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Abstract

{ified Bessel function of third kind of purely imaginary order:
oc
K, (z) = / e~ cospt dt,
0

ered for real values of the parameters v, z, £ > 0. This function plays an important
ertain problems of mathematical physics. It is the kernel of the Kontorovich-Lebedev
n. In this paper we describe the paths of steepest descent (the saddle point contours)
ntegral, giving non-oscillatory integrals. The resulting integral representations are
1t for obtaining asymptotic expansions and for constructing numerical algorithms.
consider non-oscillating integrals representing Ii,,(a:), the modified Bessel function
<ind of purely imaginary order. We summarize similar results for the ordinary Bessel

s.
athematics Subject Classification: 33C10, 41A60.

is & Phrases: Modified Bessel function of purely imaginary order, paths of steepest

saddle point contours, Kontorovich-Lebedev transform.

CTION

1 Bessel function of third kind of purely imaginary order K;,(z) is a solution of

:al equation
22y + zy' + (V2 -2y = 0.

(1.1)

ition is the function of the first kind I;,(z). Well-known integral representations

ctions are:
. oc ) ) 1 oc+mi N
_ - t+ivt _ t—ivt
KZ (:c) — 5['xe T COSs w dt, ]’2 (m) — ﬁ-/o‘c—-”ri e13(205 (24 dt-
7303
953

79, 1009 AB Amsterdam, The Netherlands

(1.2)




L0, P. 181]. We assume that z > 0, v > 0. K;, () is real and an even function

v v; I;,(z) is complex when v > 0. We define

(@) + i (2)
2 3

Liy(z) = (1.3)

solution of (1.1), and even with respect to ». In fact, L;, (z) is the real part of
(z) is the imaginary part of I, (z) (up to a factor):

L(z) = Ly (z) — i sinh v

- K, (z). (1.4)

{Ki,(z), Liv(2)}, {Kiv(z), Ly (x)} constitute linearly independent solutions of

with Wronskians
(o (@)1}, (z) — Ly (2) K}, (z) = Kiy(2) L, (2) = Ly (2) K, (z) = % (1.5)

" () plays an important role in potential problems for a wedge. It is the kernel

vich-Lebedev transform. We have the pair of transforms:

= [7 i@ kat)ds, )= Zsinnina) [ v Kuwlals) .
0 0

[6] or SNEDDON [9]. Asymptotic expansions in connection with this transfor-
sidered by NAYLOR [7] and WoONG [12].

ions K;,(x), I;,(z) also play a role as approximants in uniform asymptotic ex-
utions of certain second-order linear differential equations. See DUNSTER [2],
several properties of the functions are discussed; our function L;, () is the same

p to a factor depending on v; in [3] and [4] the results are applied to Legendre

»se of the paper is to derive integral representations of K, (z), I;, (z) with non-
grands. Starting points are the integrals in (1.2). The resulting integrals are
resentations for numerical algorithms, especially when the parameters z,v are

:al aspects will be discussed in a later paper.

facet of the paper is giving a demonstration of the method of saddle points.
tegrals considered here are the saddle point contour integrals, and they can
o derive uniform asymptotic expansions of K;,(z),I;,(z) for large values of
5. In our integral representations we distinguish between the two cases z > v
[n the second case (especially when the parameters are large) the functions

are rapidly oscillating, and difficult to compute.

)N [10, CH. 8] similar contours for integrals representing the ordinary Bessel

liscussed. However, the present case of modified Bessel functions of imaginary
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:nt and more complicated. Especially, the path of steepest descent for K, () has
ing features when v > z (the oscillatory case). For convenience we summarize the
1-oscillating integrals for the ordinary Bessel functions in Section 5. In [10] such
15 have been used for deriving the Debye type uniform asymptotic expansions of
J,(2), Y., (2) and of the Hankel functions HV(2), HP (2).

re type uniform asymptotic expansion of K;, (z), with z > v, is given in ERDELYI
7oL. II, p. 87]. An Airy type uniform expansion of Kj,(z) can be found in
see also OLVER [8, P. 425] and [2]; in [2] the expansion of L;, (z) is given as well.
e expansions are derived from the differential equation (1.1). The point z = v
turning point of this equation. As mentioned before, the integrals obtained in
a be used for obtaining Airy type expansions. When transforming the integrals
iry type form, two saddle points should be taken into account; see OLVER [8] or
where also a general introduction to the saddle point method can be found). The

idle points will introduce exponentially small contributions in the asymptotic

OTONIC CASE: z 2> v >0

e write

v=zxsinf, 0<60< %-7'('. (2.1)

:our for K;,(z)
the real axis is the path of steepest descent of the first integral in (1.2), with a
at t = 0. When v > 0 the path and saddle point shift upwards in the complex

t case we write

K (z) = %/ e~?M dt,  ¢(t) = x(cosht — itsinf). (2.2)

-0

oint follows from solving the equation ¢'(t) = 0. It suffices to consider the saddle
. The path of steepest descent is defined by the equation S¢(t) = I¢(to). Since
-his gives the following relation between the real and imaginary parts of ¢ (we

-i0, tg = To + iog (with 70 = 0,00 = 0))

sing = siné —0<T<00, 0<o<og< i (2.3)

sinh7’

ath of steepest descent through the point tg = i@ is given by

), —00 < T < 0. (2.4)

. . T
o(7) = arcsin (smH -
(r) sinh 7



in/2

T

Figure 2.1. Steepest descent path (2.4), 0 =

Other solutions of the equation in (2.3) are contours of steepest descent through the saddle

points i(+x — §), and are given by
o_(r)=-1—0(1), ox(r)=7—0(7) (2.5)

These solutions will be used in the next subsection.

Integrating with respect to 7 on the path described by (2.4) gives the representation

1 o0
K;,(z)= 5/ e ¥ g—f—_dT, ¥(7) = zcoshTcoso + vo, (2.6)

where o as function of 7 is given in (2.3). The function 9(7) is an even function of 7. Observe
that 9 = 1+ 192 and that %2, being an odd function of 7, does not give a contribution in

(2.6). Hence, we can write
K, (z) = / e ¥ dr, (1) =zcoshTcoso + vo, (2.7)
0

When z = v the function #(r) is not analytic at 7 = 0. We have whenz = v, as 7 — 0

(through real values):

P(r) = %7”’ + ‘/§V|T3l [24_7 + 14?75741 - 38,'12$25T6 + 7%8757—8 + 0(710)] .

From (2.7) it follows that K;,(z) is positive when z > v > 0. It may be convenient to
extract the dominant factor, by writing
Ki(z) = e %© / —ID=v ) g (2.8)
0

where

¥(0) = V2% — v2 + varcsin g = z(cosf + fsinb).



S

tour for I;,(z) and L;,(z)
ve need three saddle points. The derivative of the function ¢(t) = zcosht — ivt

the second integral of (1.2) vanishes at the points
ty =ioy =4 [(-1)*0 + kr], keZ. (2.9)

»oint contour now passes through the saddle points ¢_1,%p,%1, and the path of

f the second integral in (1.2) is split up in three parts: £_; U Lo U £, where
s from oo — im to t_1,

from t_1 to t; (a segment of the imaginary axis),

from t1 to 0o + im.

path we have S¢(t) = 0. On L4 the relation between the real and imaginary

r + 40 is given by (2.5) with 7 > 0. Thus we obtain

I (.’E) 2_1_ e cosh rcoso_+vo_ 1+ Z-dO'— dr +
v 2mi Ly dr
1 [
_ en: cos o-+vo do + (2.10)
27 Jo_,
_1_ e® cosh 7 cos o4 +voy 1+ id0+ dr
2m £y dr )

Figure 2.2. Steepest descent path used in (2.10)

by using (1.4) and separating the real part,

1 [ inh b d
Lzu(m) / e® ©0s otve do — SR Ty /0 C—w(T) &g dT)
o

T ), - T 2.11)
- _1_ o g% cos otvo do — sinh v /UD e-—’d‘('r) dU, ‘
21 Jo_, T 0
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where z > v > 0, 9(7) is given in (2.7), the relation between 7 and ¢ in (2.3), and

%‘- =tano (l - coth7-> . (2.12)

T T

This gives the requested representation of L;,(z) in terms of non-oscillating integrals. The
integral on the interval {o_1,01] gives the main contribution, especially when the parameters
are large. The integrand peaks at the point o = o9 = 0. Hence, the main contribution to this
integral comes from a small neighborhood of this point. At this point the integrand assumes
the value exp[4(0)], compare (2.8).

3. THE OSCILLATORY CASE: v >z >0

Under the present condition we write

v=zxcoshy, u>0. (3.1)

3.1. The contour for K;,(z)

In this case an infinite number of saddle points are used for obtaining the steepest descent
path. However, a simple summation procedure reduces the number of saddle points to a few

ones, as in the case of I;,(z) in the previous section.

. We write ¢(t) of (2.2) in the form ¢(t) = z(cosht — it cosh ). It follows that the saddle

points of the integrands in (1.2) are now given by
tki =75+ %7!"1:-}-2]671'7:, To=u, ke€Z.

The saddle point contour through the saddle t{ is defined by the equation S¢(t) = S¢(tE) =
+z(sinh g — pcosh p), that is by:

sinh u — h
T 4 sinhp—pcoshp

sino = cosh u — -
H sinh7 sinh T

: (3.2)

which is independent of k. The contours cannot have common points with the imaginary axis
(where 7 = 0). In fact this axis separates two groups of contours: those through t;: from
those through ¢, the first group corresponding to positive values of 7, the second one to
negative values. The parabola shaped curves satisfying (3.2) are shown in Figure 3.1. On each
‘parabola’ two saddle points are located. Hence, a complete parabola cannot serve as a path
of descent, since always one branch extending to infinity is a path of ascent. Only parts of the

parabola shaped contours are used for the steepest descent paths.
First the original contour in (1.2) for K;,(z) is split up in two parts: £~ U L*, where

- L7 runs from —oo to 0, and from 0 to +ioo,
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from +ioco to 0, and from 0 to +oo.

he integrals along £* are convergent at +ico. Next we deform L* along the
ts of the saddle point contours shown in Figure 3.1. Owing to the symmetry we
2% only: we take twice the real part of this integral. On the lower branch of £T
L tg' to +00) we integrate with respect to 7, on the upper branch (running from
'e integrate with respect to o. The result is:

. do d1
= X ¥(7) 1 wr) [ 20 3 .
§R{e [/TO e (1+z ) dr Lwe ( +z> da]}, (3.3)

2

x = S¢(ty) = zsinhrg — v7y, e V() = gmzcoshreoso—vo (3.4)

on between 7 and o is given in (3.2) (with the + sign).

Figure 3.1. Steepest descent path used in (3.3)

nd integral in (3.3) can be reduced to an integral over a finite interval. The fact

action

dr
—z cosh T cos o f .
Plo)=e (da Z)

th respect to o with period 2n: P(o) = P(o + 2x). It follows that

5
* —vo 1 27 —vo
/ P(O’)e do = m/ P(O’)e do.

1 1
z7 2™

in the representation

oc Sn
K;,(z) =cosx / e g 1 /2 e T 4
o do

—2
1 — e—27v —;-r

e do 1 5
: —9(7) —(r)
sin x / e dr — —- / e do|.
[ - dr 1—e2mv

1
5T

+




meters z, v are large the main contribution comes from the point ta' =710+ %m’ .
¢ have exp[—1(7o)] = exp(—3nv). This quantity gives a proper estimate of the

1te value of the oscillating function Kj, (z).

Integrals with respect to 7 may be replaced by integrals with respect to o. For

T dr 0

. sense, the integrals with respect to 7 are simpler than those with respect

N

e (") 4o

son is that a simple inversion of the sine-function in (3.2) gives an explicit

of o(7). Such a simple inversion for 7(¢) is not available.

Another point is that if, for instance, one wants to replace f:}rz/ 2 g=%(7) 97 do

with respect to T, one has to write first

57 dr 7™ dr i dr
() 20 — —¢(r) 20 —p(r) 21
/l e 7 do / e 7 da-{—/ e 7 do,

L g 3 a
27 z7T 27

vo-valued on the corresponding T—interval.

ur for I;,(z) and L;,(z)

egral in (1.2) can be split up into three parts:

‘rom oo — mi to t,

om t¥; to ts,

om t§ to oo + .

al along £_; and L; are transformed to integrals along the path from t{ to oo,
1 used for K, (z). This is done by changing o into —7 — o, 7 — 0, respectively.

ong Ly is shifted upwards by changing ¢ into —27 + o; afterwards we reverse

gw into g7r to %w; the two operations for £y can be

the single transformation ¢ — 7 — o. In this way we obtain integrals as used

f integration from 7 to

rresponding 7 values are not changed during these transformations, as follows

on (3.2). Corresponding values of do/dr do change sign, however.

ain

(e™ —e™™) / e~ %) (1 - Zc_lg) dr + e””/ e~¥(m) (—d—T + z) do
o dr ln do

(3.6)

Njen



Figure 3.2. Steepest descent path used in (3.6)

atities x and e~*(") are given in (3.4). The imaginary part of I;,(z) corresponds

also (1.4)). Separating the real part gives

cosX * do A
L'W(m) = 9 _ZSinhWU/ e—w(T)?EdT_l_e‘lru/ e—¥(7) da'] n
70

™ in
. oo - 4 (3.7)
X QSinhm// e ¥ gr — e’”’/ Gl
2 To %7" dO'

rameters z,v are large the main contribution again comes from the point tg' =
; this point we have exp[—%(ro)] = exp(—3mv). Hence, the quantity exp(3mv)

.+ estimate of the maximal absolute value of the oscillating functions I;,(z) and

FOR THE DERIVATIVES

interest to have results for the derivatives; they follow rather straightforwardly

ier methods.

notonic case: v = xsiné

ves of K;, (x), I;,(z) are obtained from (1.2). We have

oc ) 1 oot7i .
-1 / cosht e~®coshbttvt gy I (z) = ————/ cosht e*csB ="t gt (4.1)

—oc 27y 00—

e of (2.6) reads

< s sinfsing — cosh T
/ e ¥ Mg(r)dr, ¢(r)= , (4.2)

Coso

Kl (@) =

NN
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the relation between 7 and ¢ given by (2.4). The function g(r) is the real part of — cosht%;

the imaginary part is an odd function of 7, and does not give contributions.

The result for the I—function is given in terms of the L—function. We obtain from (1.4)

.sinhr7v

Izlz/(m) = L:u(m) -1 vau("E)’

with L., (z) given as the analogue of (2.11):

1 o1 . [

Li,(z) = ——/ cosg e”5 7T do + sinh / e ¥ h(r)dr, (4.3)

27 Jo_, Q 0

where "
. cosh 7 1
h(t) =sino ( - sinhr) .

This function is obtained by taking the real part of

1 do_ do
_ ic. Ve ™ {1 : . +rv R
5 [ cosh(r +io_) e ( +1 I > + cosh(r +io4) e (1 + i— )] ,

where o are given in (2.5), o in (2.4), and do /dr = —do/dr in (2.12).

4.2. The oscillatory case: v = zcosh u

Following the analysis that leads to (3.5) we obtain:

5
oc l b
K}, (z) =cosx [/ e VI A(T)dr — T——e—%/ eI B(r)do| +
T - ix
i g (4.4)
oC 1 5K
sin x / eV C(r) dr - —= f e YID(r)do|
™ 1 = e—2mv %7‘_
where _ y 4
A(r) = —cosh7coso +sinh7 Sina-{%, B(r) = A(T)(I:—,
C'(T)z—sinh’rsina——cosh'rcosag%, D(r) =C’(T)—g¢—§—,
and the relation between 7 and o is given in (3.1) (with the + sign).
For the function L., (z) we obtain
o g-7r
L, (z) ZCerX [—2 sinh m// e ¥IC(r) dr + e’”’/ e ¥ D(r)do| +
i ix
’ ? (4.5)

. 20 %7\*
812an [—ZSinhm// e V(M A(T) dT—l—e’”’/ e I B(r)do| .
T %W
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5. NON-OSCILLATING INTEGRALS FOR THE ORDINARY BESSEL FUNCTIONS

We give similar integrals for the ordinary Bessel functions. Some of the results can be found in
WATSON [10, CH. 8]. We only consider real values of the parameters of the Bessel functions.

The contour integrals for the Hankel functions are the starting points:

oo+ . _ o —i7w .
Hz(/l) (.’L‘) — _1_/ ezsmh t—vt dt, Hx(IZ) (iL’) —_ ___1/ e:csmh t-vt gy

T J_ o T Joo

Furthermore we use the relations

1) = 1 [HP@) + HO @), %(@) = 5 [HP@) - HP@)].

5.1. The monotonic case: v =xcoshy, p=>0
In this case we concentrate on the functions J,(z), Y, (z). For the first function we have

1 co+im .
J,,(.’E) = __/ e:z:smht—ut dt.

2mi oo 17

The real saddle points of the function ¢(¢) = zsinht — vt = z(sinht — ¢t cosh i) are located at
t = +u. The path of steepest descent through t = u is defined by (we write t = 7 + i0)

o
T = arccosh (coshu ———) , —T<o<m.
sino
Using this relation we obtain the representation

Ju(-r) = 517_‘- /ﬂ' ez(sinh‘rcosa—'rcosh,u) do.

For the Neumann function we use both saddle points, and we obtain

I inh t—t cosh u) 1" inh h ) 47
Y,,($) —_ ___7;/ e:z:(sm cosh ) p ;/ e:z:(sm T coso—7 cosh p) E_ do.
—o0 0 g -

The main contribution in the first result comes from the point o = 0, which corresponds to the
saddle point ¢ = p; the main contribution for the Neumann function comes from the saddle

point t = —p.
5.2. The oscillatory case: v =z cosf, 0<9< i

It is now convenient to consider the Hankel functions. The saddle point of interest for the
first Hankel function is ¢t = i, for the second function the point t = —if. After standard
manipulations we obtain

HIE].) (.’E) — ﬂ /ﬂ ez(sinh‘rcosa—'rcos 8) (1 . Z@) dU,
T Jo do



x = z(sin§ — 0 cos §).

stween 7 and ¢ is defined by
ocosf +sinf — fcos b
T = arccosh - , O<o<m.
sino

positive when o > 6, and negative when o < 6. For the second Hankel function

Hl(l2)($) — e;":x /"" e:,;(sinh'rcosa—'rcos9) (1 +Z%) do.
0

esult for one Hankel function follows from the other one by changing the sign
-y unit <.

e it is quite easy to derive the corresponding results for the derivatives of the
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