LINEAR ALGEBRA

A correction: orthogonal representations and connectivity of graphs

L. Lovász ${ }^{\text {a,* }}$, M. Saks ${ }^{\text {b,1 }}$, A. Schrijver ${ }^{\text {c }}$
${ }^{a}$ Microsoft Research, One Microsoft Way, Redmond, WA 98052, USA
b Department of Mathematics, Rutgers Hills, Hill Center, Busch Campus, Rutgers University, 110 Frelinghuysen Road, Piscataway, NJ 08854, USA
${ }^{\text {c }}$ Centrum voor Wiskunde en Informatica (CWI), Kruislaan 413, P.O. Box 94079, 1090 GB Amsterdam, Netherlands
Received 24 February 2000; accepted 24 February 2000
Submitted by R.A. Brualdi

Abstract

This note corrects an error in the proof of the main result of the authors' paper "Orthogonal Representations and Connectivity of Graphs", which appeared in Linear Algebra and its Applications $114 / 115$ (1989) 439-454. © 2000 Elsevier Science Inc. All rights reserved.

AMS classification: 05C62; 05C40

Keywords: Orthogonal representation; Connectivity

In this note, we correct an error in the proof of the main theorem of [1]. Let $G=$ (V, E) be an undirected graph. A d-dimensional orthogonal representation of G is a map $f: V \longrightarrow \mathbb{R}^{d}$, such that $\langle f(u), f(v)\rangle=0$ for all pairs u, v of nonadjacent nodes, where $\langle x, y\rangle$ denotes the usual inner product. An orthonormal representation is an orthogonal representation in which $\|f(v)\|=1$ for all $v \in V$. The representation is in general position if for any $W \subseteq V$ with $|W|=d$, the set $\{f(v): v \in W\}$ is linearly independent. The main theorem of [1] was the following.

[^0]0024-3795/00/\$ - see front matter a 2000 Elsevier Science Inc. All rights reserved.
PII: S 0024-3795(00)00091-4

Theorem 1 [1, Theorem 1.1]. If G is a graph with n nodes and $d \geqslant 1$ is an integer, then the following are equivalent:
(i) G is (vertex) $(n-d)$-connected;
(ii) G has a general-position orthogonal representation in \mathbb{R}^{d};
(iii) G has an orthonormal representation in \mathbb{R}^{d} such that for each node v, the vectors representing the nodes nonadjacent to v are linearly independent.

The easy proof that (ii) \Rightarrow (iii) \Rightarrow (i) was given correctly in the original paper, but the harder proof that (i) \Rightarrow (ii) was incorrectly given. We review that proof, indicate the error, and correct it.

In what follows, if A is a subset of $\mathbb{R}^{d}, A^{\perp}=\left\{v \in \mathbb{R}^{d}:\langle v, a\rangle=0 \forall a \in A\right\}$ is the subspace orthogonal to A and $U(A)$ is the set of unit vectors of A. We will need the standard fact that, if A is a subspace, then there is a unique probability measure defined on $U(A)$ which is invariant under any unitary transformation of A, which we call the uniform distribution on $U(A)$, denoted u_{A}.

If G is $(n-d)$-connected, then G has minimum degree at least $n-d$. The following randomized procedure constructs a d-dimensional orthonormal representation for any graph G of minimum degree $n-d$. Fix an ordering ($v_{1}, v_{2}, \ldots, v_{n}$) of V and choose $f\left(v_{1}\right), f\left(v_{2}\right), \ldots$ sequentially as follows. Select $f\left(v_{1}\right)$ according to the distribution $u_{\mathbb{R}^{d}}$. For $j \in\{2, \ldots, n\}$, having chosen $f\left(v_{1}\right), \ldots, f\left(v_{j-1}\right)$, let $W_{j}=\left\{v_{i}\right.$: $\left.i<j,\left(v_{i}, v_{j}\right) \notin E\right\}$ and let $M_{j}=\left\{f\left(v_{i}\right): v_{i} \in W_{j}\right\}^{\perp}$. Since v_{j} has at most $d-1$ non-neighbors in $G, \operatorname{dim}\left(M_{j}\right) \geqslant 1$. Choose $f\left(v_{j}\right)$ according to $u_{M_{j}}$. This process clearly produces an orthonormal representation of G. Theorem 1 follows from:

Theorem 2 [1, Theorem 1.2]. If G is $(n-d)$-connected, the representation produced by the algorithm is in general position with probability 1.

For any vertex subset W of size d, let D_{W} be the set of orthogonal representations f such that $\{f(w): w \in W\}$ is linearly dependent. It is enough to show that $\operatorname{Prob}\left[D_{W}\right]=0$ for all W of size d. Let us first note that this is easy for $W_{0}=\left\{v_{1}, \ldots, v_{d}\right\} . \operatorname{Prob}\left[D_{W_{0}}\right] \leqslant \sum_{j=2}^{d} \operatorname{Prob}\left[f\left(v_{j}\right) \in \operatorname{span}\left(\left\{f\left(v_{i}\right): i<j\right\}\right)\right]$, and each of the terms in the sum is 0 . To see this, observe first that $f\left(v_{j}\right)$ is chosen according to $u_{M_{j}}$ and $\operatorname{dim}\left(M_{j}\right)=d-\left|\left\{v_{i}: i<j,\left(v_{i}, v_{j}\right) \notin E\right\}\right| \geqslant 1+\mid\left\{v_{i}\right.$: $\left.i<j,\left(v_{i}, v_{j}\right) \in E\right\} \mid$. Letting $g_{j}\left(v_{i}\right)$ denote the orthogonal projection of $f\left(v_{i}\right)$ onto M_{j}, the space $\operatorname{span}\left(\left\{f\left(v_{i}\right): i<j\right\}\right) \cap M_{j}$ is contained in (in fact, equal to) $\operatorname{span}\left(\left\{g_{j}\left(v_{i}\right): i<j,\left(v_{i}, v_{j}\right) \in E\right\}\right)$, whose dimension is strictly smaller than that of M_{j}.

For a permutation σ of $\{1, \ldots, n\}$, let μ_{σ} denote the probability distribution on orthonormal representations obtained by running the above algorithm with the vertices considered in the order $v_{\sigma(1)}, \ldots, v_{\sigma(n)}$. When σ is the identity, we write μ for μ_{σ}. Lemma 1.3 in [1] asserted that the distributions μ_{σ} are the same for all σ. This is enough to complete the proof of Theorem 2 since for any W of size d, we can choose σ such that $W=\left\{v_{\sigma(1)}, \ldots, v_{\sigma(d)}\right\}$ and then we have $\mu\left[D_{W}\right]=\mu_{\sigma}\left[D_{W}\right]=0$.

Unfortunately, Lemma 1.3 is false; for example, let G be the path on $v_{1}, v_{2}, v_{3}, v_{4}$, and $d=3$. When the vertices are processed by the algorithm in the natural order, $f\left(v_{1}\right)$ and $f\left(v_{2}\right)$ are independent as random variables, but when processed in the order $v_{4}, v_{1}, v_{2}, v_{3}$ they are not.

We replace Lemma 1.3 by a statement that is weaker, but is still strong enough to use in the argument of the previous paragraph to complete the proof of Theorem 2. Two probability measures μ and v on the same probability space S are mutually absolutely continuous (mac) if for any measurable subset A of $S, \mu(A)=0$ if and only if $v(A)=0$. We show the following.

Lemma 3. For any two vertex orderings σ and τ, μ_{σ} and μ_{τ} are mac.
The proof of Lemma 3 is similar to the false proof of Lemma 1.3, diverging only at the end (although we have modified some of the notation from the original paper for precision and clarity). If σ is a permutation and v, w are vertices with $v=v_{\sigma(r)}$ and $w=v_{\sigma(s)}$, then swapping v and w in σ produces the permutation τ that is the same as σ except that $\tau(r)=\sigma(s)$ and $\tau(s)=\sigma(r)$.

It suffices to prove that for all j between 1 and $n-1$, if τ is obtained from σ by swapping $v_{\sigma(j)}$ and $v_{\sigma(j+1)}$, then σ and τ are mac. We prove this by induction on j, with the base case and the induction step proved together.

Fix $j \geqslant 1$. For ease of notation we assume, without loss of generality, that σ is the identity permutation. For $1 \leqslant i \leqslant n$, let $V_{i}=\left\{v_{1}, \ldots, v_{i}\right\}$. We consider two cases depending on whether v_{j} and v_{j+1} are joined by a path that lies entirely in V_{j+1}.

Suppose first that there is such a path. Let P be a shortest such path and t be its length (number of edges). So $t \leqslant j$. For fixed j, we argue by induction on t. If $t=1$, then $\left(v_{j}, v_{j+1}\right) \in E$. When conditioned on $\left\{f\left(v_{1}\right), \ldots, f\left(v_{j-1}\right)\right\}, f\left(v_{j}\right)$ and $f\left(v_{j+1}\right)$ are independent for both distributions μ_{σ} and μ_{τ}. Thus $\mu_{\sigma}=\mu_{\tau}$. Suppose that $t>1$ and let v_{i} be any internal node of P. Now transform σ to τ by the following steps:

1. Obtain σ^{1} by swapping v_{i} and v_{j} in σ. Since this can be obtained by successive adjacent swaps among the first j elements, μ_{σ} and $\mu_{\sigma^{1}}$ are mac by the induction hypothesis on j.
2. Obtain σ^{2} from σ^{1} by swapping v_{i} and v_{j+1}. By the induction hypothesis on t, $\mu_{\sigma^{2}}$ and $\mu_{\sigma^{1}}$ are mac.
3. Obtain σ^{3} from σ^{2} by swapping v_{j+1} and v_{j}. As in (1), $\mu_{\sigma^{3}}$ and $\mu_{\sigma^{2}}$ are mac.
4. Obtain σ^{4} from σ^{3} by swapping v_{j} and v_{i}. As in (2), $\mu_{\sigma^{4}}$ and $\mu_{\sigma^{3}}$ are mac.
5. Obtain τ from σ^{4} by swapping v_{j+1} and v_{i}. As in (1), μ_{τ} and $\mu_{\sigma^{4}}$ are mac.

Thus μ_{σ} and μ_{τ} are mac, to complete the case that V_{j+1} contains a path from v_{j} to v_{j+1}.

Now assume that there is no path connecting v_{j} to v_{j+1} in V_{j+1}. This means that $C=V-V_{j+1}$ is a cut set, and thus $j+1=\left|V_{j+1}\right| \leqslant d$. Thus we can partition V_{j-1} into two sets A_{j} and A_{j+1} so that for $i \in\{j, j+1\}, A_{i}$ contains all neighbors of v_{i} in V_{j-1}, and there are no edges from A_{j} to A_{j+1}.

We want to compare the distributions of μ_{σ} and μ_{τ}. For $1 \leqslant i \leqslant n$, let μ_{σ}^{i} (resp. μ_{τ}^{i}) denote the marginal distribution function induced on $f\left(v_{1}\right), \ldots, f\left(v_{i}\right)$. Note that it suffices to prove that μ_{σ}^{j+1} and ν_{τ}^{j+1} are mac, since conditioned on any given assignment $f\left(v_{1}\right), \ldots, f\left(v_{j+1}\right)$ the distributions μ_{σ} and μ_{τ} are identical.

Also, note that the marginal distributions μ_{σ}^{j-1} and μ_{τ}^{j-1} are identical. Let x_{1}, \ldots, x_{j-1} be an arbitrary selection of vectors for the first $j-1$ vertices. Condition the two distributions μ_{σ}^{j+1} and μ_{τ}^{j+1} on $f\left(v_{1}\right)=x_{1}, \ldots, f\left(v_{j-1}\right)=x_{j-1}$. This yields two distributions ν_{σ} and ν_{τ} over pairs $\left(f\left(v_{j}\right), f\left(v_{j+1}\right)\right)$ of vectors. It suffices to show that ν_{σ} and ν_{τ} are mac.

For $i \in\{j, j+1\}$, let L_{i} be the subspace spanned by $f\left(A_{i}\right)$. Then L_{j} and L_{j+1} are orthogonal (since there are no edges between A_{j} and A_{j+1}). Let M be the orthogonal complement of $L_{j} \oplus L_{j+1}$ in \mathbb{R}^{d}, so that $\operatorname{dim}(M) \geqslant 2$ and $L_{j} \oplus L_{j+1} \oplus M$ is an orthogonal decomposition of \mathbb{R}^{d}. We refine this decomposition further. For $i \in\{j, j+1\}$, let B_{i} be the set of vertices of A_{i} that are not adjacent to v_{i}. Let K_{i} be the subspace spanned by $f\left(B_{i}\right)$ and let H_{i} be the orthogonal complement of K_{i} in L_{i}. Then $M \oplus K_{j} \oplus H_{j} \oplus K_{j+1} \oplus H_{j+1}$ is an orthogonal decomposition of \mathbb{R}^{d}.

With this notation, we can describe the distribution ν_{σ} as follows: $f\left(v_{j}\right)$ is selected according to the distribution $u_{M \oplus H_{j}}$ and $f\left(v_{j+1}\right)$ is selected according to the distribution $u_{\left(M \oplus H_{j+1}\right) \cap f\left(v_{j}\right)^{\perp}}=u_{\left.\left(M \cap f\left(v_{j}\right)^{\perp}\right) \oplus H_{j+1}\right)}$. Similarly, ν_{τ} can be described as follows: $f\left(v_{j+1}\right)$ is selected according to the distribution $u_{M \oplus H_{j+1}}$ and $f\left(v_{j}\right)$ is selected according to the distribution $u_{\left(M \oplus H_{j}\right) \cap f\left(v_{j+1}\right)^{\perp}}=u_{\left.\left(M \cap f\left(v_{j+1}\right)^{\perp}\right) \oplus H_{j}\right)}$.

Simplifying the notation, (letting $X_{0}=M, X_{1}=H_{j}$ and $X_{2}=H_{j+1}$ and letting $\left.k=\operatorname{dim}\left(M \oplus H_{j} \oplus H_{j+1}\right)\right)$ we are left to prove the following.

Lemma 4. Let $X_{0} \oplus X_{1} \oplus X_{2}$ be an orthogonal decomposition of \mathbb{R}^{k} for some k, with $\operatorname{dim}\left(X_{i}\right)=c_{i}$, and $c_{0} \geqslant 2$. Let A be the subset of $\mathbb{R}^{k} \times \mathbb{R}^{k}$ consisting of pairs $\left(x_{1}, x_{2}\right)$ such that $x_{1} \in U\left(X_{0} \oplus X_{1}\right)$ and $x_{2} \in U\left(X_{0} \oplus X_{2}\right)$ and $\left\langle x_{1}, x_{2}\right\rangle=0$. Let λ_{1} be the distribution on A which first selects x_{1} according to $u_{X_{0} \oplus X_{1}}$ and then selects x_{2} according to $u_{\left(X_{0} \cap\left\{x_{1}\right\}^{\perp}\right) \oplus X_{2}}$. Let λ_{2} be the distribution which first selects x_{2} according to $u_{X_{0} \oplus X_{2}}$ and then selects x_{1} according to $u_{\left(X_{0} \cap\left\{x_{2}\right\}^{\perp}\right) \oplus X_{1}}$. Then λ_{1} and λ_{2} are mac.

Proof. We first consider the special case that X_{1} and X_{2} are both the $\mathbf{0}$ subspace. In that case, A is the set of pairs $\left(x_{1}, x_{2}\right)$, where $x_{1}, x_{2} \in U\left(X_{0}\right)$ are perpendicular. The invariance of the uniform distribution under unitary transformations implies that λ_{1} is invariant under unitary transformations. Thus the marginal distribution of λ_{1} induced on x_{2} is $u_{X_{0}}$ and the conditional distribution on x_{1} given x_{2} is uniform on $U\left(X_{0} \cap\left\{x_{2}\right\}^{\perp}\right)$. Thus $\lambda_{1}=\lambda_{2}$. Let us denote the common distribution on $U\left(X_{0}\right) \times U\left(X_{0}\right)$ in this case by κ.

Next we consider the general case. Observe that if Y and Z are orthogonal spaces, a vector $U(Y \oplus Z)$ can be written uniquelyin the form $y \cos \theta+z \sin \theta$, where
$y \in U(Y), z \in U(Z)$ and $\theta \in[0, \pi / 2]$. Uniform selection from $U(Y \oplus Z)$ can be described by the following process for choosing (y, z, θ) : independently select y according to u_{Y}, z according to u_{Z} and select θ according to a distribution that depends only on $a=\operatorname{dim}(Y)$ and $b=\operatorname{dim}(Z)$ and will be denoted by $\zeta_{a, b}$. If $\operatorname{dim}(Z)=0$ then $\theta=0$ with probability 1 . If $a, b \geqslant 1$, the only thing we need about $\zeta_{a, b}$ is that it is mac with respect to the uniform distribution on the interval $[0, \pi / 2]$.

Similarly, a point $\left(x_{1}, x_{2}\right) \in A$ can be described as $\left(y_{1} \sin \theta_{1}+z_{1} \cos \theta_{1}, y_{2} \sin \theta_{2}\right.$ $+z_{2} \cos \theta_{2}$), where $\theta_{1}, \theta_{2} \in[0, \pi / 2], y_{1}, y_{2} \in U\left(X_{0}\right)$ with y_{1} orthogonal to y_{2} and $z_{1} \in U\left(X_{1}\right)$ and $z_{2} \in U\left(X_{2}\right)$.

The distribution λ_{1} can be described as the product of five independent distributions: z_{1} is chosen according to $u_{X_{1}}, z_{2}$ is chosen according to $u_{X_{2}},\left(y_{1}, y_{2}\right)$ is selected according to κ, θ_{1} is selected according to $\zeta_{c_{0}, c_{1}}$ and θ_{2} is selected according to $\zeta_{c_{0}-1, c_{2}}$. The distribution λ_{2} is described similarly except that θ_{2} is selected according to $\zeta_{c_{0}, c_{2}}$ and θ_{1} is selected according to $\zeta_{c_{0}-1, c_{1}}$.

Since $c_{0} \geqslant 2$, we have that $\zeta_{c_{0}, c_{2}}$ and $\zeta_{c_{0}-1, c_{2}}$ are mac and $\zeta_{c_{0}, c_{1}}$ and $\zeta_{c_{0}-1, c_{1}}$ are mac, from which we deduce that λ_{1} and λ_{2} are mac. This completes the proof of Lemma 4, which in turn completes the proofs of Lemma 3 and the theorem.

Remarks.

1. The conclusion of Lemma 4 fails if $c_{0}=1$. In this case, if x_{1} is secected first that $x_{1} \notin X_{1}$ (which happens with probability 1), we have $x_{2} \in X_{2}$, which has probability 0 if x_{1} and x_{2} are chosen in the reverse order.
2. The error in the original paper was not to take into account that the distributions $\zeta_{a, b}$ are different for different values of a and b.

Acknowledgement

The error in the original paper was discovered in the course of a discussion between the first author, Oded Schramm and Van Vu. We appreciate their insightful skepticism.

Reference

[1] L. Lovász, M. Saks, A. Schrijver, Orthogonal representations and connectivity of graphs, Linear Algebra Appl. 114/115 (1989) 439-454.

[^0]: * Corresponding author.

 E-mail address: lovasz@microsoft.com (L. Lovász).
 1 Supported in part by NSF under grant 9700239.

