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Abstract

With a spectral distribution function of a random field, we associate orthonormal polynomials in
several variables. Recurrence relations between these polynomials are presented, which yield an
algorithm for construction. In the special case of polynomials in a single variable, these relations
were already known as opposed to the multi-dimensional case treated in this report.
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1 Introduction

In [Grenander and Szegd], Chapter 2, recurrence relations are presented between or-
thonormal polynomials in a single variable. These relations yield an algorithm for con-
structing orthonormal polynomials: each orthonormal polynomial ¢,(z) can be expressed
in terms of the orthonormal polynomial @,(z); see Theorem 10. In time series literature
where orthonormal polynomials are used for prediction, this algorithm is known as the
Durbin-Levinson algorithm (see [Brockwell and Davis]; see also [Grenander and Szegd]
where further applications of these orthonormal polynomials can be found).

Unlike [Grenander and Szegd], in this report orthonormal polynomials in several vari-
ables are treated and analogous recurrence relations between them are derived. This
extension to the d-dimensional case requires a certain ordering, which will be described
by sequences w = (wp,wi,...) with w; € Z%. It will be shown that for a special class
of sequences, which we call ‘periodic sequences’, the recurrence relations obtained, yield
analogously to the one dimensional case, an algorithm for constructing orthonormal poly-
nomials.

In order to clarify the mentioned relationship between orthonormal polynomials and
predictors, we restrict our discussion to the one dimensional case: let {X;}«cz be a zero
mean time series with given covariances Cov(X,, X;) = IE(X,X). Suppose that Xy, has
to be predicted by observation on Xy, ..., Xy. Let Xn,1 denote the best linear unbiased
estimator (BLUE) for Xy, i.e.

N
XN+1 = Z CmXm,

m=0
where the complex numbers ¢,,, are chosen so that the mean squared error (MSE)
E| Xy — Xyl
is minimized. As is easily seen, the numbers ¢,, can be found by solving the system
(CO; s 1CN)FN = (]E(XN+170)7 RN ]E(XN+17N))7
where I'y is the covariance matrix of Xg,..., Xy, i.e.
Xo
'y = E (Xo,...,XN).
XN
Assume now that the time series {X;}:cz is weakly stationary, i.e. IE(X,X;) depends
only on s —t. Then the (Hermitian-)matrix I'y is Toeplitz. This additional assumption
simplifies considerably the construction of Xpy.;. Indeed, due to stationarity, Bochner’s

theorem yields that there exists a spectral distribution function F' : (—m, 7] — R such
that for all s,t € ZZ

E(X.X;) = / (€2)~t dF ().

(—ﬂ')"r]
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~ . N .
BlXws = Xl = [ 1) = 3 en(e®)™ dF (V).

(—m,7] m=0

uares criterion can therefore be interpreted as follows: let P denote the
tor space consisting of polynomials (in the variable z) of maximal degree
me that the mapping < «;- >: P x P — C given by

< fig>= / F(é*)g(e*) dF(X)

(~m,7)

N
roduct. If f(z) = 2Nt — ¥ ¢,2™, then

m=0
E|Xns1 — XN+1|2 =[£I,

:< +;- >1 is the induced norm. So minimizing the mean squared prediction
ralent to finding the polynomial f € P that minimizes || - || and has a leading
e. the coefficient of 2V*!) equal to one. The minimizer f can easily be ex-
rms of orthonormal polynomials: let e, denote the monomial z — 2™ and
s the orthonormal polynomial constructed by a Gramm-Schmidt orthogonal-
e monomials eg, ...,e,, in which the coefficient of e, (denoted by k,) is a
number, i.e.

On S

1
G = 6n < €n; O > Ok
n

k=0
lynomial f € P that minimizes || - || and has a leading coefficient equal to
(see subsection 2.5). So if

N
Pn+1
k =en+1 + Z Om€m,
N+1 m=0

ficients ¢, in Xn41 are given by
Cm = —Q.

Gramm-Schmidt orthogonalization procedure yields relations which enable
;ruct the orthonormal polynomials recurrently: the polynomial ¢, is con-
e the polynomials ¢y,...,¢,-1 are known. This procedure of constructing
polynomials is quite elaborate. However, due to stationarity each orthonor-
ual ¢, can be expressed in terms of the orthonmormal polynomial ¢,_, (see
and Szegd] or subsection 3.1).

1entioned earlier, the desired extensions to the d-dimensional case require or-
bed by a sequence w = (wp, w1, ...) with w; € Z?. For a fixed w we establish in
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Theorem 11, th: between orthonormal polynomials, which for

periodic sequen 1 algorithmic form (see Theorem 15). Finally
for ‘block seque case of periodic sequences), we will introduce
orthonormal m: on between these matrix polynomials and the
‘ordinary’ orthc ;ed with a block sequence w, are expressed in

Corollary 2.



onormal Polynomials

c Notions
tion polynomials in the variable z = (21, 22,...,23) € C? will be considered.
lex vector space of these polynomials, an inner product < -;- > will be

‘espect to a spectral distribution function F' (see formula (2)).

nials require powers of the variable z, such powers will be defined. By
al multi-index notations, z to the power n for z = (21, 2,...,23) € C* and
.,Ma) € Z? is defined by

71

2=t 2P 2% € C,

2" 2 =M

Z°%. Once powers of the variable z are known, monom1als can be defined. A
shen a function C¢ — C such that

z— 2"
7°. This mapping will be denoted by e,. Notice that
en * 6,, = en+y (1)

Z°. Finally a polynomial is a finite linear combination of monomials.

:note the complex vector space consisting of the polynomials. On this vector
1er product will be defined. Let F : A — IR be a spectral distribution
re A = (—m,7]%. Then it is assumed that the mapping < -;- >: P¢x P4 — C

< fig>= [ FeN)gle™) dF() @
A
-oduct, where the numbers e for A = (Ay, Mg, ..., Aa) € R® are defined by
e = (e, g2 M) e C°
{e?*|) € A}

torus. Notice that
@) = ()

2. which yields
<e_pe, >=< e, ey > (3)
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for all ,v € Z°. ,

The norm | - || : P? — IR induced by the inner product is given by
- ll=<-;->%.

Recall that F': A — IR is a spectral distribution function if

® AyF >0 for all A C A of the form A = (uy, 1] x -+ x (4, V4], in which —7 <
pi <vj £ m for all j. Here AyF := Y sgn,z - F(z), the sum extending over the 2¢

vertices z = (z1,...,2q4) of A (z; = p; or z; = v;) and sgn,z, the signum of the
vertex, be +1 or ~1, according as the number of j (1 < j < d) satisfying z; = p; is
even or odd.

e I': A — IR is bounded.

e [ is continuous from above, i.e. suppose {A(M},5 is a sequence in A with \® =
M), A= (A, A) € A and A® | "X in the sense that A | ); as
n — oo for each j € {1,...,d}. Then F(A™) — F()).
(see e.g. [Billingsley]).
By assuming that (2) defines an inner product, we have actually restricted the class of

spectral distribution functions F, which however includes all spectral distribution func-
tions F' with derivatives f whose geometric mean is positive, i.e.

logf(M, -+, Aa) dhy... dAg > —00
(—m,m}e '

(see e.g. [Rosenblatt]).

2.2 Orthonormal Polynomials

In the previous subsection, the inner product space (P¢,C, < -;- >) was constructed. In
this subsection orthonormal polynomials will be introduced, which belong to this space.
The orthonormal polynomials will be given explicitly in (8), (9) and (15).

Theorem 1 Let

€wos Cwys Cuwgy Cuwgy - - -

be an ordered system of monomials, with w = (wo,wy,...) € Z% x Z% x -+ and w; # w;
for alli # j. Then a unique system of polynomials {Pun}nen exists such that

® Pun is a linear combination of the monomials e, ..., e, .

e the coefficient of e,,, in ¢, is a positive real number.



o the polynomials {¢,n}nen are orthonormal, i.e.

1 fn=m

< Puini Pum >= { 0 ifn#m

Proof: See e.g. [Grenander and Szegd). O
Notice that w may have a finite length, i.e. w = (wy,...,wy) for some N € IN. In this
case we have a unique finite system {@,, ,}_, of orthonormal polynomials.

Corollary 1 Let w = (wo,wy,...) € ZEX ZE X - -+ and w; # w; for alli # j. Fixn € Z.
Then the system of polynomials {€,¢. n}new is orthonormal.

Proof: This is a consequence of the special form of the functions e,,. o
For further reference let k,, and [, , denote the coefficient in ¢, , of e,, and e,
respectively. Now the orthonormal polynomials ¢uw,n will be given explicitly.
Fix an arbitrary w = (wo, w1, ...) € Z% x Z? x - - - with w; # w; for all 4 # j. Then for
each n € IN define the Hermitian (or self-adjoint) matrices H, , by

(ei)\)wg
How = [ @ | @) dFOY
A (e‘iA)wn
< Eupi Cup > K Cupi €wy = oo K €y Euyp >
_ <6w1;€wo > <ew1;ew1> <€wl;6wn> (4)
< €uiCup > < €uniCup > i < €y, >

and let D,,,, denote the determinant of H,, . Notice that by (3)
H—w,n = E:“w,'rt. (5)

and
D—w,n = Dw,n-' ‘ (6)
Define the Hermitian forms T, , : C**! — IR by

n

Ton(Uoy ... Up) = Z wy (Hon) poTo
1,=0
Ug
= (ugy-.-,Un) Hun
un

= [ luo(e?)® + -+ + un(e®) [ dF (V)
A

luo €w + - - - + Un ewﬂHz. (7)
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Since the monomials e,,,...,e€,, are linearly independent and || - || is a norm (by as-
sumption), it follows from (7) that the matrices H, , are positive definite and so the
determinants D,,,, are strictly positive. Then the unique orthonormal polynomials ¢, .
are given by

< €uys Bwg > < €upr €wy > oo < EypyiCuy, >
bun = < Cunyiup > < Cupyiuy > <ewriewm>| &
Dyn-1Dun €11 Cuwg Cun—13wy > --- €wn—1) Cun
€uwo €uwy - €wn,

if n € INt and

1
w,0 = €g+ 9
¢,0 \/1—)7’0 0 ()

This can be verified by expanding the determinant in (8) in the cofactors of its last row
and then calculating < e, ; ¢un > for k € {0,...,n}. Observe that for n € IN*

«/—

So for all n € IN we have by (6)
kewn = kun. (10)

3

Moreover for n € IN*

(=1) < Cupi€wy > o < Cupi Cuy >

lw,n——“—D——"ﬁ“‘ ‘e e sos
VHen—1Yun | <e, i€u > ... < €y, ;iCuw, >

which yields that for all n € N

on = lun (11)
Example: Let F': A — IR be given by
F(/\]_,...,)\d) _— "“‘—(2—;{_yi—‘,
with ¢ € R*. Then D, ¢ = 0? and
€,
¢w,n =
o

whatever w may be. In terms of spectral distribution functions, this function F' is associ-
ated with so called ‘White Noise’.



ut this report formula (8) for a fixed n is abbreviated to

GS
ewo, vy oy T ¢w,n7 (12)

;0 the fact that the unique system {@, » }new is also obtained by a Gramm-
ogonalization of the system of monomials {e,, }rem, i.e. for n € IN

¢ , n—1
'E‘ﬂ =€y, — Z < €uns ¢w,k > ¢w,k- (13)
w,n k=0 .
lso need the construction of ‘,f::, which will be abbreviated to
GSe ,
Cuwpr -+ 3 Cum — %’—E (14)
w,n

;hat the orthonormal polynomials ¢, can be represented alternatively to
. 18 invertible, for n € IN* the orthonormal polynomials ¢, are given by

€uwyg
w,n

¢w,n R s (07 e ,0: 1) (Hw,n)—l . (15)
Dw,n—l €w

n

verified by calculating < e, ; ¢, > for £ € {0,...,n}.

uence Sets and their Transformations

_in the sequel certain transformations, which transform sequences w. These
s are defined on particular sequence sets.

04 :=(0,0,...,0) € Z°.

quence sets are defined as follows: for n € IN*
= {(wo,w1,.-.,wn) | w;€ 72, wy = 04
) \7’2,]6{0,,n—l}(z#y)#(w,;éw,)}, (16)
N
= {lwo,wr, .. ywn) | wi € 22, wo = 0g
L Vi€ {0,...,n}i(i#]) > @Aw)) (A7)
s several mappings will be defined:

IN, then the identity mapping I, : QF, — Qin is defined by

L((wo, w1, + - - ywn)) := (wo, w1, . - ., Wn). (18)



e The mapping 7T, ‘shifts’ coordinates of w € Q,’f'n. For n € IN* define this mapping

T,:QF, — QL. by

Tn((wo, w1y .-+ ywy)) 1= (W1 — w1,Ws — Wi, ..., Wy — Wy,Wn).

Notice that this mapping is bijective.

(19)

e The mapping V,, will be used in the next subsection to define the multi-dimensional
version of a reciprocal polynomial. For n € IN this mapping V, : QF, — QF  is

defined by

Va((wo, w1, .+« W) 1= (Wp — Wn,Wn, — W1, .- . ,Wn — Wp)-

(20)

Notice that for each n € IN the mapping V,, : Q%, — Q7 is its own inverse, i.e.

VooV, =1,.
Fix now an arbitrary n € IN and consider the mappings:

. OF #
Tn+1 . Q'n.+1,'rl,-4-1 — Q'n.-i-l,n.
. o #
Vn+1 : Qn+1,n+1 - Qn+1,'n.+1

o . OFf #
Vn . Q'n,+1,'n.+1 _’Qn—kl,n

where the mapping V2 : Qfﬂ,n_,_l — Qfﬂ,n is defined by

V:((wmwl) s ,wn+1)) = (wn T WnyWn — Wpa1y .., Wy ~— w07wn+1)-

Observe that
V: ° V: = dnt1.
Then it follows that
Tn+1 = V: ° Vn+1
and
Tot10 Vn+1 = V:-

2.4 Reciprocal Polynomials

(21)

(22)
(23)
(24)

(25)

In this subsection reciprocal polynomials will be introduced. These polynomials will be

used intensively throughout the remaining part of this report.

Let n € IN and fix an arbitrary w = (wo,ws, ..., wy) € Q,’"in. The Gramm-Schmidt orthog-

onalization procedure yields

GS
ewm Cwyye oo 7ewk ? ¢w,k

where k € {0,...,n} is arbitrary. The polynomial reciprocal to ¢,  is defined by

* ® vamn
ik = € P

The next theorem shows the relation between the coefficients of @,,x and ¢}, ,:

10
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Letn € N and fix w = (wo,w1,...,ws) € QF,. Choose k € {0,..

k
¢w,k = Z PwmCunms

m=0

C. Then

k
:,k = Z @w,mewk—wm'
m=0
= 0 the statement is obviously true. Take k& € IN*. Then according t«
15)

/Dw b . Cwp--wy
: (O’ <, 0, 1) (Hw,k)—l : 5

ewk ¢—-w,kz = ,\/B— .
k—1
“ Cup—wy

the statement of this theorem.
theorem shows how ¢, , is constructed by the Gramm-Schmidt orthog
dure.

Letn € N and fix w = (wo, w1, .. .,ws) € Q.. Then

GS %
ewk—woa ewk_wl’ ey ewk, —Wk ? ¢w,k
S nh
ve
Gs
€wgs Cmwyy e vy Emuy ? ¢—-w,k-

ie assertion of Corollary 1 with n = wy and formula (26) we get

GS 1«
- Cup—wpr Cwg—wrs c vy Cwp—w T Py

For k € {0,...,n} we have by definition (20) that

GS
Cup—wn 1 By —wn_13++ 3 Cwp—wi) Cuwp—wn_p ? ¢Vn(w),k-
eorem 3
GS %
Cun—wn—k) Cwn1—wn_gr 1 Cun_p—wnk T PV, (w),k

11



2.5 Extremum Properties

Similarly to the one dimensional case (see [Grenander and Szegg)), the orthonormal poly-
nomials ¢, , can be used for constrained minimization of the Hermitian forms as defined

in (7).
Theorem 4 Let n € N and fix w = (wy, ..., wn) € ..

Then the polynomial %S-s minimizes ||gun|?> where gon = o€y + ... + Gn €y, 5 an
arbitrary polynomial in which a, = 1. The minimizing polynomial is unique and the
minimum itself is .

Proof: Represent g, as
Gun =V ¢w,0 +or U, ¢w,n
where v; € C for all j. Since a,, = 1, it follows that v, k., = 1. Then

Igaall® = fool® + -+ [oal® > foal® = £5—
w,n

Theorem 5 Letn € IN and fiz w = (wo, . ..,ws) € Q.
Denote by u,,, the unique polynomial that minimizes ||g,n.||® where gun = ey, +
..+ ane,, is an arbitrary polynomial in which ag = 1. Then

GSe
Cunr vy — Uy n.

Proof: Analogous to the proof of Theorem 4. m|

2.6 Relations between Minimizing Polynomials

In this subsection some relations between polynomials ¢, %, » and their reciprocals are
presented. Recall that the minimizing polynomials u,, , were defined in Theorem 5.

Let n € IN and fix an arbitrary w = (wg,w1,...,wn) € Q,Zf,n. As was seen in the previous
subsection
GS
€y Cuwyy oo 1ewk ? ¢w,k
and
GS. .«
ewk—wo) ewk—wly cry ewk—-wk ? w’k

where k € {0,...,n} is arbitrary. For k € {0,...,n}, the polynomial w, 4 is defined in

Theorem 5 by

GSe
Cuwgy - 3 Cwry Cug —— Ui ks (29)

which is obviously equivalent (for k € {1,...,n}) to

GSe
€uwgr -~ 3 Cugr Cuwg — U k- (30)

12



1 the polynomial reciprocal to u, is given by

* ® —
uw’k = ewku_w’k-

ts similar to those used in the course of proving Theor:

d

GS. *
Cup—wps ) Cwp—wr) Cwp—wy — Uy k-

Let n € IN and fir an arbitrary w = (wp,wy, ..., w,) € §

o ¢Vn (w)yn

“m kVn (w)yn
— :{/n (w)yn '

’ kVn (w),n

8) and (32) with k = n we have (33). Hence

*
—-w,n

uw’n = ewnu

6wn ¢Vn("‘w)an
kVn(—w),n

e P-Va@n

T k—Vn(w),n

Pl

kVn(w),n

Let n € Nt and fiz an arbitrary w = (wo, w1, ...,w,) €

o= e (w)in-1
wyn-—1 kvo

n.—l(w)an—l

*
¢V:_1(w),n—1
Uyn—1 = 37— .

kve_ (w)m—1

1la (32) for k = n — 1 reduces to

GSe

Cun1—wn—17°*+1Cuwp_1—w1y By g—wp — uw,n—l'
* hand, by definition (22) we have
GS
ew.,,_l—-wn_1) ey ew-n,—l_wl 3 ewn—-l_'wo - ¢V:_1(w)’n_1'

13




Thus (35) holds as well as (36), since

— *
Uypn-1 = ewn_lu—-w,n—l

Ve (~w)n—-1
Win—1 kV° 1(_“’)’”_
. P-veo_ (w)n-1
Wy, 1 —W0 k_yo Vo (@t
Vo (wn—1
Fvs omt

n—1

@ n-1

2.7 Applications to Random Fields

Let {X:}iems be a complex valued zero mean weakly stationary random field with given
covariances, i.e.

o Vi € Z¢ E(X;) =0 and IE(|X;[?) < co.

o Vs, t € Z°
Cov(X,, X;) = E(X,X;)

depends only on s — ¢.

Due to stationarity, there exists a spectral distribution function F : A — R with A =
(—m, m]% such that for all s,t € Z¢

E(X,X,) = / (€*) " dF(N) =< ey e, >
A

Here the multi-dimensional Bochner theorem is used (see [Yaglom)]).

The covariance matrix of X,,, ..., X, with w = (wg,...,w,) € Q7 is
KXo
I, = E } (Xegs - -+ X))
< €upy; Cuwy >
< eluiCuwy > < €y €y > < €y, >

< ec,,n,ew0 > < e“,n,ew1 >

[ < uwpi Cup > < €y By >
Hyn

14
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Now let n € IN and w = (wp,...,Wnt1) € Qfﬂ,n“. Then the best linear predictor for
Xuny1s based on X, ..., Xy, is given by

n
Xwn+1 = Z cw,mem,

m=0
where the coefficients ¢, € C are chosen so that the mean squared error
0 2
]EIXwn+1 - Xwn+1|

is minimized. This means that the random variable X, ., is approrimated by a ran-

dom variable X, .. belonging to the linear space spanned by the random variables
Xugy - -+ 3 Xun- The coefficients ¢, can be found by solving the system

(cw,(h sy cw,n)rw,n = (< €wni11Cuwp > < €rnp11 Cwn >)-

As was already noted in the introduction, the stationarity assumption simplifies consid-
erably the construction of X,,,,, by using orthonormal polynomials. Indeed, let

i = 1 fm=n+1
W) —cym ifme{0,...,n}.

Then
E‘Xwnﬂ - Xwn+1l2 = ]E|Xwn+1 - Z cw,mele
m=0
n+1
= IE| Z dw,memlz
m=0
n+1 n+l . .
= Z Z dw,mdw,P]E(mepr)
m=0 p=0
n+1 n+l _
= YY) dumbup < uni €, >
m=0 p=0
n+1
= || X dumeonl®
m=0
= /l(ei)\)wn+1 _ Z cw,m(eik)wm|2 dF()\)
A m=0
If

n

¢w,n+1 = kw,n+lewn+1 + Z Puw,nt1,m Cumy
m=0

then according to Theorem 4, the coeflicients c,, , minimizing the mean squared error are
identified with the coeflicients of {“’ﬂﬁ, ie.

W T
_ Pumtlm

Com =
“ kw,n+1

15



for all m € {0,...,n}. With this choice of the numbers c, 5, the mean squared error

reduces to )
% 2
IEtXwnH - Xwn+11 = k2 .
w,n+1

Notice that X,,_ ;1 can be expressed as a linear combination of the innovations [X,,, —
Xu.] 1 according to (13)

Pu,nt1 =
—I;.uin—— - ewn-i-l - Z < ewn-i-l; ¢W)m > ¢w:m
w,n+1 m=0
- Pu,m
= ewn+1 - Z k/‘w,m < ewﬂ+1; ¢w,m > k : .
m=0 W, m
Hence . . 5
Z ComCum, = Z kw,m < €uwny1) ¢w,m > '];L_uﬂ:
m=0 m=0 w,m
i.e. .
Xwn+1 = Z kw,m < ew,,,+1; (bw,m > [me - me]7 (37)
m=0

where X, = E(X,,) = 0.

2.8 Kernel Polynomials

In this subsection kernel polynomials will be introduced. These polynomials fully describe
the inverse of H,, ,, (see formula (40)). We will use these polynomials here to proof that

(Hw,n)—l = L:),n Lw,m

where L, ,, is the lower triangular matrix with real positive diagonal elements given by
(41) and L}, , is the conjugate transpose of Ly, .

Let n € N and fix w = (wp, . ..,wy,) € Qin. For fixed a € C4, define the kernel polynomial
Sun(a) : ¢! — Chby

n

Sun(@) = Y Pu (@) Puk (38)

k=0
The term ‘kernel polynomial’ is made clear by the next theorem.

Theorem 8 Letn € N and fiz w = (wp, ...,w,) € Qf’n. Let gun = bopewy + ... +bnew,
be an arbitrary polynomial. Fiz a € C2. Then

< Guw,ni Sw,n(a) >= gw,n(af)' (39)

The kernel polynomial s, ,(a) is uniquely determined by (39).

16



Proof: Represent g, , as
Gw,n = Vg ¢w,0 T4 Uy ¢w,n
where v; € C for all j. Then

n
< Gwn; sw,n(a') > = E U < ¢w,k; Sw,n(a) >
k=0

= Zn: Uk Pu,k(a)
k=0
= gw,n(a') .

Now suppose that along with s,.(a) there is another polynomial s, (a) which has the
kernel property (39). Then

< Quk; Swnla) — SZ,n(a) >=0

for all k € {0,...,n}. So sua(a) = s ,(a), which yields the uniqueness of the kernel
polynomial s, ,(a). a

The kernel polynomial s, ,(a) was defined by (38). The next theorem shows that
Swn(a@) has an alternative representation.

Theorem 9 Letn € N and fix w = (wy, ... ,wn) € Q.. Then for fized a € C*
€uwo

8un(@) = (€wy(a), ..., eu,(a)) (Hw,n)_l : . (40)
; e

n

Proof: Fix m € {0,...,n} and a € €. Then formula (40) gives
< €wpm Cug >
< €umi Sun(a) > = (ew(a), ..., eu,(a)) (Hum)™? :

< €y Cum >
(ewo(a’)7"')ewn(a)) (07""071)07'“70)*

= ewm(a’)’
where the 1 in the unit vector is at the m®® place. Due to linearity it follows that (39)
holds. Then uniqueness of the kernel polynomial yields (40). O

Let now L, , be the lower triangular matrix consisting of the coefficients of the or-
thonormal polynomials @0, .., @un, i-e.

kuo 0 .. ... 0
Vw10 K1 0 . 0

Lw,n — Puw,2,0 Puw2,1 kw,2 0 cee 0 : (41)
0

(Pw,n,o (pw,n,l Qaw’n’2 ves s k,'w’n

17




with the non-ze

Then (38) gives

Now formulas (-

This decomposi
real numbers.

sfined by the identity

n—1
win = Ryn Cuy, + Z Pwn,m Cup, -
m=0
n ——— e
z ¢W,k(a)¢w,k
k=0
€uwo (@) ) €up
Lw,n Lw,n
ew, (@) €un
ewo
(ewo (@), eu, (a)) L::,n Lun : . (42)
Con
ield
(Hun) ™! = LY, L. (43)

"l is unique, since the diagonal elements of L, . are positive

18



3 Constructing Orthonormal Polynomials

As noted in the introduction, the Gramm-Schmidt orthogonalization procedure yields
relations for constructing the orthonormal polynomials {@, »}nexv. However the special
structure (4) of H, ,, allows one to establish alternative relations between these orthonor-
mal polynomials (see Theorem 11). As applied to the particular case of ‘periodic sequences
w’, these relations yield a useful scheme for constructing the orthonormal polynomials;
see Theorem 15.

3.1 The One Dimensional Case

In this subsection a scheme is given for recurrently constructing the orthonormal polyno-
mials {@u n}nen in the one dimensional case, with w = (0,1,2,3,...) kept fixed, i.e. each
polynomial @, n41 1s expressed in terms of the polynomial ¢, (see Theorem 10). For the
basic formula (44) we refer to [Grenander and Szegd] or to the next subsection, where
(44) is proved at once in the d-dimensional setting as well as the formulas (45) and (46),
which are only implicitly presented in [Grenander and Szegd).

Since the sequence w is fixed, the subscript w is redundant and therefore omitted in
the notations of this subsection. The orthonormal polynomials {@,}nen are recurrently
related by the relation

¢n+1 ¢n ln+1 *

kn+1 - 617{;—7; + kn+1k’n "

where ¢}, is the polynomial reciprocal to ¢,, i.e.

$n(2) = 2", (270).

In the next subsection we provide for the proof of the general Theorem 13, which as
applied to the present special case, can be formulated as follows:

(44)

Theorem 10 Assume that ¢, is known. Then the following three steps enable one to
construct the polynomial ¢py1:

e Determine
ln+1

kn+1 kn

=—< e1fn; €0 > . (45)

o Determine kn1 € R according to (45) and the relation

1 — 1 _ ]l'n+1l2

= . 46
B B R (46)

e Determine ¢n41 according to (44).
Proof: See the remarks at the beginning of subsection 3.5. g
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3.2 Recurrence Relations

The assertion of Theorem 10 can be extended to the d-dimensional case a
in Theorem 13, which is an obvious consequence of Theorems 11 and 12

Theorem 11 Let n € N and fiz w = (wo, w1, ... ,Wnt1) € Q,f+1'n+1. De
V2(w) as in subsection 2.3. Then the orthonormal polynomials and the
related as follows:

%k
lw,n+1

¢*
wnt+l _ YT p(w)n

+

= Cunp1~wn PV2(w)n
kw,'n.+1 kT,H.l(w),n kw,n—{—lkV,?(w),n " mhn

and
¢w,n+1 ¢Tn+1(w),n + lw,n+1

= €,
kw,n+1 an+1 (w),n kw,'n.+1 kV,‘L’(w),n

*
V2 (w),n”

Moreover

lw n+1
]C_—,T‘— =—-< ewn+1—wn¢V,?(w),n; €uwo > .
w,n+17V,2 (w),n

Proof: Since for all k£ € {0,...,n}

GaGs
€w1—w1r Cwg—wisr -+ 3 Cwppy—wy ? ¢Tn+1(w),k7
by definition (19), Corollary 1 yields

w2

GS
ewu AR ewk+1 ewl ¢Tn+1(w),k'

According to (30)

GSs
€wi1Cupye- s ewn+1a ewo ? uw,n+17

which means that by (50)

n
Up,nt+1 = €y — Z < €ups ew1¢Tﬂ+1(w),k > ew1¢Tn+1(w),k-
i k=0

Applying similar arguments to u, ,, we get

n—1

Uw,n = €ug — Z < €y Euwy ¢Tn+1(w),k > €y ¢’Tn+1(w),k-
k=0

So (51) and (52) give
’u’w,n"*‘l = uw’n-_ < ewo; ew1¢Tﬂ+1(w)1n > ew1¢Tﬂ+1(“")7n'

Next < €uy; €w, P11 (w),n > Will be expressed in terms of coefficients of o
nomials. By formula (34)
¢Vn+1(—-w),n+1

Uw,n+1 = € .
“ M kY1 (w) et
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Thus by (11) the coefficient of e,,,,, in %y i1 is

[ Vati{w)n+1
kVn+1(w)1n+1

Observe that the polynomial

ly,
+1{w),n+1
uw,n+1 - ewo - = .

Evpa@)ntt
is an element of span{e,,,...,e.,} if n € IN* and it is identically zero if n = 0. Due to
(50) with & = n this yields
ZVT,, w),n
< Uwnt1l = Euwy Vapi(@)ntl €upp1r ew1¢Tn+1(w),n >=0 ) (54)

kVn+1(w),N+1

for all n € IN. Since the function e, @r,,,w). is an element of span{e,,,...,€u, 1}
formula (29) yields

< Uw,n+1; ew1¢Tn+1(w),n >=0. (55)
By (54) and (55)
- ZVn-(—l(w):n"‘l

< €uwpi EW1¢Tn+1(W),n > = k——————— < €upyr EW1¢Tn+1(W),n > (56)
Vn+1(w),n+1

ZV +1{w),n+1
= - = - ’ (57)
kVn+1(w),n+1an+1(w),'n,
since
1

< Cumy1t un ¢Tn+1(w),n > = —X< an+1(w),n €uwnt1 Cun ¢Tn+1(w),n >
an+1(w),n

= 7 < €, 0T i1 ()0} € PTrsa(@)in >

an+ 1(w)n
1

an+1(W),n '

By (53) and (57) we have

an+1(w),n+1

€uy ¢Tn+1(w) \ne (58)

Upynt+1 = Upn +
’ , kVn+1(W),n+1an+1(w),n .

Now (58) will be expressed in terms of orthonormal polynomials. According to formula
(34) and (36)
_ ¢T/n+1(w),n+1

U+l =
kv,1(w)nt1
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and

- ¢*V,f(w),n
T vz
So (58) becomes
Fas@intt _ o W@
+1( )1 +1 . ﬂ(w)’ + V+1( )’ +1 6w1¢Tn+1(w),n' (59)

kVn-i-l (“J)!n+1 - er? (w)fn kV'fH-l (w)’n'l'l kT’n.-l—l (W) n

Substituting w = (wo,...,wp+1) in (57) and (59) by Vp1(w) = (Wni1 = Wnit, Wns1 —
Wny e+« ;W1 — wp) (this is allowed since V,41(w) € Q,’fﬂ,nﬂ), we get by (21), (24) and
(25)

bt
< eWO; ewn+1"wn¢Vr?(w),n >= = = (60)

kw,n—i—l kV,‘f (w),n
and

* ¢* l
wnt+l _ P Thpi(w)n w,n+1

kw,n+1 B an.H(w),n kw,n+1kV.,$(w),n

Thus formula (47) is proved as well as (49), since this last formula follows by conjugating
(60). It remains to prove (48).

By the definition of reciprocals, formula (47) is equivalent to

€uwpt1—wn ¢V,§’ (w),n-

ewn+1 ¢-—w,n+1 _ ewn+1 —wi ¢Tn+1(——w),n lw,n+1

Coppr—w ¢V° (w)yn+
kw,n+1 an+1(”) n kw,n+1 kV,f (w)yn nre

Due to (11) and the fact that

Cun Ve (-w)n = BVo(w)n

this yields
M —e ¢Tn+1(w),n lw,n+1
“ an+1(u),n kw,n+1 kV.,?(w),n
cf. (48). o
Formula (48) and (49) show that %ﬁﬁ can be determined once ¢z, ,(w)n 30d Pye()n

are known. The next theorem shows how k, n11 can be determined once ¢7,,,,(.)» and
Pve(w),n are known.

%
V.2 (w),n
K1 (W)

Theorem 12 Let n € IN and fiz w = (wo, w1, ... ,Wnt1) € Qf.,_l’nﬂ. Then

kZI,TL+1 k’%n.;.l(w),n kg,n+1k%/,{’(w),n
Proof: Formula (53) gives
< Uiy} €wp >=< Ui €uwp > —| < €ug} € OTps(@iin > |- (62)
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This combined with (57) yields

1 _ 1 _ |an+1(w),n+1 |2

: , (63)

2 - k2 k2 k2
Vot1(w),nt+1 Vo(w)n Vat1{w),n+1"Thq1(w),n
since

o Por(@)ntt
wo
kv, 1 (w)nt1

< U, n+11 Cwy > < ewn+1;
1
= T < i
n+4-1 )
1
. (64
Vat1{w)nt+1

>

and

Pve(w),n
kv

L UpniCuy 2> = < €uy,jCuwy >

1 <ey ;P >
= i PVE(w),
kvsn oA

1
- (65)
kYo (w)m

Substituting w = (wo, ..., wn+1) in (63) by Voy1(w) = (Wnt1 — Wnipls Wngl —Wry -« v, Wra1 —
wp) (this is allowed since V,,1(w) € foﬂ,nﬂ) and using (21), (24) and (25), we get

2
1 _ 1 'lw,n+1 I
2 — 1.2 ) 2 :
kw,n+1 kT.,,.,.l(w),n k:w,n+1kvrg(w),n

O
The next theorem shows how @, .1 is determined once ¢7, () and Ovo(w)m arTe
known.

Theorem 13 Letn € N and fizw = (wo, w1, - -, Wnt1) € Q,’fﬂ,n“. Assume that ¢, (w)n
and ¢yswyn are known. Then the following three steps enable one to construct the poly-
nomial @y pt1:

. 1
e Determine =2t —
w,n+18V0(w)n

according to (49).

e Determine k,n+1 € Rt according to (61).

e Determine ¢, nt1 according to (48).
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Proof: Use Theorems 11 and 12. O
Observe that one can derive the basic relationship (48) alternatively by using geometric
arguments as follows. Notice first that (48) is equivalent to

¢w n+1 ¢T +1(w),n ¢T +1{w),n
: = € = ’—<ew—”-__‘" ,; *°wn> *°wn1 66
kw,n+1 w1 an+1(w),n 1 an+1(w)’n ¢Vn( )1 ¢Vn( )’ ( )
since by (26), (36), (49) and (50)
< e, ———¢T"+1(“)’”'¢?,o > = < lupir; Bvo(w)n >
1 an+1(w)’n ? 2(w),n n+11 2 (w)m

= < ewﬂ+1—wn¢V,?(w),n; €wy >

lw n+41
= — 67
kw,n+1 kV,,f (w),n ( )

In order to verify formula (66), we use the following notations:
¢ L(wi;...;wn) denotes span(e,,;...;e,,).
e L(wo;...;wnt1) denotes span(euy; . - - ; €u,,, )-
o Lt(wi;...;w,) is defined by
L(wo; . .. ;wnt1) = Lws;. .. jwr) @ L (wi;. . . wyp).
Notice that L*(w;...;w,) has dimension two.

Since PVro(w)n 30d €u, b7, (w),n are linearly independent polynomials belonging to
Lt (wi; .. . ;wy), a basis of Lt (wy;.. . ;w,) is

{¢‘*/,f(w) Y €wy ¢Tn.{.1 (w),n } .

An orthogonal basis of Lt (w;;...;w,) is

{¢?/,,$(w),n; €u; ¢Tn+1(w),’n_ < €uy ¢Tn+1(w)m; ¢*V,f(w),n > ¢’{/,$(w),n}'

Since ¢unt1 € Lt(wi;...;w,) and < Punt1; Byo(wy,n >= 0, it follows that ¢uni1 €
SPan(€uw; PT, 41 (w)n— < €wy PTors(w@)in] DVro(w)n > BVo(w),n) BY comparing the coefficients of
Cunpr WE get (66).

3.3 Applications to Random Fields (continuation)

In this subsection it will be shown that formula (48) yields a relationship between ran-
dom variables in a random field and their predictors. Moreover the partial autocorrelation
between random variables will be expressed in terms of coefficients of orthonormal poly-
nomials.
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Consider a random field as defined in subsection 2.7. Let n € IN and fix w € ﬂ,’fﬂ,nﬂ.

Let X, +1 be the best linear predictor for X, ., that belongs to span(X,,,...,X,,), i.e.

in view of subsection 2.7 "

Sow,n+1,m
Xwn+1 - Z k mei
m=0 w,n+1

where the coefficients are defined by the identity

n

¢w,n+1 = kw,n+1ewn+1 + Z Duwnt+1,m Cwp -
m=0

Let X~ .. be the best linear predictor for X,,_ .1 that belongs to span(X,,,...,X,, ) and

Wn41 )
let X, be the best linear predictor for X, that belongs to span(X,,,...,X,,). By the
considerations similar to that of subsection 2.7, we get

n
o~ (’OTn+1(w))n+11m
Wnt1 z k Xim
m=1 Trt1(w)in
and
O = (P*{/"(w) n+l,m
XUJO == P : : XUm?

me1  Kve)n
where the coefficients are defined by the identities

n

ew1¢Tn+1(w),n = an+1(w),newn+1 + Z PTp1(w),nt1,mCun,
m=1

and .
¢?’r?(w),n = kvr?(“’)vne“’ﬂ + Z (p,;/,f(w),n+1,mewm'
m=1
Hence (48) yields the following relationship between the innovations [X,,. ., — Xu...],
[Xuny — X5, and [Xy, — X551

~

O~ lw,n+1 O~
[Xwn+1 - Xwn+1] = [Xwn+1 - Xwn+1] + m[){wo - Xw()]‘

Moreover formula (67) yields

. " $russ@in, Fvp(w)m
Cov Xwn --X(:' . —X: = <L e, ny1{w), L L LN
( +1 n+1 0 0) 1an+1(w)1n kV:(w),n
Y
kw,n+1 k%/,f (w)yn

Therefore the partial autocorrelation between X, ., and X, defined as the correlation
between [X,,,, — X7 ..] and [X,, — X ] (see [Brockwell and Davis]), is

Cort( Xy = X5prs Xuo — X)) = —-2mtilen@n,
1’1‘( Wn1 Wnit 0 wo) kw,n+1 kV,? (w)ym
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3.4 ‘Periodic’ Sequence Sets and their Transformations

Unlike subsection 2.3, we will define first certain sequence sets consisting of sequences w
with infinitely many entries and then look at their truncations.

Define
Q7 = {(wo, w1, ...) | wi € Z4 wo = 04,V4,j : (i # 5) = (wi # w;)} (68)

and
P = {(wo, w1, - ..) | (wo,wr,...) € V¥, Ip € N : Vi € Nwiyp = w; +wp} (69)

If w € QP then w is called periodic. The period of w, denoted by p, is defined as the
smallest number in IN* such that Vi € IN : wiyp = w; + wp.
On Q7 and QP several mappings will be defined:

¢ The identity mapping I : Q* — Q7 is defined by
Iw) = w. (70)
e For each n € IN, the mapping S,, : Q% (P) — Q#(QP*r) is defined by
Su((wo, wi, .. .)) 1= (Wn — Wny Wnt1 — Wy Wnta — Wy - - )- (71)
Fix now an w € (2P** with period p. Then wg € (P associated with this w is defined by
wr = (Wrlo, [Wrl, - ) With [WAlpkre = W1 = Wpes (72)
where £ € IN and g € {0,...,p — 1}. Consequently by (69), for all [ € IN

[WRlpk+q = Wk4i41)p — Wis1)p—g-

Notice that
(wR) R = W. (73)

For w € Q7 we want to make use of formulas from the previous subsections. Since
these formulas are only valid for sequences w of finite length, we define for n € IN the
‘truncation’ of w = (wp,ws,...) € Q7 as follows:

w™ = (wg,...,w,) € Q,’:n. (74)
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3.5 Recurrence Schemes

We show that a scheme for constructing orthonormal polynomials {¢,, . }new is consid-
erably simplified if w is periodic. Notice that in this subsection w has infinitely many
entries.

As the simpliest example of a periodic sequence, consider a sequence w with period one,
ie fixw, #0gand let w= (0-w;,1-wy,2-wq,3-wy,...). For such a sequence w, (48),(49)
and (61) become

¢w,n+1 _ ¢w,n lw,n+1 *
PP ) S S
w,n+1 ’ w,n w,n+1vw,n
lw n+1
ok = T < €4y Pum; €e > and
w,n+1vw,n
2
1 _ 1 llw,n+1‘
2 2 T 12 :
kw,n+1 kw,n kw,n-}-lk%,n

cf. Theorem 13. The orthonormal polynomials {¢. . }new can now recurrently be con-
structed in the same way as in Theorem 10. We extend now the above scheme to an
arbitrary periodic sequence w.

Fix an w € QP with period p. The scheme for building the orthonormal polynomials
{¢wn}nem will involve collections of orthonormal polynomials C,,, defined by

Con = {Bsow)m - -+ » D5, _1(w)m n} Y {Bspwr)m o - -+ » PSps(wr)i™ m} (75)
Notice that if w = wpg, i.e.
Vke{0,...,p =1} : wp, = wi + Wp—s,

(this is of course always true if p = 1), then the sets C,,,, are given by

Ow',n = {¢Sg(w)(") FYRERE) ¢Sp_.1(w)(") ,n}'
An example of a periodic sequence in Z? with period p = 3 and w = wp is given by
w = (wp,w1,...)

with wg = (0,0) , w; = (2,1) , we = (3,2) and w3 = (5, 3).

Theorem 14 tells us that once the set C, , is known, the set C, 41 can recurrently
be constructed by using the orthonormal polynomials from C, ,, i.e. each polynomial
from C, ni1 can be expressed in terms of polynomials from C,,. Obviously if the sets
{Cun}nen are known, then the orthonormal polynomials {¢,n»}new are known as well,
since for all n € IN

¢w,n = ¢Sg(w)('"') R € Cw,n- (76)

27



Theorem 14 Fiz w € QP with period p. For n € IN let the sets C,n of orthonormal
polynomials be defined by (75). Suppose that C,o and C, 1 are known. Then for each n €
INt the set C,ny1 can recurrently be constructed according to the scheme in Theorem 13,
by using the orthonormal polynomials from C,, ,,.

Proof: Fix n € IN* and suppose that C, , is known. It suffices to show that for all
m € {0,...,p — 1}, the polynomials ¢, 1(Em (@) qb*;,#(sm(w)(nﬂ,),n,fbn +1(Sm(wR)H D) n
and ¢;°(Sm(wR)(n+1)),’n belong to C, ., because if so, then the polynomials @g,  (ym+1) ni1
and @g, () n+1) 441 Can be constructed by applying Theorem 13.

The first question is whether @7, (s, (w)m+1),n A0 BPro(s (yint1)n belong to C,,,, for
an arbitrary m € {0,...,p—1}. So fix an m € {0, ...,p — 1}. It is easily verified that

1
Tn+1 (Sm(w)<n+ )) = (wm+1 — Wmnt1, Wmd2 — Wmtls o« o s Windnt1 — wm+1)'
Therefore
GS
Cwmt1—wmt1) Cwmez—wms1r* 1 Compngi—wmer T ¢Tn+1(5m(w)‘"+”),n' (77)
- Define now

mp:=(m+1)modp € {0,...,p—1}. (78)

Then s
ewmp ~Wmg ) ewmp+1—wmpa ey ewmp+n—wm,, — ¢Smp (w)(") n* (79)

Due to periodicity of w, formulas (77) and (79) imply
¢Tn+1(sm(w)(“+1)),n = ¢smp(w)(n) e (80)
So (80) yields ¢7. ., (s, (w)w+0),n € Cun- It remains to show that’also
Fra(smr+i)n € Cun:
To this end, we likewise verify first that |
|74 (Sm(w)(nH)) = (Wmtn — Wmdn Wmtn = Wimtn—1s - + - y Wmnin — Wiy Wndntl — W)

and conclude then that

GS
eWm-l--'n. ~Wmin? ewm+n_wm+n—17 R ] ewm-l--n"‘wm - ¢V'?(Sm(w)("+1)),n (81)
GS *
ewm+n—wm7 ewm+n_1-wma oy oy T ¢V_’?(Sm(w)(ﬂ+1)),n' (82)

We now need the numbers § € IN and & € {0,...,p — 1}, uniquely defined by
m+n=0p+(p—k)Sm+n+r=(0+1)p, (83)
in order to Write
Se(wr)™ = (West)p-n = WO+1)p—rs - - - s W(E+1)p—r — W(e+1)p—r—n)
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and consequently

ew(9+1)p-—n TW(e4+1)p—x? ew(a-i-l)p—n ~W(6+1)p—r—1?

GS
Tt ew(9+1)p—n_w(9+1)p—n—n . ¢SN(“’R)(n) i (84)
(04 1)p—k ~W(B4+1)p—r—n ) CW(B41)p— 1~ (64 1)p—r—n?
GS *
w0 gy kmn Wt )ponen T ¢Sn(wR)(") o (85) .

Due to the periodicity of w, it follows from (81) and (84) that

PVo(Sm(w)mt D) m = P (wr)™ n (86)
and from (82) and (85) that

BV (Smw)m+ ) = D5, (wr) ™) ne (87

ThUS ¢‘{,1?(Sm(w (n+1))’n E Cw’n.

The second question is whether ¢, (s (wp)m+n)y,, and ¢;,g(sm(wR)(n+1)),n belong to C,, n,
for if s0, then ¢g,_ (,z)(n+1) 441 Can be constructed. Since wp € P with period p, formulas
(80), (86) and (87) with w substituted by wg yield

Lot Em@r))n = Dy (wr) (88)

Pvo(Smwr)rtNn = P (w)im) n (89)

BV (Smwr)m ) = P8 (wr)m (90)

where (73) is used. So ¢z, (s, (wg)n+1),, and DYro(Spm(wr)(n D)) DEIODG t0 Copr. O

If w € QP with period p, m € {0,...,p — 1} and m, and & are defined by resp. (78)
and (83), then formulas (48),(49),(61) and Theorem 14 yield:

®
Psmu)rtntl _ B ()7
= Cumgi—wm
kSm (w){nt+D) nt1 ksmp (W)™
lS (w){ntl) n
m ™ sn-1 %
* k k qbsn(wn)("),n' (91)
S (W) P+ b 1BV (S (w)int 1)) m
.
Ls, (w)im+1)
™ nrilin+l
k & = - < ewm+n+1—wm+n¢V7?(Sm(w)(n+1)),n; €uwp >
Srm () "+ 1t 1RV (S ()4 1)) i
= =< ewp—'f-+1—’“’p—n¢sn(wn)("7,n; Cuwg > . (92)
) 2
1 1 |25, (w)n+D) ni]

- - . (93)

k2 k2 k2 k2
S (w) (D) 1 Smp (W)™ n S (W) a1V (S (w)nt+ 1)) n
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¢,S'm (wr){m+l) 41 ¢Smp (wr)™,n

Wp—m —Wp—m=—1
ks, (wg)m+D) i1 T ks (wR) ™
+ lSm (wr){"t1) nt1

¢* w){n) n* (94)
ksm(wR)(n-}-l)’n+1kV:(Sm(wR)(n+1))‘n Sn( ) 3

lsm (wr)int+1) n+1

— <yt _ ° (nt1)) 1) Cwp >
et ppd kV,f(Sm(wR)(n'l'l)),n Wp k= Wptr 1¢Vn(Sm(wR) ),m1 Ewg

= —< ewp+n—wp+n—1¢3,c(w)("),n; €ug > - (95)
2
1 1 llSm(wR)("‘*‘l) ,n+1l
K2 ) TR k2 (96)
Sm(@r) Pt B wr) i P8 (wR) )t 1PVe(8 (wr) (1)

nd formulas (91) - (96) yield the following explicit scheme for constructing

Let n € IN and fir w € QP with period p. Assume that the set C,, is
fized m € {0,...,p—1}, let m, and k be defined by resp. (78) and (83).
ywing steps have to be carried out for all m € {0,...,p — 1} in order to
set Coynt1’

lSm (w)("+l) n+1

ne g %
Sm (@)D 417V (S (W) (P n

according to (92).

ne ks, ()1 ny1 € IRT according to (93).
e P, (w)in+1) np1 GCCOTding to (91).

lSm‘(w )t a1

ne according to (95).

ksm(wR)(nH),n+1kv,$(sm(wR)(n+1)),n
ne kg, (wp)m+) n41 € RY according to (96).
M€ P, (wp)m+D mt1 GCCOTINgG to (94).

O
een in the beginning of this subsection that in case of p = 1 the fact that
slifies the above scheme considerably. For w € QP with period p = 2
is different. The next theorem however shows that the sets {C,, »}nen in
an be replaced by the sets {éw,n}nEN defined by

C’w,n = {¢So(w)(") ) ¢Sl(w)(") ,n}' (97)
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Theorem 16 Fiz w € QP with period p = 2. Forn € IN let the sets C’w,n of orthonormal
polynomials be defined by (97). Suppose that CA’N,O and é’w,l are known. Then for each n €
IN* the set C’w,n+1 can recurrently be constructed according to the scheme in Theorem 13,
by using the orthonormal polynomials from é’w,n.

Proof: Fix n € IN* and suppose that C’w,n is known. It suffices to show that for all
m € {0,1}, the polynomials ¢r, ., (s, @w)m+0)n 30 Bre(s (yntn), belong to Cun (see
the proof of Theorem 14). According to formula (80), the polynomials ¢7, . (s(w)m+1)m
and @r, (s (w)n+D),. belong to Com, S0 it remains to show that Do (So(w)intityn a0

Blro(81(w)int1)m DElONE tO Com-
As we have already seen

GS *
€y Cup1r++ 1€ T ¢V,?(So(w)("‘+1)),n
GS *
Cupt1—w1) Cup—wiy e o+ ) Gy T ¢V° S1{w){n+1))n
2 (S1(w) )
GS *
Cup—wyr Cwn—wisr o 3 Cwp—wy, 7 ¢So(w)(") n
GS *
Comng1=w1) Cwppr—war s+ v Cuni1—wni1 ? ¢51(w)(ﬂ) n

Depending whether n is even or odd we proceed as follows:

o If nis even (n = pN, N € IN*), then

Do (So(w)n+)m = D8y (W) m

and
¢;.,.?(Sl (w) ("+1) ),n = ¢2’0 (w) (n}) n

e If nis odd (n =pN + 1, N € IN), then

Bl (So()m ) = Do) m

and
Bro(ss@)m)n = E51 (@) n

In both cases ¢fo(s, uynt11),n 204 Byro(s, (uyinin,, Delong to Com- O
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4 Orthonormal Matrix Polynomials

In this section orthonormal matrix polynomials will be defined. These matrix polynomials
{®,}new are functions in the variable Z, which is a p x p matrix. They are associated with
particular periodic sequences w, the so called ‘block sequences’, which will be constructed
in subsection 4.1. In subsection 4.2 uniqueness of the system of orthonormal matrix
polynomials will be proved and moreover it will be shown that if {®,}.en are known,

then {¢,»}nen are known, and vice versa. More details about matrix polynomials in the
variable Z = 2I (with z € C) can be found in [Gohberg].

4.1 Block Sequences
In this subsection block sequences w will be introduced.

By definition, a block sequence w = (wp,ws,...) is a periodic sequence (w € QP*) with
period p such that

e for all k € {0,...,p — 1}, (¢")“* depends only on Ay,..., A1
and
e (e*)“r depends only on \g.

The following vector which depends on z € C, will be used in the remaining part of this
report: for z € C define

v =] : |. (98)

291

Observe that for block sequences w, the vector V(&) does not depend on Aqg.
Finally we give an example of a block sequence. Fix (by,...,bs-1) € IN*T x ... x IN*
with by = 1 and define

d—1
p= H bk
k=0
Every number g € IN can be decomposed uniquely as

g = df(f[b,) Qk

k=0 \j=0

a2 [ &
= > (H bj) @k + P ga-1,

k=0 \j=0

where

o g €{0,..., (b1 —1)} when 0 < k < (d—2)
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and
® (Ja—1 S IN.
For each ¢ € IN decomposed in this way, define

Wy = (9’0, ) fld—l)-
Then
wp=(0,...,0,1)

and w = (wy,wr,...) € (P with period p.

4.2 Orthonormal Matrix Polynomials

In this subsection matrix polynomials are introduced. On the ‘space’ of these polynomials
a ‘bilinear form’ (which maps into the space of p X p complex valued matrices), will be
introduced that will play the ‘role of an inner product’ (see formula (99)). Then for a
fixed block sequence w, orthonormal matrix polynomials will be introduced, which turn
out to be directly related to orthonormal polynomials {¢, »}ren-

Let Cpxp denote the set of all p x p complex valued matrices. A matrix polynomial of
degree n is a mapping Cpxp — Cpxp such that

Z — Z Aka,
k=0

where A; € Cpx,p for k € {0,...,n}. Let P denote the set of all matrix polynomials.
Then the bilinear form < -;- >p: IP? x P4 — C,y,, is given by

<PiQ>p= [ PED)dFOQE DT, (99)
(‘“7"17"]
where _ ' .
dF()\) = /' V(E) dFO, ..., A)[V(EN]. (100)
(—mxjd-1

Theorem 17 There ezists a unique system of matriz polynomials {®, }new such that
e ., is a matriz polynomial of degree n.

o the coefficient of Z™ in ®,(Z) is a lower triangular matriz with positive real diagonal
elements.

e the matriz polynomials {®,},emn are orthonormal, i.e.

I fn=m

<‘I’";‘I’m>n“={ 0 ifn#m
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uch a system will be constructed explicitly. Let

m .
¢w,m = Z (pw,m,k ewk1

k=0
= 0 if kK > m. Define
Pw,np,kp e Pw,np,kp+p—1
D = : : (101)
Puwnptp—1kp +++ Puwnptp—1kptp-1
$,(2)=> ®n1 2~ (102)
k=0

is a matrix polynomial of degree n and ®,,, is a lower triangular matrix
real diagonal elements. Moreover

w>r = [ BN dFQD)@n(e D)

(=7}

= / B (eMN)V (™) dF(N)[® (eI V (6M)]*
A

‘bw,np(ei;\)
= [ z Baims(@); -, Bomptp-i(€2)) AF(N)
A\ Qunpip-1 (eiA)
{ I ifn=m
0 ifn#m

3ss of the system {@, »}nen guarantees uniqueness of the system {®,}nen:
another system having the same properties as {®,}nen, We can construct
~tnew by using the coefficients of the matrix polynomials ®;’. The polyno-
e are related to the matrix polynomials {®7'},cv in the same way as the
Duntnen t0 {®n}nen. The polynomials {47, }new are orthonormal. Hence
ves Pun = 3, S0 O, = D7 o

L7 yields the following corollary:
If {®,}new are known, then {dyn}nem are known, and vice versa.

surrent relations between the orthonormal polynomials {¢,n}ren yield in
Hary 2 recurrent relations between the orthonormal matrix polynomials
hat explicit schemes for constructing the matrix polynomials can be written
do not enter in details here.
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