H

Ou(z +y) = 0m(z) +n(y)
On(z -y) =0m(z) - Om(y)

Table 5: Module ACP

REC X=p f(XEpea

Table 6: Module REC.

PR1
PR2
PR3
PR4

m(a) =a

m(az) =a

Tnt1(az) = a - m,(z)

Ta(z +y) = mn(z) + Tn(y)

Table 7: Module PR.

19

mn(z) = m,(y) foralln >1
zT=y

AIP

Table 8: Module AIP.

ACP processes we use the modules REC (Table 6), PR (Table 7) and AIP (Table 8). Modules ACP
and ACP~ extended with REC, PR and AIP are denoted by ACP4 and ACP?; respectively.

We let EACP; be the equivalence relation induced by module ACP#
pEACP;E g ACP,Fp=gq.

Theorem 11.1. There exists a polynomial simulator that is sound and complete with respect to

Terms/ =5cp- - m|
#

For proving this theorem we introduce the following definition.
Definition 11.2. (Ordered head normal form.) A term p € Terms(ACP,AUX) is in ordered head

formif pis of the form p = Z Z ap’ orp = Z Zawhere B C A, n, >0,p, € Terms(ACP,AUX).

a€B i=1 a€B i=1
Actions a € B are called head actions and term p! is the residue term of the i** occurrence (from left
to right conform notations 9.2, 10.4) of head action @ in the ordered head form of p. O

For example, terms aa + aa + ba and ba + aa + aa are in ordered head form. Term aa + ba + aa is not

in ordered head form.
Proof of theorem 11.1. Define Sim = (C, B, R) for Terms(ACP) as follows.
e Let Act = A and let S = Terms(ACP, AUX).

» C(p) =»p.
o Tt is easy to see that with the equations of ACP™ and REC we can rewrite a term p into ordered
head form p = Z Z apfl or p= Z Za in polynomial time. Then define:

a€B i=1 a€B i=1

— B(p,a) = n,.
Za
> ant

The intuition of the simulator is as follows. Given an action a and a term p, the branching function
B computes the number of times action a appears as head action in the ordered head form of p. And
given an action @, a term p and a number z > 0, the residue function R returns the residue term of
the ** occurrence (from left to right) of action a in the ordered head form of term p.

The simulation tree of term P %< abX + aa + b6 (with X def a) is displayed is given in figure 4. 0O

”d>
1l

”d>
1l

Z
— R(p,a,i) = €Bi
3

20 12 SUMMARY AND CONCLUSION

Figure 4: LTS gy, (P) where P def abX + aa + b6, X def a.

12 Summary and Conclusion

The table below summerises the results of this paper; it shows the existence or non-existence of sim-
ulators respecting (being sound, complete and compatible with respect to) the well-known process
models that have emerged from process theory [Gla90]. In addition, information is given about the
computational complexity of a simulator in question: ‘P’ indicates the existence of a polynomial simu-
lator and ‘=P’ indicates that we could not find a polynomial simulator with the required properties. A
question mark (?) in the table expresses that the existence or the non-existence of a certain simulator
is conjectured (Yes?, No?). The symbols I, B, RT, FT, R, F, CT, T are taken from [Gla90] and
resp. stand for the models LTS/~ (graph isomorphism), LTS/ < (bisimulation), LTS/~ gy (ready
trace), LTS/ ~pr (failure trace), LTS/ ~pg (ready), LTS/ ~F (failure), LTS/ ~cT (completed trace),
LTS/~ (trace).

I B | RT | FT R F CcT T
sound Yes | Yes | Yes | Yes | Yes | Yes | Yes? | Yes

sound & Yes | Yes | Yes | Yes? | Yes? | Yes? | Yes | Yes
complete
=P | =P | =P | =P -P -P =P | =P

sound & Yes [No | Yes | No? | No? | No? | No? | Yes
complete &
compatible
-P|-P|-P | =P -P -P -P | =P

One can make up from the table above there do not exist simulators respecting B as already claimed
by theorem 9.3. In contrast with this, it is displayed in the first column that there does exists a
simulator respecting graph isomorphism. However, we do not expect that simulators respecting graph
isomorphism are computationally tractable as indicated by ‘=P’ at the bottom of the first column.
Furthermore one can read from the table that it is conjectured that there are no simulators respecting
FT, R, F and CT. At last, it is conjectured that there do exist simulators respecting RT and T.

REFERENCES 21

Although it is very likely that in theory these simulators are computationally intractable, they may
perform well in practise as already claimed in section 9.

The first row of the table says there are simulators that are sound with graph isomorphism and
thus with all the other models. For instance by proposition 8.3 we know that simulator 5.1 is sound
with respect to all the models in the table. All these observations from the table presume that the
equivalence induced by a practical simulator must be less identifying than graph isomorphism. As
an illustration of this presumption, we presented an efficient (polynomial) simulator which is less
identifying than graph isomorphism in the previous section.

References

[BK83] J.A. Bergstra and J.W. Klop. The algebra of recursively defined processes and the algebra
of regular processes. Report IW 235, CWI, Amsterdam, 1983.

[BW90] J.C.M. Baeten and W.P. Weijland. Process Algebra. Cambridge Tracts in Theoretical Com-
puter Science 18. Cambridge University Press, 1990.

[CPS90] R. Cleaveland, J. Parrow, and B. Steffen. A semantics-based tool for the verification of
finite-state systems. In Proceedings of the Ninth IFIP Symposium on Protocol Specification,
Testing and Verification, Lecture Notes in Computer Science, pages 287-302. North-Holland,
1990.

[Eer91] H. Eertink. SMILE detailed design document. @ LOTOSPHERE technical report
Lo/WP2/T2.2/UT/N0012, University of Twente, 1991.

[Gla90] R.J. van Glabbeek. The linear time — branching time spectrum. In J.C.M. Baeten and
J.W. Klop, editors, Proceedings CONCUR 90, Amsterdam, volume 458 of Lecture Notes in
Computer Science, pages 278-297. Springer-Verlag, 1990.

[HU79] J.E. Hopcroft and J.D. Ullman. Introduction to Automata Theory, Languages and Compu-
tation. Addison-Wesley, 1979.

[Plo81] G.D. Plotkin. A structural approach to operational semantics. Report DAIMI FN-19, Com-
puter Science Department, Aarhus University, 1981.

[Rog67] H. Rogers. Theory of Recursive Functions and Effective Computability. McGraw-Hill Book
Co., 1967.

[SPE92] SPECS. Intermediate report on methods and tools in CRL/MR. Document D5.19, European
project RACE 1046: Specification Environment for Communication Software (SPECS), 1992.

[Tau89] D.A. Taubner. Finite representation of CCS and TCSP programs by automata and Petri
nets, volume 369 of Lecture Notes in Computer Science. Springer-Verlag, 1989.

[Tre89] J. Tretmans. HIPPO: a LOTOS simulator. In van Eijk et al. [vEVD89], pages 391-396.
[vE89] P.H.J. van Eijk. The design of a simulator tool. In van Eijk et al. [vEVD89], pages 351-390.

[Vel93] G.J. Veltink. The PSF toolkit. In Computer Networks and ISDN Systems, number 25.
North-Holland, 1993.

[Ver92] J.A. Verschuren. A simulator for #CRL in ASF+SDF. Report P9203, Programming Research
Group, University of Amsterdam, 1992.

[VEVD89] P.H.J. van Eijk, C.A. Vissers, and M. Diaz, editors. The Formal Description Technigque
LOTOS. North-Holland, Amsterdam, 1989.

