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Abstract

This paper presents a possible formalisation of the notion simulator tool for process languages like ACP�
CCS� ���CRL� LOTOS and PSF� First we give precise de�nitions for the notions simulator and simulation�
Then we can investigate the equivalence that a simulator induces on the explored process terms� This is
done by considering two processes� say p and q� equivalent if each simulation of p is also a simulation of
q and vice versa� It is proven that there is no �reasonable� simulator inducing bisimulation equivalence�
Furthermore it is demonstrated that simulators inducing coarser equivalences� e�g� ready� failure and trace
equivalences� are unlikely to be computationally tractable� Our conclusion is that a practical simulator
induces an equivalence that is �ner �less identifying� than bisimulation and even �ner than graph isomor	
phism�
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 �Semantics��
���� CR Categories
 D���
 �Testing and debugging�� F���� �Semantics��
Keywords � Phrases
 Head Normalisation� Labelled Transition System� Simulation� Simulator� Structured
Operational Semantics�
Note
 The author is partly supported by the European Communities under RACE project no� 
��
�
Speci�cation and Programming Environment for Communication Software �SPECS�� This document does
not necessarily re�ect the view of the SPECS project�

� Introduction

Nowadays the so�called simulator tools can not be thought away in the validation of concurrent system
speci�cations� For instance a considerable amount of simulator tools have been developed in the area
of process algebra� In this setting a simulator can be considered as a tool that is used to explore the
underlying state space of process term in a certain language� one can think of simulators for CCS
�CPS��	
 ���CRL �SPE�

 Ver�
	
 LOTOS �Eer��
 vE��
 Tre��
 vEVD��	 or PSF �Vel��	� The basic
operation of these simulators is as follows� From a given process term the set of one�step transitions
is computed� Subsequently one of these transitions is chosen and the next state
 mostly given as a
process term again
 is returned� Then the whole procedure can be repeated recursively for this next
state�
A considerable amount of manpower has already been invested in building simulator tools like the

ones mentioned above� But
 it is remarkable that �as far as we know� there is no standard theory
about simulator tools� For instance
 consider the following questions one can ask about simulator
tools�

�� What is a simulator �tool�
 i�e� can we de�ne the notion of a simulator formally� Although there
are many simulator tools around now
 the question what a simulator actually is has not been
answered yet�


� What is the semantics of a simulator and how does it relate with established process models
like the bisimulation model� For example consider the two CCS processes a�a�� � a�a��

and a�a�� � a��a�� � a��� of which it is well�known that they are bisimilar� However a

�




 � INTRODUCTION

session with the CWB �Concurrency Workbench� �CPS��	 that is displayed in table �
 shows that
the simulator does not respect bisimulation semantics� I�e� the CWB does not identify bisimilar
processes as already the �rst menus di�er
 e�g� M�a�a�� � a�a�����	
 ��� a ���� a��
 and
M�a�a�� � a��a�� � a����� �	
 ��� a ���� a��� �
 ��� a ���� a�� � a��
�

Clearly this simulator is more concrete than bisimulation semantics as it distinguishes two

The Edinburgh Concurrency Workbench

�Version ��	� October 	� 	����

Command
 bi P

Agent
 a�a�� � a�a��

Command
 bi Q

Agent
 a�a�� � a��a�� � a���

Sim� sim

Agent
 P

Simulated agent
 P

Transitions


	
 ��� a ���� a��

Sim� 	

��� a ����

Simulated agent
 a��

Transitions


	
 ��� a ���� �

Sim� sim

Agent
 Q

Simulated agent
 Q

Transitions


	
 ��� a ���� a��

�
 ��� a ���� a�� � a��

Table �� A session with the Concurrency Workbench�

a�transitions in the second menu� The question whether there exist practical simulators that
make the same identi�cations as the well�known bisimulation model does
 is the main topic of
this paper� This question is useful because if the answer is positive then we can implement
simulators that do not distinguish more that bisimulation semantics� This would then imply
the existence of a simulator that does not confuse us with more details about processes than
bisimulation semantics allows�

In this paper
 we try to answer the two questions stated above� As a possible answer the �rst question

we formalise the notion of a simulator by de�ning it as a triple Sim � �C�M�R� of a conversion��
menu� and a residue function� The conversion function C maps a process term that is fed into the



�

simulator to the initial state of its exploration� The menu function computes the set of all possible
one�step transitions of a state in the exploration� The residue function R computes the next state
when one of the transitions in the menu is chosen� Then a simulation of a term p can be formalised
as an alternating sequence of menus o�ered by the simulator and choices c�� c�� � � � from these menus

i�e� M�C�p�� c� M�R�C�p�� c��� c� M�R�R�C�p�� c��� c��� � � �
As a possible answer to the second question
 we de�ne the semantics of a simulator as the equivalence

that a simulator Sim � �C�M�R� induces on process terms as follows� The equivalence induced
by a simulator is obtained by considering two process terms p and q equivalent exactly when each
simulation of p is also a simulation of q and vice versa� We shall prove that in general there do not exist
simulators respecting bisimulation equivalence� Furthermore
 we conjecture that simulators inducing
coarser �trace based� equivalences have a non�polynomial computational complexity� Our conclusion
is that the equivalence induced by a practical simulator must be �ner than bisimulation and even �ner
than graph isomorphism�

� Acknowledgements

I am very grateful to Jan Bergstra for being the person really understanding and backing up my ideas�
Without his help and mental support this paper would have never reached its current form�

� Preliminaries

��� Labelled Transition Systems

In this paper
 we restrict ourselves to the �interleaving paradigm� and consider labelled transition
systems as the basic model for processes�

De�nition ���� A labelled transition system �LTS� is a ��tuple T � �S�L���� r�� where�

� S is a set of states�

� L is a set of transition labels�

� �� S � L � S � f�g is the transition relations where � is a distinguished element called the
termination state�

� r is the root state�

The domain of LTS�s is denoted by LTS � �

An element �s� a� s�� ��� is called a transition
 and is usually written in a more �pictorial� notation

s
a�� s�� In this pictorial notation
 the arrow �� is also called an edge� We shall use the following

notations for transitions�

Notation ���� ��� s
a�� s� for s a�� s� ��� �
� s

a�� for 	s� � s a�� s� ��� s
a

�
� for not s
a�� ���

s �
� for �a � L � s 
 a�� ��� s
a����an�� s� for s a��� a��� � � � an�� s�� �

A state s is called a termination state if s 
 �� A state s is called a deadlock state if s 

 � and s �
� �

De�nition ���� �Isomorphism�� Two LTS�s� g� h � LTS are isomorphic
 notation g � h� if there
exists a bijective mapping between their sets of states which preserves roots� termination states ���
and transitions� �

The notion of bisimulation equivalence plays a central role in this paper�



� � PRELIMINARIES

De�nition ���� �Bisimulation�� Let gi � �Si� Li���i� ri� �i � �� 
� be LTS�s� A relation R � S��S�
is a �strong� bisimulation between g� and g� if it satis�es�

� r�Rr��

� � if sRt and s
a��� s

�� then there is a t� � S� with t
a��� t

� and s�Rt��

� if sRt and t
a��� t

�� then there is a s� � S� with s
a��� s

� and s�Rt��

� � if sRt and s
a��� �� then t a��� ��

� if sRt and t
a��� �� then s a��� ��

LTS�s g� and g� are bisimilar� notation g� � g�� if there is a bisimulation between them� Note that
bisimilarity is an equivalence relation� �

��� A Process Speci�cation Language

As a running example
 we here present the language of ACP �BW��	� ACP is chosen as one of the
many algebraic formalisms for specifying processes �LTS�s�
 like CCS
 CSP and MEIJE
 because I am
the most familiar with it� But of course the other candidates can be used equally well�
We consider the following ACP syntax�

p �� � j p � p j p� p j p k p j a j �H�p� j x where

� a ranges over a �nite set of actions A�

� H � A�

� x ranges over a �nite set of constants Cons � fX�Y� � � �g� A constant is de�ned by a
 possibly
recursive
 constant de�nition x

def
� p� A set � of constant de�nitions is called a constant decla�

ration� We here assume that
 given a constant de�nition x
def
� p� each occurrence of x in p is

guarded� i�e� x occurs only within subterms of the form a � q of p� The set Cons��� contains the
constants appearing in a declaration ��

The set of ACP terms generated by p is denoted by Terms�ACP� or just Terms when clear from the
context� A generic process is denoted by p� q� � � � The operators to built process terms are sequential
composition p �p� summation p�p� parallel composition p k p and encapsulation �H�p� which renames
actions in H into �� The constant � stands for deadlock� In a product p � q we will often omit the �dot�
���� We take sequential composition ��� to be more binding than other operations and � to be less
binding than other operations� In case we are dealing with an associative operator
 we also leave out
the parentheses�

De�nition ��	� �The LTS speci�ed by an ACP term�� Suppose that an action set A� a communica�
tion function � � A�A� A and a �recursive� constant declaration � are given� Then let �� be the
transition relation de�ned by the action rules given in table 
� A term p � Terms�ACP� speci�es the

LTS� SOS�p�
def
� �Terms�ACP�� A���� p�� �

Usually
 action rules like the ones presented in table 
 follow the structure of the process terms and
are therefore called SOS �acronym for Structured Operational Semantics� rules �Plo��	�

De�nition ��
� �An LTS equivalence class model for ACP�� Let � be a given equivalence relation
on LTS � The equivalence class fg � LTS j g � SOS�p�g is the interpretation of an ACP term
p � Terms�ACP� in the model LTS� � � �



��� A Process Speci�cation Language �

a � A � a
a�� �

� �
p

a�� �
p � q a�� q

p
a�� p�

p � q a�� p� � q

� �
p

a�� �
p� q

a�� � q � p
a�� �

p
a�� p�

p� q
a�� p� q � p

a�� p�

k �
p

a�� p�

p k q a�� p� k q q k p a�� q k p�

p
a�� �

p k q a�� q q k p a�� q

If ��a� b� � c
 then

k �
p

a�� p� q
b�� q�

p k q c�� p� k q�
p

a�� � q
b�� �

p k q c�� �

p
a�� � q

b�� q�

p k q c�� q� q k p c�� q�

�H �
p

a�� � a 
� H

�H�p�
a�� �

p
a�� p� a 
� H

�H�p�
a�� �H�p

��

Recursion �
p

a�� � �X
def
� p� � �

X
a�� �

p
a�� p� �X

def
� p� � �

X
a�� p�

Table 
� SOS rules for Terms�ACP��



� � A DEFINITION FOR A SIMULATOR

� A De�nition for a Simulator

In de�nition ��� below we formalise a simulator as a ��tuple Sim � �C�B�R� consisting of a conversion�

branching� �menu� and a residue function� For technical convenience
 we shall de�ne the menu function
via the more compact branching function�

De�nition ���� �Simulator�� Let L � fp�� p�� � � �g be an enumerable set of process terms
 let Act �
fa�� a�� � � �g be an enumerable set of actions and let S � fs�� s�� � � �g be an enumerable set of states�
The function triple Sim � �C�B�R� where

C � L� S �Conversion function�
B � S� Act� N �Branching function�
R � S� Act � N � S � f���g �Residue function�

is a simulator �for language L� if

� C�B and R are computable functions
 i�e� �total� recursive �in the sense of �Rog��	� with respect
to the enumerations of L� Act and S�

� For each s � S the menu set M�s� �� fai � Act � N j � � i � B�s� a�g can be computed
e�ectively� That is
 there is a function M � N � N de�ned by

M�k�
def
� CI �fhl� ii j � � i � B�sk� al�g�

that is recursive with respect to the enumerations of Act and S��

� ai 
�M�s��� R�s� a� i� � � for all s � S� a � Act and i � N�
�

The intuition of the functions C�B�R is as follows� The conversion function C � L� S maps a process
term in L to its initial �root� state in S�
The branching function B � S� Act � N computes
 given a state s and an action a� the number of

outgoing a�edges of s� The branching function determines a menu set M�s� �� fai � Act � N j � �
i � B�s� a�g for each state in S� The menu set M�s� displays all the actions a � Act that appear as
labels on the outgoing edges of state s � S� These actions are indexed with a natural number i 	 �
for linking them uniquely to their corresponding edges� This is needed to distinguish actions that are
the same but appear on di�erent edges �non�determinism�� We assume that the menu set is �nite and
that it can always be computed in an e�ective way�
The residue function R � S � Act � N � S � f���g returns
 given a state s and an action a� the

�next� state to which the ith outgoing a�edge of s leads� The range of R includes two special symbols
� and �� R�s� a� i� � � means that the ith outgoing edge of state s is unde�ned �denoted by ���
R�s� a� i� � � means that the ith outgoing edge of state s leads to a termination state denoted by
� �see de�nition ����� If a termination state is reached
 the simulator stops the exploration� It is
assumed that the residue function is only de�ned on choices from the menu as is formalised in the
de�nition�

De�nition ���� �Polynomial simulator�� A simulator Sim � �C�B�R� is polynomial if the functions
C�B�R and M can be computed in time that is polynomial with respect to the size of terms in L�
Act� S and N�

�

�The canonical index �CI� of � is � and of fk�� k�� � � � � klg it is the number �k� � �k� � � � � � skl � An ordered pair
hk� li is coded by �

�
�k� � �kl� l� � �k � l�� See �Rog
���



�

� An Example of a Simulator

Most simulator tools �CPS��
 Eer��
 vE��
 Tre��
 Vel��
 SPE�
	 for process languages are imple�
mented via action �SOS� rules� An exception is the simulator for �CRL
 developed by Emile Ver�

schuren �Ver�
	
 which is based on rewriting �CRL terms into head normal form�
As an example
 we instantiate a simulator for ACP via the SOS rules given in table 
� This example

is a simpli�cation but gives the underlying idea of the working of most existing simulator tools�

Simulator 	��� �SOS simulator for ACP�� Let A � fa� bg and � � fP def
� abX � aa� b�� X

def
� ag�

De�ne a simulator Sim � �C�B�R� for Terms�ACP� as follows�

� S � L � Terms�ACP�� Act � A�

� C�p� � p for all p � L

� Let Succ�p� a� �� fp� j p a�� p�g be the a�successor set of state p � S� where �� is de�ned by
the action rules in table 
�

� B�p� a� � jSucc�p� a�j�
� Let �� Terms�ACP� � Terms�ACP� be an arbitrary but �xed strict ordering� on ACP
terms� Then de�ne the residue function by

R�p� a� i� � pi if �j� �i � j �� pi � pj and pi� pj � Succ�p� a���

The intuition is that R�p� a� i� is the ith element in the set Succ�p� a� with respect to the
��ordering� For easy understanding of the working of this simulator that will be explained
below
 we assume that the ��ordering satis�es� a � b � X � bX�

�

Now let us try to understand the working of simulator ���� Let P
def
� abX � aa� b� �with X

def
� a�

be a term in L that we want to explore with simulator ���� The initial state of process P is given by
the term C�P �� The menu of C�P � is given by M�C�P �� � M�P � � fa�� a�� b�g expressing that the
initial state of P has three outgoing edges denoted by a�� a� and b�� By selecting the edge a�
 the next
state is given by R�P� a� �� � a because a � bX� By selecting the edge a�
 we have R�P� a� 
� � bX�
By selecting b�� we enter a deadlock state� R�P� b� �� � �� This procedure can be repeated recursively
as pictured in �gure � until a termination ��� or a deadlock ��� state is reached�
Without proof we remark that all the functions of simulator ��� can be computed in polynomial

time�

Proposition 	��� Simulator ��� is polynomial� �

� De�ning a Session with a Simulator

A session of a term p with a simulator Sim � �C�B�R� is obtained by selecting an element ai from
the menu M�C�p�� and repeating this procedure recursively for the �next� state given by the state
R�C�p�� a� i��

De�nition 
��� �A session with a simulator�� Let Sim � �C�B�R� be a simulator for L with action
set Act and state set S� A session 
 of a term p � L with simulator Sim is one of the following
alternating sequences�

�A strict ordering is a binary relation that is transitive� irre�exive and total�



� 	 DEFINING A SESSION WITH A SIMULATOR

C�P � � P
M�P � � fa�� a�� b�g

P
def
� abX � aa� b�� X

def
� a

R�P� a� �� � a
M�a� � fa�g

R�P� a� 
� � bX
M�bX� � fb�g

R�P� b� �� � �
M��� � fg

a� a�
b�

R�a� a� �� � �

a�

R�bX� b� �� � X
M�X� � fa�g

b�

a�

Figure �� The working of the example simulator�

�� M�s�� a�i� M�s
�� � � � � � � M�sn� if M�sn� 
� � �partial session�


� M�s�� a�i� M�s
�� � � � � � � M�sn� if M�sn� � � �deadlock session �

�� M�s�� a�i� M�s
�� � � � � � � M�sn� anin if R�sn� an� in� � � �termination session�

where

� sj � S� ajij 
 �aj� ij� � �Act� N�� � � j � n

� s� � C�p�

� ajij �M�sj�

� sj�� � R�sj � aj � ij�

�

Example 
��� Below all the simulation sessions of P
def
� abX�aa�b� �whereX

def
� a� with simulator

��� are summerised�

�� fa�� a�� b�g partial

� fa�� a�� b�g a� fa�g partial
�� fa�� a�� b�g a� fa�g a� terminated
�� fa�� a�� b�g a� fb�g partial
�� fa�� a�� b�g a� fb�g b� fa�g partial
�� fa�� a�� b�g a� fb�g b� fa�g a� terminated
�� fa�� a�� b�g b� fg deadlock

For example
 simulation session � above expresses that the initial state of the process graph of the
process P has two outgoing a�edges and one outgoing b�edge� By selecting the b�edge the process
evolves in a deadlock state� �End example��
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� The Semantics of a Simulator

��� Sessions and Simulations

De�nition ���� �Session set of a term induced by a simulator�� Let Sim � �C�B�R� be a simulator
for L� The session set of a process term p � L induced by Sim is given by

SESSim �p� � f
 j 
 is a simulation session of p with Sim g�

�

De�nition ���� �Equivalence on terms induced by a simulator�� A simulator Sim � �C�B�R� in�
duces an equivalence 
Sim on L as follows�

p 
Sim q �� SESSim�p� � SESSim�q� for all p� q � L�

�

In the following
 we show that if we leave out the menus in a session set we still have the same
identi�cations on process terms�

De�nition ���� �Simulation�� Let 
 be a session with a simulator� De�ne a simulation 
 as follows�

� 

def
� � if 
 �M�s���

� 

def
� a�i� � � � � � � an��in��

if 
 �M�s�� a�i� M�s
�� � � � � � � an��in��

M�sn�

� 

def
� a�i� � � � � � � aniny if 
 �M�s�� a�i� M�s

�� � � � � � � an��in��
M�sn� anin �

�

In words
 a simulation 
 is de�ned as session 
 where the menus are left out� In case 
 is a termination
session
 a termination symbol y is appended� The empty simulation � corresponds to the simulation
session 
 �M�s�� where the menu of the initial state is displayed but no choice has yet been made�

De�nition ���� �Simulation set induced by a simulator�� Let Sim � �C�B�R� be a simulator for L�
The simulation set of a term p � L induced by Sim is given by the set

SIM Sim�p� � f
 j 
 � SESSim �p�g�

�

In respect with example ��

 we have

SIM Sim�P � � f�� a�� a�a�y� a�� a�b�� a�b�a�y� b�g�

Theorem ��	� Let Sim � �C�B�R� be a simulator for L� For every p� q � L
 we have that

SIM Sim�p� � SIM Sim�q��� SESSim �p� � SESSim�q��

�



�� 
 SOUNDNESS AND COMPLETENESS OF A SIMULATOR

��� The LTS Explored by the Simulator

Below we give a possible de�nition of the LTS of a term that is explored by a simulator�

De�nition ��
� �The LTS of a term explored by a simulator�� The LTS of a term p � L explored by
a simulator Sim � �C�B�R� is given by LTSSim�p� � �S�Act���� ���C�p��� where �� is de�ned by
the following rules �one for each a � Act� i � N� s � S� � � �Act� N����

��� s�
a�� � if R�s� a� i� � �

��� s�
a�� ��ai� R�s� a� i�� if ai �M�s� and R�s� a� i� 
� �

�

This de�nition shall be used to formalise a semantic criterion for simulators in section �� Note that
LTSSim�p� is always a tree and therefore we often call it the simulation tree of p�
In �gure 

 one can see that a state
 say q� in the simulation tree consists of two components

q 
 ��� s�� The �rst component � � �Act� N�� is the sequence of choices �simulation� leading to q� �
can be considered as a unique identi�er for state q� The other component s � S is the information for
computing the next transitions of q� Note that once the simulation tree is built the second component
�s� can be left out�
The LTS of term P explored by simulator ��� is given in �gure 
�

Corollary ���� Let Sim � �C�B�R� be a simulator for L� For every p� q � L
 the following statements
are equivalent�

�� SESSim�p� � SESSim�q��


� SIM Sim �p� � SIM Sim �q��

�� LTSSim�p� � LTSSim�q��

�� p 
Sim q �by de�nition��

�

	 Soundness and Completeness of a Simulator

In this section we develop the machinery for relating the term�identi�cation of a simulator with the
term�identi�cation of the well�known process models which have been developed in process algebra
�Gla��	� The following de�nition says that a simulator Sim is sound with respect to a process model
M if the processes identi�ed by Sim are also identi�ed byM�

De�nition ���� �Soundness�� A simulator Sim for a language L is sound with respect to a modelM
if for all p� q � L it holds that p 
Sim q �M j� p � q �

Conversely
 we say that a simulator is complete with respect to a modelM if the processes identi�ed
byM are also identi�ed by Sim�

De�nition ���� �Completeness�� A simulator Sim for language L is complete with respect to a model
M if for all p� q � L it holds thatM j� p � q � p 
Sim q� �

The following de�nition gives insight in how the SOS simulator from section � is related with the
graph isomorphism model �LTS��� and the bisimulation model �LTS�� ��



��

���P �

�a�� a� �a�� bX� �b�� ��

a
a

b

�

a

�a�b��X�

b

a

Figure 
� LTSSim�P � where P
def
� abX � aa� b�
 X

def
� a�

Proposition ���� Let Sim be simulator ����

�� Sim is sound with respect to LTS�� as given in de�nition ����

� Sim is not complete with respect to LTS���
�� Sim is sound with respect to LTS�� �

�� Sim is not complete with respect to LTS�� �

�

Proof�

�� Straightforward by careful inspection of the de�nitions of simulator ��� and the graph isomor�
phism model LTS�� �


� LTS��j� aX � ab � aa � ab� But Sim distinguishes them� a�b� � SIM Sim�aX � ab� and
a�b� 
� SIM Sim�aa � ab�� Note that this distinction is caused by the fact that simulator ���
respects the ordering a � b � X�

�� Immediate by ����� by using the fact that isomorphism is strictly �ner than bisimulation �in
symbols� �� � ��

�� Immediate by ����
� Or as follows� LTS�� j� aa� aa � aa� a�a� a�� But Sim distinguishes
them� M�aa� aa� � fa�g and M�aa� a�a� a�� � fa�� a�g�

�

Proposition ��� says that simulator ��� induces an equivalence that is strictly �ner than graph isomor�
phism and bisimulation� The following theorem states that in theory there exists a simulator that is
sound and complete with respect to bisimulation semantics�

Theorem ���� There exists a simulator Sim � �C�B�R� for Terms�ACP� that is sound and complete
with respect to LTS�� as given in de�nition ���� �
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 SOUNDNESS AND COMPLETENESS OF A SIMULATOR

We shall proof this theorem by constructing a simulator with the required properties� In doing this
we need a projection operator which is given by the following syntax�

p �� � � � j 
n�p� with n � N�
The terms of ACP extended with a projection operator is denoted by Terms�ACP�PR�� The opera�
tional semantics of the projection operator is given by the following SOS rules �one for each n � N

and a � A��

p
a�� p�


n���p�
a�� 
n�p

��

Intuitively
 
n�p� allows p to perform n moves freely
 and then stops it� The following lemma is the
core of the proof of theorem ����

Lemma ��	� There exists a computable coding function

p�q � Terms�ACP�PR�� N

such that for all terms p� q � Terms�ACP�PR� and all n�m � N it holds that
p
n�p�q � p
m�q�q�� LTS�� j� 
n�p� � 
m�q��

Now we can construct a simulator that is sound and complete with the bisimulation model�

Proof of theorem ���� De�ne a simulator Sim � �C�B�R� for Terms�ACP� as follows�

� Let S � Terms�ACP� � N and let Act � fag where a is an arbitrary but �xed action �not
necessary in A�� A state �p� n� � S determines the current projection 
n�p� of the simulated
process p�

� C�p� � �p� ��� The initial state of p is determined by its �rst projection 
��p��

� B��p� n�� a� � p
n�p�q� This de�nition implies that M��p� n�� � fa�� a�� � � � � ap�n�p�qg� So
 the
number of elements in the menu is exactly the encoding of the nth projection of p� By lemma
��� we know that this coding takes care that bisimilar terms are identi�ed�

� R��p� n�� a� i� �

�
� �p� n� �� if i � p
n�p�q and p
n�p�q 
� p
n���p�q

� if p
n�p�q � p
n���p�q
� otherwise

�
A

The residue function takes care that the depth of the projection is incremented by one in each
step of the simulation� Note that a termination symbol ��� is returned when the projection
reaches a �xed�point� 
n�p� � 
n���p��

�

So
 the intuition of the bisimulation simulator is that the cardinality of the menu that is displayed
after n steps in the simulation of term p� exactly corresponds to the encoding of lemma ���� This
encoding takes care that bisimilar terms are identi�ed� It is obvious that the working this simulator
goes far beyond any reasonable intuition and in the next session we shall develop an criterion to rule
out such simulator de�nitions�
On a scratch�pad we have proven a similar result as theorem ��� for graph isomorphism� However

we have not included the proof in this paper because it is very technical and does not really deepen
our insights here�
We conjecture that the computational complexity of bisimulation simulators and isomorphism sim�

ulators is quite involved as stated below�

Conjecture ��
� If there exists a polynomial simulator Sim for Terms�ACP� that is sound and
complete with respect to LTS�� or LTS� � then NP�P�



��


 The Non�Compatibility of a Bisimulation Simulator

We �nd that the working of the bisimulation simulator given in the previous section goes beyond any
�reasonable� intuition� And therefore we want to rule out such simulator de�nitions� This can be done
by imposing an extra semantic criterion
 besides soundness and completeness
 on the de�nition of a
simulator as follows�

De�nition 
��� �Compatibility of a Simulator�� Let LTS�� be a model for language L given by the
interpretation function I � L � LTS�� � A simulator Sim for language L is compatible with LTS��
if for all p � L it holds that LTSSim�p� � I�p��
We say that a simulator Sim respects a model M if Sim is sound� complete and compatible with

M� �

This de�nition says that a simulator is compatible with an equivalence class model LTS�� if for each
simulated term p the corresponding simulation tree LTSSim�p� is contained in the equivalence class
interpretation I�p� of p�

Notation 
��� We write an for the n�fold sequential composition of an a � A with itself� a � a � � � � a�
We write

Pn
i�� pi �where pi � Terms�ACP �� as a shorthand for p�� p� � � �� pn� As a special case
 we

let
P�

i�� pi denote �� �

Theorem 
��� There are ��nite� A� ��� such that there is no simulator Sim � �C�B�R� for language
Terms�ACP� that respects �is sound
 complete and compatible with� LTS�� � �

Proof� In �BK��
 Tau��	 it is shown that we can choose �nite A� ��� in such way that we can exhibit
a term U
CMn � Terms�ACP� �for each n � N� whose LTS behaves like a universal 
�counter machine
on input n� Then LTS�� j� U
CMn � X �where X

def
� a �X � �� i� the counter machine diverges�

This is a nonrecursive problem �HU��	� let K be a recursively enumerable but not recursive subset of
N� then n 
� K �� LTS�� j� U
CMn � X�
Now suppose Sim � �C�B�R� is a simulator of the intended kind and let B�C�X�� a� � k with

k � �� And de�ne the process Y 
Pk��
i�� U
CMn � bi by using notation ��
� Then we have�

� n � K � B�C�Y �� a� � k � �� because the initial state C�Y � of process Y has at least k � �
outgoing a�edges by compatibility with LTS�� �

� n 
� K � B�C�Y �� a� � B�C�X�� a� � k by completeness�

Combining the last two implications
 we have B�C�Y �� a� � k �� n 
� K which establishes that B
can not be computable� �

We conjecture that we can prove similar �negative� results as theorem ��� in a setting of LTS��FT

�failure trace�
 LTS��R �ready�
 LTS��F �failure�
 LTS��CT �completed trace��� However
 there
do exist simulators respecting LTS��T �trace� and LTS��RT �ready trace� as will be shown in the
next section�

�� The Compatibility of a Trace Simulator

In this section we show that there exist simulators which respect trace semantics� For technical
conveniance we shall use an LTS model which incorporates an empty process ��� and therewith is
slightly di�erent from the LTS model given in de�nition ���� The empty process can be added to the
syntax of ACP by the following production rule�

�The de�nition of these equivalences can be found in �Gla����



�� �� THE COMPATIBILITY OF A TRACE SIMULATOR

p �� � � � j ��
The terms of ACP extended with � is denoted by Terms�ACP���

De�nition ����� �Another LTS model for ACP�� Let �� be the transition relation de�ned by the
SOS rules given in table �� Then
 we de�ne the LTS� SOS ��p� �� �Terms�ACP��� Ap���� p� as the
interpretation of a term p � Terms�ACP� in the LTS model� �

� � �
p
�� �

a � A � a
a�� �

� �
p

a�� p�

p � q a�� p� � q
p

p
�� � q

u�� q�

p � q u�� q�

� �
p

u�� p�

p� q
u�� p� q � p

u�� p�

k �
p

a�� p�

p k q a�� p� k q q k p a�� q k p�

p
p
�� � q

p
�� �

p k q
p
�� �

p
a�� p� q

b�� q�

p k q c�� p� k q� ��a� b� � c

�H �
p

u�� p� u 
� H

�H�p�
u�� �H�p

��

Recursion �
p

u�� p� �X
def
� p� � �

X
u�� p�

Table �� SOS rules for Terms�ACP���

De�nition ����� �Trace equivalence�� The trace set of an LTS� g � �S�L��� s� is given by the set

Tr�g� �� fwj s w�a� ���an�� g�
Two LTS�s g� h � LTS are trace equivalent� notation g �T h i� Tr�g� � Tr�h�� �

De�nition ����� �A Trace Model for ACP�� De�ne the equivalence class�

fg � LTS j g �T SOS ��p�g
as the interpretation of a term p � Terms�ACP� in the trace model LTS� �T � �



��

���P ��a�� a� bX� �b�� ��
a b

�a�a�� ��
a

�a�b��X�

b

�
p

�a�b�a�� ��
a

p

Figure �� LTSSim�P � where P
def
� abX � aa� b�
 X

def
� a�

Notation ����� Let fp�� � � � � png be a set of ACP terms� We write
X

p�fp� �����png
p as a shorthand for

p� � � � �� pn� As a special case
 we let
X
p��

p stand for �� �

Theorem ���	� There exist a simulator respecting the trace model LTS��T as given in de�nition
����� �

Proof� De�ne a simulator Sim for Terms�ACP� as follows�

� Let S � Terms�ACP�� and Act � A � fpg�
� C�p� � p for all p � L�

� Let Succ�p� u� � fp� j p u�� p�g be the u�successor set of p � S� where �� is de�ned by the
action rules in table ��

� B�p� u� �

�
� if p 
 u��
� if p

u��
�
�

� R�p� u� i� �

�
�

X
p��Succ�p�u�

p� if i � �

� otherwise

�
A � Note how the residue function is de�ned by the

� notation �notation ������ The � notation is used for taking the alternative composition
of all a�successor states of p� This is the way how this simulator determinises the next state�

To guide the intuition of this simulator
 the simulation tree of term P
def
� abX�aa� b� �with X

def
� a�

is displayed in �gure �� �

The proof of the following theorem shows that things get more involved when we do not have an
empty process at our service�

Theorem ���
� There exist a simulator respecting the trace model LTS��T as given in de�nition
���� �

Proof� De�ne a simulator Sim � �C�B�R� for L � Terms�ACP� as follows�

� Let S � Terms�ACP� and let Act � A�

� C�p� � p for all p � L�

� Let �� be the transition relation de�ned by the action rules of table 
�



�� �� THE SEMANTICS OF AN EFFICIENT SIMULATOR

� B�s� a� �

�
� � if s 
 a��

 if �s

a�� s� 

 �� � s
a�� �

� otherwise

�
A�

� Let Succ�p� a� � fp� j p a�� p�g be the a�successor set of p � S�

� R�s� a� �� �

�
� � if Succ�s� a� � f�gX

s��Succ�s�a�
s� otherwise

�
A

� R�s� a� 
� �

�
� if �s

a�� s� 

 �� � s
a�� �

� otherwise

�

� R�s� a� i� � � if i 	 
�
�

There also exists a simulator respecting ready trace semantics�

De�nition ����� �Ready Trace�� The ready trace set of an LTS� g � �S�L��� s� is given by

ready�trace�g� � fA�a�A� � � � anAn j

	s�� � � � � sn � s � s�
a��� s� � � � an�� sn� si

a���� a � Ai� � � i � ng�

Two LTS�s g� h � LTS are ready trace equivalent
 written g �RT h
 i� ready�trace�g� � ready�trace�h��
�

Theorem ����� There exists a simulator Sim for language Terms�ACP� respecting LTS� �RT �ready
trace semantics� as given in de�nition ���� �

Proof� Very technical and omitted� �

We expect that simulators respecting LTS� �T or LTS� �RT are in theory computationally in�
tractable as they are always based on some notion of transition determinisation� From automata
theory
 we know that in general �determinisation algorithms� are PSPACE�complete �see �HU��	��
But in �HU��	 it is also claimed that these determinisation algorithms only use exponential space in
rare circumstances� This suggests that the preformence of trace based simulators may be not that
bad in practice�

�� The Semantics of an E
cient Simulator

The only practical �polynomial� simulator we encountered in the previous sections was the SOS
simulator �simulator ����� However
 we could not �nd a reasonable model with respect to this simulator
is sound and complete� So the existence of a reasonable semantic characterisation of simulator ��� is
still an open problem�
In this section
 we show there exists a polynomial simulator that is sound and complete with respect

to an equational term model that is strictly weaker than bisimulation and graph isomorphism�
In table �
 we can �nd an equational system ACP� that is a weakened version of the standard

equations of ACP �table ���
The equations in Table � and Table � contain two auxiliary operators k �left�merge� and �

�communication�merge� for axiomatising the k�operator� p k q is p k q but with the restriction that the
�rst step comes from p� and p�q is p k q but with a synchronisation action as the �rst step� The terms
of ACP extended with k and � is denoted by Terms�ACP�AUX�� For handling recursively declared



��

A�� ax� by � by � ax if a 

 b

ax� b � b� ax if a 

 b

a� by � by � x if a 

 b

a� y � y � x if a 

 b

A
 �x� y� � z � x� �y � z�

A� �x� y�z � xz � yz

A� �xy�z � x�yz�

A�� x� � � x

� � x � x

A� �x � �

CF� ajb � ��a� b� if ��a� b� �
CF
 ajb � � otherwise

CM� x k y � x k y � y k x� xjy
CM
 a k x � ax

CM� ax k y � a�x k y�
CM� �x� y� k z � x k z � y k z
CM� axjb � �ajb�x
CM� ajbx � �ajb�x
CM� axjby � �ajb��x k y�
CM� �x� y�jz � xjz � yjz
CM� xj�y� z� � xjy � xjz

D� �H�a� � a if a 
� H

D
 �H�a� � � if a � H

D� �H�x� y� � �H�x� � �H�y�

D� �H�x � y� � �H�x� � �H�y�

Table �� Module ACP�
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A� x� y � y � x

A
 �x� y� � z � x� �y � z�

A� x� x � x

A� �x� y�z � xz � yz

A� �xy�z � x�yz�

A� x� � � x

A� �x � �

CF� ajb � ��a� b� if ��a� b� �
CF
 ajb � � otherwise

CM� x k y � x k y � y k x� xjy
CM
 a k x � ax

CM� ax k y � a�x k y�
CM� �x� y� k z � x k z � y k z
CM� axjb � �ajb�x
CM� ajbx � �ajb�x
CM� axjby � �ajb��x k y�
CM� �x� y�jz � xjz � yjz
CM� xj�y � z� � xjy � xjz

D� �H�a� � a if a 
� H

D
 �H�a� � � if a � H

D� �H�x� y� � �H�x� � �H�y�

D� �H�x � y� � �H�x� � �H�y�

Table �� Module ACP

REC X � p if �X
def
� p� � �

Table �� Module REC�

PR� 
n�a� � a

PR
 
��ax� � a

PR� 
n���ax� � a � 
n�x�
PR� 
n�x� y� � 
n�x� � 
n�y�

Table �� Module PR�



��

AIP

n�x� � 
n�y� for all n � �

x � y

Table �� Module AIP�

ACP processes we use the modules REC �Table ��
 PR �Table �� and AIP �Table ��� Modules ACP
and ACP� extended with REC
 PR and AIP are denoted by ACP	 and ACP�	 respectively�
We let 
ACP

�

�

be the equivalence relation induced by module ACP�	 �

p 
ACP�
�

q �� ACP�	 � p � q�

Theorem ����� There exists a polynomial simulator that is sound and complete with respect to
Terms� 
ACP�

�

� �

For proving this theorem we introduce the following de�nition�

De�nition ����� �Ordered head normal form�� A term p � Terms�ACP�AUX� is in ordered head

form if p is of the form �p 

X
a�B

naX
i��

apia or �p 

X
a�B

naX
i��

awhere B � A� na 	 �� pia � Terms�ACP�AUX��

Actions a � B are called head actions and term pia is the residue term of the i
th occurrence �from left

to right conform notations ��

 ����� of head action a in the ordered head form of p� �

For example
 terms aa�aa� ba and ba�aa�aa are in ordered head form� Term aa� ba�aa is not
in ordered head form�

Proof of theorem ����� De�ne Sim � �C�B�R� for Terms�ACP� as follows�

� Let Act � A and let S � Terms�ACP�AUX��

� C�p� � p�

� It is easy to see that with the equations of ACP� and REC we can rewrite a term p into ordered

head form �p 

X
a�B

naX
i��

apia or �p 

X
a�B

naX
i��

a in polynomial time� Then de�ne�

� B�p� a� � na�

� R�p� a� i� �

�
BBBB�

� if �p 

X
a�B

naX
i��

a

pia if �p 

X
a�B

naX
i��

apia

�
CCCCA �

The intuition of the simulator is as follows� Given an action a and a term p
 the branching function
B computes the number of times action a appears as head action in the ordered head form of p� And
given an action a� a term p and a number i 	 �� the residue function R returns the residue term of
the ith occurrence �from left to right� of action a in the ordered head form of term p�

The simulation tree of term P
def
� abX�aa� b� �with X

def
� a� is displayed is given in �gure �� �




� �� SUMMARY AND CONCLUSION

���P �

�a�� bX� �a�� a� �b�� ��

a a b

�a�b��X�

b

�

a

a

Figure �� LTSSim �P � where P
def
� abX � aa� b�
 X

def
� a�

�� Summary and Conclusion

The table below summerises the results of this paper� it shows the existence or non�existence of sim�
ulators respecting �being sound
 complete and compatible with respect to� the well�known process
models that have emerged from process theory �Gla��	� In addition
 information is given about the
computational complexity of a simulator in question� �P� indicates the existence of a polynomial simu�
lator and ��P� indicates that we could not �nd a polynomial simulator with the required properties� A
question mark ��� in the table expresses that the existence or the non�existence of a certain simulator
is conjectured �Yes�
 No��� The symbols I
 B
 RT
 FT
 R
 F
 CT
 T are taken from �Gla��	 and
resp� stand for the models LTS�� �graph isomorphism�
 LTS�� �bisimulation�
 LTS��RT �ready
trace�
 LTS��FT �failure trace�
 LTS��R �ready�
 LTS��F �failure�
 LTS��CT �completed trace�

LTS��T �trace��

I B RT FT R F CT T

sound Yes Yes Yes Yes Yes Yes Yes� Yes

P P P P P P P P

sound � Yes Yes Yes Yes� Yes� Yes� Yes Yes
complete

�P �P �P �P �P �P �P �P

sound � Yes No Yes No� No� No� No� Yes
complete �
compatible

�P �P �P �P �P �P �P �P
One can make up from the table above there do not exist simulators respecting B as already claimed
by theorem ���� In contrast with this
 it is displayed in the �rst column that there does exists a
simulator respecting graph isomorphism� However
 we do not expect that simulators respecting graph
isomorphism are computationally tractable as indicated by ��P� at the bottom of the �rst column�
Furthermore one can read from the table that it is conjectured that there are no simulators respecting
FT
 R
 F and CT� At last
 it is conjectured that there do exist simulators respecting RT and T�
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Although it is very likely that in theory these simulators are computationally intractable
 they may
perform well in practise as already claimed in section ��
The �rst row of the table says there are simulators that are sound with graph isomorphism and

thus with all the other models� For instance by proposition ��� we know that simulator ��� is sound
with respect to all the models in the table� All these observations from the table presume that the
equivalence induced by a practical simulator must be less identifying than graph isomorphism� As
an illustration of this presumption
 we presented an e cient �polynomial� simulator which is less
identifying than graph isomorphism in the previous section�
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