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Abstract: We study the one machine scheduling problem with release and delivery times and
the minimum makespan objective, in the presence of constraints that for certain pairs of jobs
require a delay between the completion of the first job and the start of the second (delayed
precedence constraints). This problem arises naturally in the context of the Shifting Bot-
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tighter than the standard one machine relaxation. The paper first highlights the difference
between the two relaxations through some relevant complexity results. Then it introduces a
modified Longest Tail Heuristic whose analysis identifies those situations that permit efficient
branching. As a result, an optimization algorithm is developed whose performance is com-
parable to that of the best algorithms for the standard one machine problem. Embedding
this algorithm into a modified version of the Shifting Bottleneck Procedure that uses the
tighter one machine relaxation discussed here results in a considerable overall improvement
in performance on all classes of job shop scheduling problems.
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1 Introduction

The problem that we address in this paper arises in the context of general job shop scheduling.
In the job shop scheduling problem. jobs are to be processed on machines with the objective of
minimizing some function of the completion times of the jobs, subject to the constraints that
(1) the sequence of machines for each job is prescribed, and (ii) each machine can sequence
at most one job at a time. The processing of a job on a machine is called an operation, and
its duration is a given constant. The objective chosen here is that of minimizing the time
needed to complete all the jobs, called the makespan.

Let N = {0.1,...,n} denote the set of operations, with 0 and n the dummy “start”
and “finish” operations, respectively, M the set of machines, A the set of pairs of operations
constrained by precedence relations representing condition (i) above, and Fj the set of pairs
of operations to be performed on machine k and which therefore cannot overlap in time, as
specified in (ii). Further, let d; denote the (fixed) duration or processing time, and t; the

(variable) start time of operation j. The problem can then be stated as

minimize t,

subject to
tj—ti 2 dz (Za]) € A
(P) t: 2 0 i € N
ti—ti>di VvV ti—t;>d; (i,5) € Ex, ke M

Any feasible solution to (P) is called a schedule.

it is useful to represent this problem on a disjunctive graph G := (N, A, E) with node
set N, (directed) arc set A, and (undirected, but orientable) edge set E. The length of an
arc (i,j) € A is d;, whereas the length of an edge (i,7) € E is either d; or d;, depending
on its orientation. Each machine k corresponds to a set Ni of nodes (operations) and a
set Ey of edges that together form a disjuhctive clique. Figure 1 shows a disjunctive graph
representing a job shop scheduling problem with 3 jobs and 3 machines. The disjunctive
cliques corresponding to the 3 machines have node sets N, := {1,5,8}, N, := {2,4,9}.

N> := {3,6,7}, with their edges drawn in dotted lines.



Figure 1: Disjunctive graph for a 3-job 3-machine problem

The job shop scheduling problem, known to be strongly NP-hard, is among the hardest.
This is dramatically illustrated by the fact that an instance involving 10 jobs and 10 machines,
proposed by Fisher and Thompson [FT63] in 1963, remained unsolved for more than a quarter
of a century, although every available algorithm was tried on it. This makes it imperative .
to design efficient approximation methods.

The Shifting Bottleneck (SB) Procedure [ABZ88] is one such method. It sequences the
machines consecutively, one at a time, with the remaining unsequenced machines ignored
(i.e. the corresponding edge sets removed) and the machines already sequenced held fixed
(i.e. the corresponding edges replaced by directed arcs). At each step a bottleneck machine is
determined from among those not yet sequenced, by solving a one machine scheduling prob-
lem for each unsequenced machine and choosing the one with the maximum makespan. This
bottleneck machine is then sequenced optimally by using the solution to the corresponding
one machine problem. Once all the machines have been sequenced, each machine in turn is
freed up and resequenced, with the sequences on the remaining machines held fixed.

While the Shifting Bottleneck Procedure, having been extensively tested, was found



more efficient than any version of the traditional dispatching rule-based heuristics, whether
deterministic or randomized. several researchers (see Dauziére-Peres and Lasserre [DL90]. as
well as Tiozzo [T88]) found the following weakness or shortcoming in the procedure. When
the procedure fixes the sequence on a machine, it may thereby create a precedence constraint
between some pair of jobs on some unsequenced machine. In terms of the disjunctive graph.
orienting the edges of a disjunctive clique (i.e. replacing them with directed arcs) creates
new paths in the graph, some of which may join two nodes of a disjunctive clique. If a
(directed) path is created between nodes : and j of a disjunctive clique, this implies the
constraint t; —t; > L(¢,7), where L(¢,7) is the length of the path from i to j. For instance,
if in the graph of Figure 1 the edges joining the node set N; := {1,5,8} are replaced, as a
result of sequencing machine 1, by the directed arcs {(5,1),(5,8),(1,8)}, that replacement
creates the path {(4,5),(5,1),(1,2)} from 4 to 2, of length L(4,2) = d4 + ds + di, which in

turn imposes the constraint ¢, — t4 > L(4,2) (see Figure 2).

Figure 2: Disjunctive graph after sequencing machine 1

Note that the constraint ¢t; — t; > L(z,7) is different from the standard precedence con-

straint t;—¢; > d; that would result from arbitrating the disjunction t;—¢; > d; V t;—t; > d,.
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in that the delay L(:.7) involved in the constraint is different from (typically larger than)
d,. the delay involved in the standard precedence constraint. To make this distinction, we
call the constraints described here precedence constraints with delay or, for short, delayed
precedence constraints (DPC).

As [T88] and [DL90] correctly observed, the appearance of DPC’s during the application
of the SB Procedure vitiates the intent of the heuristic and may negatively affect the outcome.
Indeed, by ignoring DPC’s while solving a one machine problem, we are solving a less
constrained problem than we should, hence we may make an unintended choice for the
bottleneck machine and for the job sequence on that machine; all of which may negatively
affect the quality of the schedule found by the SB Procedure. To remedy this situation,
Dauziere-Peres and Lasserre [DI 90] developed a heuristic for the one machine problem with
DPC’s. Using this heuristic instead of Carlier's exact algorithm for solving the one machine
problems that arise in the SB Procedure, in other words substituting an approximation
method applied to a better chosen problem lor the exact method applied to the earlier
problem, they managed to obtain better ox)erall results.

Our purpose in this paper is to develop an optimization algorithm for solving the one
machine problem with DPC’s, in order to further improve the SB Procedure. Of course.
using an optimization algorithm only pays if the gain in the quality of solutions to the
one machine problem v&.'ith DPC’s is not outweighed by the excess of computational effort
reqtiired. The kind of one machine problem solved in the SB Procedure (i.e. with release
and delivery times) is strongly NP-complete even without DPC’s; nevertheless, it can be
solved in most cases quite efficiently due to the possibility of using a branching rule that
skips large subsets of potential search tree nodes (see Potts [P80] and Carlier [C82]). That
same efficient branching rule can also be used if some standard precedence constraints (as
opposed to DPC’s) are imposed, i.e. if some of the disjunctive arc pairs are arbitrated before
solving the problem. However, this is no longer the case in the presence of DPC’s.

The main accomplishment of this paper is an analysis of the structure of the one machine



scheduling problem with DPC’s that identifies the situations in which the above mentioned
“strong” branching rule can legitimately be used. As a result, an algorithm is developed
which uses the strong branching rule whenever possible, and an alternative rule when nec-
essary; with the practical outcome that the overall efficiency of the algorithm is comparable
to that for the standard one machine problem.

The rest of the paper is organized as follows. The next section (2) discusses the relation
between the standard one machine problem and its counterpart involving delayed precedence
constraints, highlighting the difference through some relevant complexity results. Section 3
states and analyzes the Longest Tail Heuristic for the one machine problem with DPC's.
Its focus is on identifying the situations in which the Potts-Carlier property still holds, thus
permitting efficient branching. Section 4 describes a branch and bound algorithm based on
the foregoing analysis. Finally, the last section (5) discusses computational results with the
algorithm both as a stand-alone and as part of an improved SB Procedure.

Some of the results of this paper were presented in [BV91].

2 The One Machine Problem with DPC’s Versus the
Standard One Machine Problem

At some point during the SB Procedure, let M; be the set of machines already sequenced,
and let D(Mp) be the directed graph obtained from G by replacing all disjunctive arc sets
corresponding to the machines in My with the conjunctive arc sets representing the sequences
chosen for those machines, and deleting all disjunctive arc sets corresponding to the machines
in M \ (Mo U {k}) for some fixed k € M \ M,. Then the standard one machine scheduling

problem to be solved for machine k can be stated as

minimize t,,

subject to
th—ti > di+gqi 1 € 1
P(k,mo) t; 2 1 = |
t;—t;>d; V ti—t;>d;, (i,7) € Ex



where [ is the set of jobs to be processed on machine k. r; is the release time (or head) of
job 1. equal to the length L(0.:) of a longest path from node 0 to node : in D(My), and ¢;
is the delivery time (or tail) of job i, equal to L(i.n) — d;, where L(i,n) is the levngth of a
longest path from node i to node n in D(M,).

On the other hand. the one machine problem with DPC’s for the same machine k can be
stated as

minimize t,

- subject to
th, —t; 2 di + q; e 1
DPC(k, My) t, > r; v € 1
ti -t Z L(Z’]) (Z,j) € F
t;—t;>d; V ti—t;>d; (1,7) € FEx,

where F' is the set of precedence arcs, i.e. pairs with delayed precedence constraints, and
L(z, ) is the length of a longest path from ¢ to j in the D(Mp).

It is a well known fact (see [GJ79]) that the standard one machine problem P(k, Mo)
is NP-complete in the strong sense. Since the problem DPC(k, My) is a generalization of
P(k.My) (it becomes P(k, My) when F = (), it is also NP-complete in the strong sense.
The question that we want to address now, is how much more difficult is DPC(k, M) than
P(k. My)?

To gain some insight into this issue, we recall two well known facts about P(k, Mp). We
calllthe Longest Tail rille the scheduling of jobs in order of decreasing tail length, and the
Shortest Head rule the scheduling of jobs in order of increasing head length.

Fact 1. If r; = r; for all 7,5 € I, then the Longest Tail rule yields an optimal schedule.
If g = g; for all 2, € I, then the Shortest Head rule yields an optimal schedule.

Fact 2. Fact 1 remains true if preemption (job splitting) is allowed.

Note that Longest Tail (Shortest Head) scheduling requires O(n log n) time.

If standard (as opposed to delayed) precedence constraints are imposed on the one ma-
chine problem, i.e. constraints of the form ¢; — t; > d; for some (i,;) € Ej, Facts 1 and 2

remain true, provided that the Longest Tail (Shortest Head) rule is applied subject to the



precedence constraints. However. in the presence of delaved precedence constraints, both
of the above properties break down and. as shown by the next two theorems, there is no
polynomial-time algorithm even for the more restricted case where r; = r; and ¢; = ¢, for
all 1,5 € I, unless P = NP.

For the next two Theorems we will use a slightly modified version of the DPC’s. Namely.
instead of requiring that the start time of job ¢ precede the start time of job j by at least
L(7,7) units, we will require that the completion time of job ¢ precede the start time of job ;
by at least L'(z,7) := L(i.j)—d; units. For the one machine scheduling problem with DPC’s
in which preemption is not allowed this makes no difference, since the completion time of
job 7 is C; := t; + d;, hence the two forms of the DPC, t; — ¢; > L(z,7) and t; — C; > L'(3,j)
are equivalent. But in the case when preemption is allowed this is no longer true, since a
preempted job i will be completed later than its starting time plus its processing time; so

the new condition yields a stronger relaxation of the one machine problem with DPC’s.

Theorem 2.1 DPC(k, M,) is NP-hard in the strong sense even if r; = r; and ¢; = q; for

alijel.

Proof. Our proof is based on a reduction of 3-PARTITION. The problem is defined as |
follows: Given 3n + 1 positive integers ay,...,as,, b, with /4 < a; < b/2 for i =1,...,3n,
and 27, a; = nb, does there exist a partition of {I,...,3n} into n pairwise disjoint subsets
5'1,... ., S, such that Zie%ag =bforh=1,...,n7

We will show that for every instance of 3-PARTITION we can compute an instance of
DPC(k, M) and a value z in polynomial time, such that the instance of the former problem
has a yes answer if and only if the instance of the latter problem has a schedule of length at
most z. The Theorem then follows from the known fact that 3-PARTITION is NP-complete
in the strong sense [GJ79].

Given an instance of 3-PARTITION as stated above, we construct the following instance

of DPC(k, M,). There are 4n + 1 jobs. All their release and delivery times are 0. The first



3n jobs have processing times
di=a;, fori=1,....3n:

there are no precedence constraints between these jobs. The remaining n + 1 jobs have
processing times

di=b fori=3n+1,...,4n+1

and also are subject to the following:
i has to precede 1 + 1 with L'(z,: + 1) =bfor i =3n+1,...,4n.

Finally, we define z = 2nb + b. Note that the precedence constraints define a single chain.

Suppose now that the instance of 3-PARTITION is a yes instance, i.e. there exist n
pairwise disjoint subsets Sy with Y_;cs, a; = bfor A =1,...,n. We then construct a schedule
of length z as follows. The jobs 3n + 1,...,4n + 1 are started as early as possible, subject
to the delayed precedence constraints, i.e. t3p4n = (2R —2)bfor h =1,...,n 4+ 1. Note that
job 4n + 1 finishes at time z. This leaves n idle intervals [(2h — 1)b,2hb], h = 1,...,n. of
length b each. in which we process the jobs : with: € S, for h=1,...,n.

Conversely, suppose that a schedule of length =z exists. In such a schedule we must have
tshen = (2h —2)b for h = 1,...,n + 1: none of these jobs can start earlier in view of the
DPC’s, and none of them can start later in view of the schedule length. It follows that all
of the jobs 1,...,3n are processed in the n intervals [(2h — 1)b,2hb], h = 1,...,n. Now
define Sj, as the set of jobs processed in the h'* of these intervals. We have ¥ ;cs, ai = b for

h =1,...,n, and hence we have a yes instance of 3-PARTITION. O
Theorem 2.2 Theorem 2.1 remains true even if preemption is allowed.

Proof. We again give a reduction of 3-PARTITION. The reader should verify that, when
preemption is allowed, the reduction given in the proof of Theorem 2.1 no longer works: a

schedule of length z always exists, irrespective of the answer to the 3-PARTITION instance.
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Given an instance of 3-PARTITION. we construct the following instance of the preemp-
tive scheduling problem with DPC’s. with release and delivery times all equal to 0. There

are 8n + 1 jobs. For each a;, there are now two jobs, i and 3n + ¢, with
d; = dznyi = a; fori=1,...,3n
and the condition that
! has to precede 3n + i, with L'(z,3n+ 1) =2nb—bfori=1,...,3n.
The remaining jobs have processing times
di=b forit=6n+1....,8n+1
and are subject to the condition that
i has to precede 1 + 1, with L'(i,i+ 1) =bfori=6n+1,...,8n.

Finally, we define z = 4nb + b. Note that the precedence constraints define a collection of
chains (one chain of length 2n — 1 and 3n chains of length 1).

Suppose we have a yes instance of 3-PARTITION. A schedule of length z is then con-
structed as follows. We start the jobs 6n + 1,...,8n + 1 as early as possible, i.e. tgnsn =
(2h = 2)b for A = 1,...,2n + 1. Again, the last job finishes at time z. We are left with
2n intervals [(2h — 1)b,2hb] of length b each for the jobs 1,...,6n. For h = 1,...,n, we
process the jobs ¢ with i € Sy, in [(2n — 1)b,2nb], and their successors 3n + ¢ with ¢ € Sy in
[(2(n 4+ k) = 1)b,2(n + h)b]; this is feasible since the time span from the end of the former
interval to the beginning of the latter is equal to the required minimum delay of 2nb — b.

Conversely, suppose that we have a schedule of length z. As before, we must have
tenth = (2h — 2)b for A = 1,...,2n + 1. Hence all of the jobs 1,...,6n are processed in
the intervals [2(h — 1)b,2Rhb], h = 1,...,2n. Note that the total length of these intervals

equals the total required processing time of these jobs, so that the schedule contains no idle



time. Also, in view of the DP(C’s, the jobs 1..... 3n must be processed in the first half of
the schedule and their successors 3n + 1,...,6n in the second half.

Consider the first interval, [b, 2b], and let S; be the set of jobs started and completed in
this interval. Assume that 3,5 a; = b — ¢ for some ¢ > 0. The only jobs 3n + i that are
available for processing in [(2n + 1)b, (2n + 2)b] are those for which : € S;, and hence that
interval contains c units of idle time. It follows that our assumption is incorrect and that
Y ies, @ = b. An iterative application of this argument leads to the identification of sets
Sk with T.es, ai = b for h = 2,...,n, and to the conclusion that we have a yes instance of
3-PARTITION. O

As mentioned in the introduction, the standard one machine problem, although NP-
complete, can in practice be solved efficiently for fairly large sizes. This can be done by an
algorithm developed by Carlier [C82], based on an analysis of the properties of the Longest
Tail Heuristic (for the latter see also Potts [P80]). The Longest Tail Heuristic for the standard
one machine problem schedules the jobs sequentially, choosing at each step the job with the
longest tail among those available for scheduling. If C is a critical path in the digraph
corresponding to the resulting schedule, let p be the first node encountered when traversing
C backwards starting from n (not counting n), let ¢ be the first node (if any) encountered
such that g. < ¢,, and let J be the set of nodes traversed (not counting n and c). Potts’
and Carlier’s analysis established that (i) if there is no node ¢ with the above property. the
schedule at hand is optimal; and (ii) otherwise in any optimal schedule job ¢ comes either
before or after all the jobs in J.

Thus Carlier’s branch and bound algorithm applies the Longest Tail Heuristic to the
problem at hand at any given node of the search tree. If the resulting schedule is optimal
(i.e. satisfies (i) above), the subproblem corresponding to the node is discarded; otherwise
it is replaced by two new subproblems, obtained from the parent problem by imposing

the condition that job ¢ has to precede (first descendant), respectively succeed (second
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descendant) all jobs in J. Carlier also uses the fact that for any I C .V the value

h(I) := rpelln ri + ;di + Iz“gln g
is a valid lower bound on the makespan, and applies it to the subproblems generated by
branching, with I = J for the first and I = J U {c} for the second descendant.

The efficiency of Carlier's procedure is due to the fact that in the absence of property
(i1) above, all the situations in which job ¢ precedes some but not all the jobs in J would
have to be considered.

It is easy to see that in the presence of standard (as opposed to delayed) precedence
constraints, properties (i) and (ii) still hold. Therefore Carlier's branch and bound algo-
rithm can be (and has been) modified to accommodate such constraints without any loss in
efliciency.

This, however, is not the case when delayed precedence constraints are imposed, as will

be seen in the next section.

3 The Longest Tail Heuristic in the Presence of DPC’s,
and Its Analysis

We will now state a modified version of the Longest Tail Procedure, that takes into account
the presence of DPC’s, and analyze its properties. We denote, as before, by I the set of jobs

to be processed on the given machine. Further, we introduce

S := {i€I:1ihas been scheduled }
m(2) {7 € I:j is required to precede i}

(= predecessors of 2)
o(i1) := {j €1:j is required to succeed 1}
(= successors of 7)

The sets 7(¢) and o(¢) can be used to tighten the release times and tails by capturing the
logical implications of the precedence constraints. Thus the numbers r;, ¢; can be updated

as follows:

r; = max{r;, max{r; + L(z,7)}, min r; + d; 1
J {] iEvr(j){ ( J)} ier(s) ig_‘,(j) } (1)
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and

q, = max{‘]]‘ ma\{[’(.}l) - dJ + di + QI} Z dx + mln Q1} (2)
i€a(y) i€() em(y)

Longest Tail Heuristic for DPC’s
Initialization. Set t :==0,S:=0,rl=r;, i€ I
lterative Step. Let @ be the set of unscheduled jobs whose predecessors have all been
scheduled, i.e.

Q:={iel\S:n(i)C S}

Choose k such that
{ max{q; : 1 € @ and ! < t} if such 7 exists

qk =
max{¢;: i € @ and 1} := min{r; 1] € Q}} otherwise.

Set tg := max{t.r.}, S := S U {k}.t =t + di.
For all j € o(k), set ! := max{r’, ty + L(k.j)}.

If I\ S # 0. repeat the Iterative Step. Otherwise, define the set of delayed jobs
D := {i.E I:ri>r}

and stop.

The outcome of the longest tail procedure is a schedule t := (¢;) which can be represented
by a directed graph G(t) with one or several longest paths (critical paths) from 0 to n.
Figure 3 shows such a solution digraph for a problem with 6 jobs. The critical path (0,4,2,6,7)
is dr‘awn in heavy lines. The i** component of ¢, i.e. the start time of the i** job (not shown
in Figure 3), is equal to the length of a longest path from 0 to node i. The makespan is the
length of a longest path (critical path) from 0 to n.

For the standard one machine problem, it is a well known fact that for any subset K C I,
the number

h(K) := Eréihl)r,- + ;Kd,- + rlreugl q:

is a lower bound on the makespan. Furthermore, the strongest such bound, max{h(K) :

K C I}, is known to be equal to the minimum makespan of the preemptive version of

12



Figure 3: Digraph of a schedule, with critical path

the problem. It is easy to see that these. bounds are also valid for our problem, of which
the standard problem is a relaxation. In particular, if C := {(0,4), (¢1,22),-..,(ip,n)} is a
critical path in G(t) and I¢ := {i1,...,1,}, then
Hle) = mipr+ 2, 4+ mips

is a lower bound on the makespan.

Now let ¢t be the schedule produced by the Longest Tail Procedure, G(t) the associated
digraph, and C := {(0,%1), (¢1,22),-- -, {ip,n)} a critical path in G(t), with Ic := {31,....%,}.
Further, let ¢ be the first node encountered when traversing C' backwards from node n such

that ¢. < g,,, if such c exists, or else let ¢ = 0, with to := 0. Finally, let J be the set of nodes

of C between n and c¢ (not counting n and ¢). We then have the following

Theorem 3.1 Suppose r; > max{t,,t.}, 1 € J, and the segment C(c,1,) of the critical path

C between c and 1, contains no precedence arc. Then
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(i) If c=0.t is optimal:

(it) If ¢ > 0. then in any schedule better than t. job c either precedes or succeeds cll jobs

in J.

Proof. (i) Let ¢ = 0. By assumption r; > r, for each i € J, hence for all : € I¢; hence
ri, = fg}? r;. Also, since the arc (0,7,) is on a critical path, t;, = r;,. Further. ¢; > ¢,, for
all 2 € Ic by hypothesis, hence ¢;, = 52}21 gi. Thus the lower bound h(Ig) is in this case
ri, + Zdi + ¢;,- But this is precisely the length of C. i.e. the makespan, since t;, = r;,.
tiyer :é,c-k +d; fork=1....p—1,and t, =t; + di, + qi,- Thus t is optimal.

(11) Suppose now that ¢ > 0, and let ¢’ be a schedule in which ¢ comes after some (but
not all) jobs in J. Since the total processing time of all jobs in J U {c} is in both schedules
the same. and the tail of the last job in t' is at least as long as ¢;,, we can have t, < t,
only if t < t. for some j. € J, which would imply r;, < t.. But r; > ¢t  for all j € J by
hypothesis, hence ¢, > ¢,, i.e. t’ is not better than ¢. O

Notice that the condition r; > max{t,,,t.} for all : € J, always satisfied in a schedule
produced by the Longest Tail Heuristic for the standérd one machine problem, may not hold
here and therefore needs to be explicitly imposed. Indeed, although the updated release
times r; generated during the procedure always satisfy r; > max{t;,,t.} for all i € J (which
explains why job ¢ was not chosen before jobs i; or c). one may still have r; < max{t;,.¢.}.

'1;heorem 3.1 identifies the situation in which the same efficient branching rule used in
Carlier’s algorithm can be used in the presence of DPC’s. Next we address the situation in
which the assumptions of Theorem 3.1 do not hold.

First of all, note that if a critical path C in G(t) contains a precedence arc (7, ;) such
that r; = t;, then {(0,7)} U C(j,n) is a critical path that does not contain (z,7). Similarly.
if C' contains a precedence arc (z,j) such that ¢; = L(0,n) — t; — d;, where L(0,n) is the
makespan associated with ¢, then C'(0,2)U{(¢,n)} is a critical path not containing (z,7). Such

precedence arcs are of no consequence, in the sense that a critical path containing such an
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arc can be replaced by one not containing it. Also. the DPC’s discussed here are not the only
kind of precedence constraints that can occur. Whenever some disjunction can be arbitrated
as a result of logical tests (see the next section), the replacement of the corresponding edge
with a directed arc creates a (nondelayed) precedence arc with a constraint of the type
t; —t; > d;. These nondelayed precedence arcs are also of no consequence. In order to
distinguish those precedence arcs that matter, we will call a precedence arc (z,j) essential

(with respect to t) if L(¢,7) > di, rj < tj and ¢; < L(0,n) — t; — d;.

Proposition 3.2 [f every critical path of G(t) contains a precedence arc, then every critical

path of G(t) contains an essential precedence arc.

Proof. Suppose every critical path of G(t) contains a precedence arc, but there is a critical
path C that contains no essential precedence arc. Let (z, ) be the first precedence arc of C'.
Since (i, j) is not essential, either r; = ¢; or ¢ = L(0,n) —t; —d;. Let C' := {(0.7)}UC().n)
in the first case, and C' := C(0,7)U{(¢,n)} in the second. In either case, C" is a critical path
containing at least one less precedence arcs than C. Repeating this argument for as long as
the critical path at hand continues to have a precedence arc yields a critical path without
any precedence arc, a contradiction. O

From now on we focus on essential precedence arcs.

The reasoning used in the proof of Theorem 3.1 can also be used to identify other situa-
tions in which certain jobs have to be scheduled before (or after) other jobs in any schedule
better than t. Recognizing such situations and acting on them can in turn be used to get

rid of certain essential precedence arcs.

Proposition 3.3 Suppose the segment C(j,n) of C, where j = 1;, contains no precedence
arc. Let K := {i141,.-.,ip} and suppose qx > q;, for all k € K U {j}, and ry > t; for all
ke K\o(j)-

Then in any schedule better than t, job j precedes all jobs in K.
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Proof. Let ¢’ be a schedule in which job j comes after some or all of the jobs in A. Since the
total processing time of all jobs in AU {j} in ¢’ cannot be less than what it is in ¢, namely
Z d,. and the tail of the last job in t' is by hypothesis at least equal to g;,, we can have
keKu{s}
t, < tn onlyif t! < t; for some j. € K, which would imply r;, < t;. But according te our
assumptions, ry > t; for all k € K \ o(j), and for k£ € o(j) k cannot precede j in t’. Hence
t/ >t,. i.e. t'is not better than ¢t. O
Now suppose the segment C(j,n) with the properties stated in Proposition 3.3 is preceded

on the critical path C by an (essential) precedence arc (¢, ) = (z;—1,%). Then in any schedule

better than ¢, job i precedes all the jobs in {j} U K. Hence one can set

o(i) = o(i)UK,
m(k) = w(k)U{i}, ke K (3)

and the tail of job i can be increased to

¢i = L(t,j) +dj + ek d + ¢i, — d; (4)
= L(O,n) -t — d,',

which gives rise to a new critical path, C(0,7)U{(z,n)}, that does not contain the precedence
arc (2,7). Thus a situation like this can be used to render an essential precedence arc
inessential.

Next we consider the converse of the above situation.

Proposition 3.4 Suppose the segment C(0,1) of C, where ¢ = i;, contains no precedence
arc. Let K := {41,...,4-1} and suppose ri > r;, for allk € KU{i} and g > L(0,n)—t;—d;
forall k € K\ 7(z).

Then in any schedule better than t, job i succeeds all jobs in K.
Proof. The makespan associated with t'is ¢, = r;, + Zdh + L(z,n), where L(:,n) =
L(0,n) — t; is the length of the critical path segment C(:,e:z{) Now let ¢’ be a schedule in

which job : precedes some or all of the jobs in K. Since the processing time of all jobs in A’

in ' cannot be less than ) _ dj and the release time of each job in K U {i} is by hypothesis
heK
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at least equal to r,,. it follows that hen?\%}{(z}{t;‘ + dr} > t; +d,. Therefore we can have
t, < t, only if the part of the schedule ¢’ starting after completion of the job k such that
te +di = ké?\%){(i}{t;l + dy }. is shorter than the corresponding part of the schedule ¢ (i.e. the
part of ¢ starting after the completion of job z), whose length is L(i,n) —d; = L(0,n)—t;—d..
But since gx > L(0,n) —t; — d; for all k € K \ 7(z) by assumption, and i cannot precede
k € m(z) in t', this is impossible and therefore ¢/, > ¢t,, i.e. t’ is not better than n. O
Similarly to the previous case, if the segment C(0, ) that is the object of Proposition 3.4
is followed on the critical path C' by an (essential) precedence arc (z,;) = (i1, 2141), then in

any schedule better than ¢, job j succeeds all the jobs in A" U {i}. Hence one can set

m(y) = 7w(J)UK (5)
olk) = olk)U{j}, keK

and the release time of job j can be increased to

ri=riy 4+ 3 du+ L(3, j), (6)
hek

which again gives rise to a new critical path, {(0,)}UC(j,n), not containing the precedence
arc (¢, ). Thus we have a second way of rendering inessential a formerly essential precedence

arc.

4 Branch and Bound for the One Machine Problem
. with DPC’s

We implemented a branch-and-bound procedure that works as follows.

0. Initialization. The original problem is put on the list of active subproblems, after
updating the release times and tails according to expressions (1), (2) of section 3, initializing
the upper bound at f := oo and calculating a lower bound A := max h(Q), where

Q)= migri+ T+ mipa (7

It is known (see [C82]) that h(Q) can be calculated in O(nlogn) time by solving the

preemptive version of the standard one machine problem.
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1. Subproblem Selection. The problem with the weakest (i.e. smallest) lower bound is
selected for processing next, and is removed from the list.

2. Longest Tail Heuristic. The selected problem is processed by the longest tail heuristic
of section 3 to obtain a schedule t. If ¢, < f, the upper bound is updated to f :=¢,.

3. Postprocessing. Propositions 3.3 and 3.4 are applied: the predecessor and successor
sets. and the release times and tails, are updated by using expressions 3, 4, 5 and 6. If any
tail has been changed, go to 2; otherwise go to 4.

4. Branching. We search for a critical path satisfying the conditions of Theorem 3.1, i.e.
one that contains no precedence arc in the segment C'(c,n) and for which r; > max{t;,t.}
for all 2 € JN D. If found, then either ¢ = 0 and the schedule ¢ is optimal for the given
subproblem, hence the latter is discarded and we go back to step 1; or else ¢ > 0 and we
apply the strong branching rule to be described below. If the search fails, we repeat it on the
reverse problem. This is obtained by reversing the direction of every arc, interchanging the
release times with the tails, and reversing the precedence constraints, with the understanding
that if the delay between ¢ and j in the original problem is L(3,j), then the delay between j
and ¢ in the reverse problem is L(j,i) = L(z,j) — d; + d;. The reverse problem is easily seen
to be equivalent to the original one; thus if the search is successful on the reverse problem.
we proceed in the same way as in case of success on the original problem.

If the search fails on both problems, i.e. either for every critical path C that contains no
precedence arc in the segment C(c,n) we have r; < max{t;,,t.} for some : € JN D (case 1),
or else every critical path C contains some essential precedence arc in the segment C(c,n)
(case 2), we apply the weak branching rule (see below).

a. Strong branching rule. We replace the current subproblem by two new ones; a left

subproblem, in which ¢ is required to precede all jobs in J, i.e.

o(c) = o(c)UJ,
= n(k)U{c}, keJ; (8)

3

—~~~
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and a right subproblem. in which c is required to succeed all jobs in J. i.e.

T(c) = w(c)UJ 9)
o(k) = a(k)u{c}, keld

The strong branching rule is preceded by the logical tests proposed by Carlier [C82] for
the standard one machine problem. which obviously preserve their validity in the presence
of DPC’s for the situation when the strong branching rule applies.

Let K:={k:kelI\JU{c}and di > f—h(J)}.

Test 1. If h e K and

ret+de+ Y di+q,> f (10)

1€J
then job & has to succeed all the jobs in J; so we set

r(k) = w(k)UJ

o(i) = o())U{k}, 1€J. (11)
Test 2. If k € K and
minr;+ 3 di+di+ i > f (12)
et ieJ
then job & has to precede all the jobs in J; so we set
o(k) = o(k)ulJ "

(i) = w()U{k}, 1€
b. Weak branching rule. Select a pair of jobs (i.j) as follows. In case 1, let C be
one of the critical paths without precedence arcs in C(c,n). Let j = cifc # 0,7 =1,
otherwise, and let i be the first node encountered when traversing the segment C(c.n).
such that r; < max{t;,t.}. In case 2, let C be a critical path containing a minimum
number of precedence arcs in C(c,n), and let (k,!) be the one nearest to n. Then, (k.l) is
essential (since it was not eliminated by postprocessing), and r, < t; for at least one m € J
(otherwise Proposition 3.3 would apply). Let j = [ and let ¢ be the first node encountered
when traversing-the segment C(l,n) such that r; < .
In both cases, we replace the current subproblem by two new ones: a left subproblem. in

which i is required to precede j, i.e.

a(2)
m(J)

I
q
—_
o~ .
N—
C
—~—
.
——

(14)
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and a right subproblem, in which 7 is required to succeed j. i.e.

I
5
—~~
o~
=
C
—~—
~.
—

m(2)
o)) = o(y)u{}

5. Updating and Lower Bounding
For each of the two new subproblems created. we update the release times and tails by

using expressions (1) and (2). In fact, we use a strengthened version of (1) and (2), defined

as follows:

Let |7(j)| = m. Let Hy := 7(j),
rh) = min{ry : h € Ho}, Hy := Ho \ {R(1)},
and for k£ = 2,...,m, define recursively
rhry ;= min{ry : h € Hey}, Hy := Hey \ {R(k)}.
Then (1) can be strengthened to

(1) r; := max{r;, max{r; + L(i,j)} max {mm ri+ Y di}}.
1€m(7) €{0,1,...,m} ¢ i€H,
Similarly, if |o(7)| = s, let Ko = o(j),
grq) := min{qx : h € Ko}, K;:= Ko\ {h(1)},
and for [ = 2,...,s, define

gy :=min{gy : h € Ki_1}, K;:= K11 \ {h(])}.
Then (2) can be strengthened to
(2) 9; == max{g;, max{gi +L(i,j)+d: - d;}, :e{%?ﬁ’.‘..s}{,.;% di + ming:}}.

Next we calculate the lower bound A(Q) of expression (7) by solving the preemptive
version of the standard one machine problem. Finally, we put each of the two subproblems

on the list of active problems and go to 1.
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5 Computational Results

The branch and bound method of section 4 was implemented in C and tested on a number
of randomly generated one machine problems with DPC’s. It was then embedded into the
Shifting Bottleneck Procedure in place of the subroutine for solving one machine probfems.
The resulting Modified Shifting Bottleneck Procedure (SB3) was tested on a number of job
shop scheduling problems from the literature, and compared with other procedures.

We first diseuss the computational testing of the algorithm of section 4 by itself. The test
problems were randomly generated in the same way as those of [C82], except for the DPC’s
that were added. We set dmax € {30,100}, Tmax = Gmax = ;—Onkdmax, where n € {20, 50, 100}
and k € {10,15,20}. Here n is the number of jobs and & is Carlier’s “interval multiplier.”
The numbers r;, ¢;, d; were randomly drawn from uniform distributions between 1 and rmax,
Qmax, and dmax, respectively. A precedence constraint was generated between jobs z and j
with a probability of p;; € {0,0.02,0.04,...,0.20}, and the delays L(z, j) were generated as
follows: for each (z,j) € F, a number {(z, j) was drawn from a uniform distribution over the
interval [1. snkdmay); and L(z,7) was set to {(z,7) if {(z,j) > d;, and to I(z,7) + d; otherwise.
For every combination of p;; and k, 40 instances were generated. The results are shown
in Tables 1-6. As one can see from these tables, the number of search tree nodes rarely
exceeds the number of jobs, which is in contrast with the typical behavior of branch and
bound algorithms on hard problems, but is comparable to (though not quite as good as) the
performance of Carlier’s algorithm on the standard one machine problem. The remarkable
fact is that typically strong branching occurs more frequently than weak branching, and
every strong branching discards a large number of potential nodes of the search tree.

The main test of the usefulness of the algorithm for the one machine problem with
delayed precedence constraints is the effect on the performance of the Shifting Bottleneck
Procedure of replacing the standard one machine problem by the one machine problem with

DPC’s as the tool for identifying bottleneck machines and scheduling them. This modified
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Table 1. n = 20, dp.c = 50

Density Search CPU Proportion
of Tree SPARC330 of Strong
k | DPC’s Nodes Seconds Branchings
(%) Avg. (Max.) | Avg. (Max.) (%)
0 2.13 ( ) | 0.008 ( 0.183) 100.0
2 5.98 ( 72) 0.027 ( 0.400) 81.7
4 6.08 ( 33) | 0.028 ( 0.217) 72.2
6 39.50 ( 485) | 0.293 ( 4.500) 57.2
10 8 | 29.50 ( 198) | 0.220 ( 1.567) 58.6
10 80.85 (1,818) | 0.587 (14.799) 50.4
12 | 16.38 ( 100) | 0.102 ( 0.700) 57.3
14 29.75 ( 201) | 0.212 ( 1.817) ol.1
16 | 16.58 ( 134) | 0.115 ( 1.317) 41.5
18 |20.20 ( 107) | 0.147 ( 0.900) 50.8
20 16.55 ( 126) | 0.111 ( 1.200) 51.7
0 5.53 ( 21) | 0.023 ( 0.083) 100.0
2 8.88 ( 25) | 0.035 (0.183) 86.9
4 | 1435 ( 135) | 0.071 ( 0.867) 65.5
6 14.60 ( 124) | 0.088 ( 1.083) - 60.6
15 8 7.85 ( 18) | 0.037 ( 0.100) 86.4
10 8.38 ( 24) | 0.047 ( 0.200) 73.8
12 10.75 ( 66) | 0.057 ( 0.400) 67.1
14 6.30 ( 18) | 0.031 ( 0.117) 84.3
16 6.63 ( 23) | 0.038 ( 0.150) 75.9
18 5.13 ( 22) | 0.031 ( 0.133) 67.3
20 4.90 ( 18) | 0.300 ( 0.117) 65.4
0 11.93 ( 168) | 0.061 ( 1.183) 100.0
2 6.45 ( 15) | 0.025 ( 0.100) 97.6
4 6.33 ( 22) | 0.024 ( 0.133) 97.6
6 5.28 ( 16) | 0.024 ( 0.133) 94.6
20 8 3.63 ( 8) | 0.016 ( 0.033) 100.0
10 4.00 ( 13) | 0.016 ( 0.050) 83.8
12 418 ( 14) | 0.022 ( 0.117) 89.1
14 3.85 ( 24) | 0.024 ( 0.150) 79.8
16 3.30 ( 35) | 0.019 ( 0.200) 90.3
18 3.60 ( 11) | 0.021 ( 0.067) 89.2
20 3.00 ( 18) | 0.019 ( 0.100) 86.2




Table 2. n = 20, dnax = 100

Density Search CPU Proportion
of Tree SPARC330 of Strong
k | DPC’s Nodes Seconds Branchings
(%) Avg. (Max.) | Avg. (Max.) (%)
0 143 ( 9) | 0.006 ( 0.050) 100.0
2 | 15.28 ( 239) | 0.091 ( 1.250) 57.3
4 8.15 ( 73) | 0.043 ( 0.600) 68.6
6 | 70.50 (981) | 0.510 ( 7.683) 50.1
10 8 | 34.85 (484) | 0.276 ( 4.666) 42.2
10 46.55 ( 459) | 0.342 ( 4.700) 54.0
12 | 43.10 ( 424) | 0.332 ( 4.483) 54.1
14 32.65 (1 324) | 0.215 ( 2.550) 64.1
16 | 52.80 (1273) | 0.465 (12.450) 58.3
18 13.20 ( 74) | 0.085 ( 0.750) 54.0
20 | 11.80 ( 126) | 0.080 ( 1.183) 47.8
0 5.65 ( 24) | 0.020 ( 0.100) 100.0
2 15.18 ( 157) | 0.081 ( 1.183) 80.1
4 15.55 ( 185) | 0.078 ( 1.217) 66.4
6 13.68 ( 47) | 0.074 ( 0.350) 63.9
15 8 9.28 ( 49) | 0.048 ( 0.417) 79.8
10 7.83 ( 32) | 0.040 ( 0.283) 7.7
12 9.93 ( 64) | 0.050 ( 0.400) 70.4
14 7.75 ( 31) | 0.043 ( 0.267) 83.9
16 6.08 ( 21) | 0.034 ( 0.150) 81.5
18 5.10 ( 25) | 0.031 ( 0.183) 80.0
20 5.30 ( 18) | 0.031 ( 0.100) 72.7
0 11.40 ( 154) | 0.055 ( 1.067) 100.0
2 6.43 ( 17) | 0.023 ( 0.067) 94.1
4 5.63 ( 15) | 0.020 ( 0.050) 100.0
6 5.30 ( 18) | 0.024 ( 0.117) 92.6
20 8 3.78 ( 9) | 0.017 ( 0.033) 98.5
10 4.05 ( 13) | 0.016 ( 0.050) 85.5
12 420 ( 15) | 0.021 ( 0.117) 93.0
14 3.95( 19) | 0.024 ( 0.150) 89.3
16 2.63 ( 15) | 0.017 ( 0.100) 86.8
18 3.63 ( 11) | 0.019 ( 0.067) 89.2
20 2.90 ( 15) | 0.020 ( 0.067) 85.5
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Table 3. n = 50, d.c = 50

Density Search CPU Proportion
of Tree SPARC330 of Strong
k | DPC's Nodes Seconds Branchings
(%) Avg. (Max.) | Avg. (Max.) (%)
0 1.03 ( 2) | 0.014 (0.050) | 100.0
2 34.60 ( 163) | 0.587 ( 3.117) 54.8
4 | 36.48 ( 259) | 0.646 ( 5.550) 47.9
6 18.40 ( 38) | 0.333 ( 1.067) 56.5
10| 8 |13.95( 85) |0.291 (1.950) 54.2
10 83.30 (1,752) | 2.449 (50.398) 45.1
12 | 15.43 ( 167) | 0.411 ( 4.266) 43.4
14 9.18 ( 49) | 0.265 ( 1.217) 55.3
16 6.85 ( 16) | 0.222 ( 0.450) 62.5
18 8.28 ( 112) | 0.264 ( 2.983) 46.0
20 5.03 ( 13) | 0.193 ( 0.433) 67.0
0 32.90 ( 798) | 0.980 (31.132) 100.0
2 | 22.83 ( 141) | 0.365 ( 3.300) 75.4
4 11.55 ( 44) | 0.188 ( 0.767) 77.6
6 8.15 ( 42) | 0.150 ( 0.800) 66.9
15 8 7.10 ( 33) | 0.156 ( 0.667) 70.5
10 4.83 ( 12) | 0.125 ( 0.317) 78.6
12 5.25 ( 24) | 0.152 ( 0.817) 69.4
14 3.60 ( 12) | 0.123 ( 0.317) 87.0
16 4.88 ( 18) | 0.172 ( 0.500) 64.4
18 4.18 ( 23) | 0.168 ( 1.017) 75.8
20 4.05 ( 16) | 0.156 ( 0.450) 75.0
0 18.58 ( 39) | 0.238 ( 0.533) 100.0
2 6.98 ( 19) | 0.103 ( 0.300) 90.4
4 5.28 ( 26) | 0.090 ( 0.550) 81.9
6 3.53 ( 13) | 0.072 ( 0.300) 90.9
20 8 4.05( 9) | 0.095 ( 0.200) 81.5
10 343 ( 10) | 0.096 ( 0.217) 84.8
12 2.98 ( 10) | 0.100 ( 0.250) 93.2
14 3.0 ( 11) | 0.112 ( 0.317) 86.4
16 2.83( 8) |0.112 ( 0.233) 81.1
18 2.45( 10) | 0.116 ( 0.267) 82.0
20 250 ( 7) | 0.119 ( 0.267) 87.2
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Table 4. n = 50, dpa = 100

Density Search CPU Proportion
of Tree SPARC330 of Strong
k | DPC’s Nodes Seconds Branchings
(%) Avg. (Max.) | Avg. (Max.) (%)
0 1.05 ( 2) | 0.019 ( 0.067) 100.0
2 34.03 ( 123) | 0.578 ( 2.383) 53.6
4 39.15 ( 179) | 0.694 ( 3.567) 45.2
6 99.53 (1866) | 2.814 (48.465) 45.3
10 8 36.23 ( 899) | 0.860 (23 032) 43.7
10 11.95 ( 47) | 0.267 ( 1.033) 67.2
12 8.95 ( 31) | 0.241 ( 0.800) 66.3
14 9.90 ( 32) | 0.267 ( 0.833) 53.5
16 12.33 ( 137) | 0.440 ( 6.433) 53.3
18 7.78 ( 31) | 0.251 ( 0.933) 57.4
20 5.60 ( 28) | 0.216 ( 0.817) 71.3
0 24.60 ( 45) | 0.338 ( 0.617) 100.0
2 | 17.60 ( 58) | 0.260 ( 1.017) 73.4
4 8.20 ( 23) | 0.131 ( 0.417) 84.4
6 6.63 ( 24) | 0.134 ( 0.483) 72.5
15| 8 5.95 ( 27) | 0.134 (0.500) 69.2
10 4.48 ( 18) | 0.118 ( 0.417) 79.3
12 3.60 ( 11) | 0.112 ( 0.483) 84.1
14 438 ( 12) | 0.155 ( 0.667) 85.1
16 3.75 ( 17) | 0.134 ( 0.417) 82.4
18 3.43 ( 15) | 0.143 ( 0.467) 82.1
20 3.83 ( 11) | 0.163 ( 0.367) 74.7
0 19.18 ( 35) | 0.240 ( 0.450) 100.0
2 9.18 ( 19) | 0.123 ( 0.267) 90.8
4 4.65 ( 14) | 0.074 ( 0.233) 84.3
6 3.55 ( 11) | 0.071 ( 0.167) 82.8
20 8 3.98 ( 10) | 0.094 ( 0.250) 92.1
10 3.18 ( 11) | 0.093 ( 0.217) 86.7
12 3.25 ( 10) | 0.101 ( 0.267) 83.3
14 2.75( 8) | 0.107 ( 0.233) 85.5
16 2.95 ( 12) | 0.122 ( 0.450) 78.7
18 2.58 ( 8) | 0.120 ( 0.283) 88.5
20 245( 7) | 0.116 ( 0.233) 84.4
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Table 5. n = 100, dpax = 50

Density Search CPU Proportion
of Tree SPARC330 of Strong
k | DPC’s Nodes Seconds Branchings
(%) | Avg. (Max.) | Avg. (Max.) (%)
0 1.00 ( 1) | 0.047 (0.050) 100.0
2 | 48.65 (122) | 2.755 (7.566) 44.4
4 | 15.00 (58) |0.955 (3.583) 51.7
6 11.08 ( 25) | 0.876 (1.800) 54.6
10 8 8.30 (123) | 0.883 (2.200) 62.0
10 7.90 (19) | 0.955 (2.083) 59.1
12 6.98 (29) | 0.931 (3.667) 63.2
14 6.15 (18) | 0.907 (2.150) 61.6
16 5.30 (19) | 0.840 (2.217) 64.7
18 4.23 (14) | 0.795 (2.317) 724
20 5.00 ( 17) | 0.899 (2.417) 63.4
0 42.50 ( 93) | 1.920 (4.200) 100.0
2 12.58 ( 33) | 0.608 (1.650) 76.8
4 6.78 ( 35) | 0.450 (2.250) ~T1.5
6 4.58 ( 14) | 0.431 (0.983) 78.9
15 8 4.65 (15) | 0.548 (1.667) 92.1
10 4.43 (16) | 0.615 (1.583) 70.0
12 4.00 (12) | 0.638 (1.283) 83.5
14 3.76 ( 11) | 0.655 (1.300) 73.7
16 3.43 ( 9) |0.654 (1.200) 89.2
18 3.13( 8) |0.671 (1.317) 79.0
20 2.85 (12) | 0.658 (1.650) 75.0
0 31.70 ( 55) | 1.314 (2.333) 100.0
2 5.00 ( 14) | 0.248 (0.717) 92.6
4 4.43 (119) |0.324 (1.083) 73.6
6 4.18 ( 18) | 0.398 (1.317) 76.5
20 8 2.80 ( 7) |0.387 (0.867) 92.2
10 2.68 ( 8) | 0.457 (0.900) 75.0
12 3.75 (117) | 0.623 (2.083) 70.7
14 2.73 ( 9) |0.525 (1.050) 87.5
16 2.35 ( 5) |0.560 (1.217) 87.5
18 2.35( 7) |0.560 (0.950) 88.4
20 2.08 ( 6) |0.570 (1.017) 75.6
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Table 6. n = 100, dnax = 100

Density Search CPU Proportion
of Tree SPARC330 of Strong
k | DPC’s Nodes Seconds Branchings
(%) Avg. (Max.) | Avg. (Max.) (%)
0 .00 ( 1) | 0.049 (0.133) | 100.0
9 | 49.95 (129) | 2.721 ( 7.950) 54.9
1 13.53 (28) | 0.868 ( 1.817) 60.8
6 9.30 ( 30) | 0.787 ( 2.283) 71.3
10 8 8.43 (29) | 0.908 ( 3.467) 54.3
10 8.95 (22) | 1.034 ( 2.433) 56.9
12 6.63 (17) | 0.905 ( 1.967) 63.9
14 7.25 (19) | 1.026 ( 2.533) 60.8
16 5.58 (31) | 0.985 ( 6.283) 61.5
18 6.20 ( 12) 1.017 ( 1.833) 57.4
20 5.93 (159) | 1.109 (10.916) 63.8
0 55.20 (169) | 2.593 ( 9.816) 100.0
2 10.18 (129) | 0.481 ( ! 350) 92.3
4 7.85 (127) | 0.539 ( 1.667) 76.9
6 6.43 (120) | 0.595 ( 2.083) 68.7
15 8 475 (21) | 0.580 ( 2.117) 70.1
10 4.43 (16) | 0.614 ( 1.667) 74.2
12 4.03 ( 15) 0.662 ( 1.983) 71.4
14 3.68 (15) | 0.654 ( 1.867) 69.4
16 3.95 (15) | 0.665 ( 2.117) 78.5
18 2.15( 7) | 0.552 ( 1.183) 86.5
20 3.20( 7) | 0.688 (1.167) 87.3
0 31.73 (71) | 1.313 ( 3.217) 100.0
2 5.48 (19) | 0.274 ( 1.033) 83.7
4 4.60 (18) | 0.325 ( 0.917) 75.9
6 3.90 (18) | 0.381 ( 1.333) 76.6
20| 8 2.83 ( 7) | 0.395 ( 0.883) 90.4
10 2.95 ( 10) | 0.483 ( 1.100) 77.2
12 4.08 (117) | 0.663 ( 2.083) 73.2
14 2.65 ( 9) | 0.523 ( 1.050) 87.0
16 2.55 ( 8) | 0.589 ( 1.233) 83.0
18 2.53 ( 7) | 0.575 ( 0.967) 93.3
20 2.08 ( 6) | 0.562 ( 1.033) 79.5
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SB Procedure. which we call SB3. differs from SBI. the original SB Procedure of [ABZg3].
in several minor details besides the major differences of using the one machine problem with
DPC’s. and the number of reoptimization cycles. We limit the number of reoptimization
cycles to at most six.

We also implemented a slightly different version of the new procedure which we call
SB4. In SB3, upon completion of the local reoptimization procedure for a given set M of
machines already sequenced, the procedure is repeated after temporarily removing from the
problem the last o non-critical machines (see [ABZ88] for details). In SB4 after applying
this local reoptimization as described above, we apply the procedure a second time in the
reverse order, i.e. by first temporarily removing from the problem the last a non-critical
machines, and then applying again the reoptimization step with all the machines present.
As it can be expected, SB4 is computationally more expensive than SB3 (roughly by a factor
of 2), but it often finds a better solution.

The Procedures SB3 and SB4 were tested on the 40 problems generated by Lawrence
[L84] and compared to SB1, as well as to the modified SB procedure of Dauziére-Peres
and Lasserre [DL90], which also uses the one machine problem with DPC’s, but solves it
heuristically rather than to optimality. We also compare our procedures to Applegate and
Cook’s [AC91] implementation of the shifting bottleneck procedure. The results are shown
in Tables 7-9, where m and n denote the number of machines and jobs, respectively, DL
stands for tile procedure of Dauziere-Lasserre, and AC for that of Applegate and Cook. The
data for the DL procedure were kindly communicated to us by Dauziére-Peres [D91]. The
data for the AC column were obtained by us with the code of Applegate and Cook [AC91].
kindly provided to us by David Applegate. The optimal makespans are from [AC91].

In addition, we solved the problems FT1-FT3 generated by Fisher and Thompson [FT63].
ABZ5-ABZ6 generated by Adams, Balas and Zawack for [ABZ88], and the problems ORBI-
ORB5 generated by Applegate and Cook for [AC91]. We ran SB1, SB3, SB4 and AC on

these problems, with the outcome shown in Table 10 and Table 11. Table 12 shows the
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number of times each procedure ranked first. counting and not counting ties. Since some
problem sets are easy for all three procedures, in Table 13 we show the same data for the
problems 2-4, 16-30, 36-40, ABZ5-ORB5, FT1-FT3, that remain after eliminating the easy
sets.

We conclude that the Modified Shifting Bottleneck Procedure (SB3), and its variant
(SB4) find consistently better schedules than SB1, DL or AC, at a computational cost

somewhat higher than that of SB1 and AC, but not higher than that of DL.
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