Perpetual reductions and strong normalization in orthogonal term rewriting systems Z. Khasidashvili Computer Science/Department of Software Technology Report CS-R9345 July 1993 CWI is the National Research Institute for Mathematics and Computer Science. CWI is part of the Stichting Mathematisch Centrum (SMC), the Dutch foundation for promotion of mathematics and computer science and their applications. SMC is sponsored by the Netherlands Organization for Scientific Research (NWO). CWI is a member of ERCIM, the European Research Consortium for Informatics and Mathematics. Copyright © Stichting Mathematisch Centrum P.O. Box 94079, 1090 GB Amsterdam (NL) Kruislaan 413, 1098 SJ Amsterdam (NL) Telephone +31 20 592 9333 Telefax +31 20 592 4199 # Perpetual Reductions and Strong Normalization in Orthogonal Term Rewriting Systems Zurab Khasidashvili CWI P.O. Box 4079, 1009 AB Amsterdam, The Netherlands #### Abstract We design a strategy that for any given term t in an Orthogonal Term Rewriting System (OTRS) constructs a longest reduction starting from t if t is strongly normalizable, and constructs an infinite reduction otherwise. We define some classes of OTRSs for which the strategy is easily computable. We develop a method for finding the least upper bound of lengths of reductions starting from a strongly normalizable term. We give also some applications of our results. AMS Subject Classification (1991): 68Q42. CR Subject Classification (1991): F4.2, F4.1. $Keywords \ \mathcal{C} \ Phrases:$ orthogonal term rewriting systems, perpetual reductions, strong normalization, reduction strategies. Note: Part of this work was completed during an enjoyable visit of the author at CWI in the summer of 1993. #### 1. Introduction It is shown in O'Donnell [9] that the innermost strategy is perpetual for orthogonal term rewriting systems (OTRSs). That is, contraction of innermost redexes gives an infinite reduction of a given term whenever such a reduction exists. In fact, a strategy that only chooses redexes that do not erase any other redex is perpetual. Moreover, one can even reduce redexes whose erased arguments are strongly normalizable (Klop [7]). For the lambda-calculus, a more subtle perpetual strategy was invented in Barendregt et al. [1]. However, none of these strategies work for all Orthogonal Combinatory Reduction Systems (OCRSs), i.e., OTRSs with bound variables and a substitution mechanism [6]. An unabsorbed redex exists in any term not in normal form, but there is no general algorithm to find one. So we define some classes of OTRSs, such as persistent, inside-creating, non-absorbing, Report CS-R9345 ISSN 0169-118X CWI P.O. Box 94079, 1090 GB Amsterdam, The Netherlands non-left-absorbing, and non-right-absorbing systems, for which the unabsorbed redexes are easy to find. For example, in non-left-absorbing systems, no subterm can be absorbed to the left of the contracted redex, so the leftmost-outermost redexes are unabsorbed. (In particular, the λ -calculus and the combinatory logic are non-left-absorbing.) Unabsorbed redexes can easily be found also in the wide class of strongly sequential OTRSs [3]. We develop a method for proving that the reductions constructed according to our perpetual strategy are indeed the longest, and for finding their lengths. Our method is similar to the Nederpelt's method [8] invented to reduce proofs of strong normalization to proofs of weak normalization (i.e., existence of a normal form). For any OTRS R, we define the corresponding non-erasing OTRS R_{μ} , called the μ -extension of R. We add fresh function symbols μ^n of arity n ($n=0,1,\ldots$) in the alphabet of R. For any R-rule $r:t\to s$, we keep the erased variables of t in the right-hand side of each corresponding R_{μ} -rule $r_{\mu}:t'\to s'$ as " μ -erased" arguments of s'. Since this transformation affects the structure of redex-creation in R, we have to introduce infinitely many R_{μ} -rules for each R-rule. This helps to have a natural translation of R-reductions into R_{μ} -reductions and vice-versa. Finally, we keep also all μ -symbols of t' as μ -erased symbols in s', since they can be used as "counters" of steps in longest normalizing reductions. We then show that the least upper bound of lengths of R-reductions starting from a term o coincides with the number of μ -occurrences in the R_{μ} -normal form of o. To find this number, sometimes it is not necessary to do actual transformation of t. We show this for the case of persistent TRSs. Another consequence is that a term t is strongly normalizable in R iff it is weakly normalizable in R_{μ} ; this result holds also on the level of OTRSs: an OTRS R is strongly normalizing iff its μ -extension R_{μ} is weakly normalizing [6]. Therefore, for any class of OTRSs that is closed under μ -extension, i.e., contains the μ -extension of each of its elements, one can prove undecidability of weak normalization if undecidability of strong normalization is known, and prove decidability of strong normalization if decidability of weak normalization is known. For example, all the above classes of OTRSs are closed under μ -extension. We describe some applications of our results in section 3. The main results are obtained in section 2. # 2. PERPETUAL STRATEGIES IN OTRSS We recall some basic notions of TRS theory; one can find comprehensive introductions to the subject in [2] and [7]. A TRS is a pair (Σ, R) , where the alphabet Σ consists of variables and function symbols and R is a set of rewrite rules r of the form $t \to s$. The left-hand side t is any term different from a variable, and the term s may only contain variables that occur in t. An r-redex u is obtained from t by substituting arbitrary terms for the variables in t, and the corresponding instance of s is the contractum of u. Arguments of u are subterms of u that correspond to variables of t, and the rest is the pattern of u. Subterms of u rooted at the pattern are called the pattern-subterms of u. The arguments, pattern, and pattern-subterms are defined analogously in the contractum of u. A TRS is orthogonal if it is left-linear and non-ambiguous, i.e., patterns of redexes can never overlap in a term. A one step reduction in which a redex u in a term o is contracted is written $o \xrightarrow{u} e$ or $o \to e$. We write $P: o \to e$ if P is a reduction of o to e comprising 0 or more steps. A term t is called weakly (resp. strongly) normalizable if t has a normal form (resp. if any reduction starting from t is terminating). An OTRS R is weakly (resp. strongly) normalizing if any term in R is weakly (resp. strongly) normalizable. We use t, s, e, o for terms, u, v, w for redexes, and P, Q for reductions. |P| denotes the length of P. We write $s \subseteq t$ if s is a subterm of t. For a given OTRS R we now define its " μ -extension" R_{μ} : for each R-rule $t \to s$, we have a set of R_{μ} -rules of the form $t' \to \mu^l(\mu^0, \ldots, \mu^0, x_{i_1}, \ldots, x_{i_k}, s)$, where μ^n is a fresh n-ary function symbol; t is obtained from t' by removing all except the last arguments of μ -symbols occurring in t' (we write $t = [t']_{\mu}$); and x_{i_1}, \ldots, x_{i_k} are all variables of t that do not occur in s. If a term e has a normal form in R_{μ} , then all R_{μ} -reductions of e are finite, since their lengths can not exceed the number $\|o\|_{\mu}$ of μ -occurrences in R_{μ} -normal form o of e. (Indeed, for any R_{μ} -reduction $P: e \to e'$, we have $e' \to o$; hence $|P| \le \|e'\|_{\mu} \le \|o\|_{\mu}$.) For any R-reduction $Q: t_1 \to t_2 \to \ldots \to t_n$ we construct a corresponding R_{μ} -reduction $Q_{\mu}: s_1 = t_1 \to s_2 \to \ldots \to s_n$ such that $[s_i]_{\mu} = t_i$. So in order to prove that a term t in R is strongly normalizable it is enough to prove that t has a normal form in R_{μ} . This is the idea of Nederpelt's method. Now if s_n is an R_{μ} -normal form of s_1 , then $\|s_n\|_{\mu}$ is an upper bound of lengths of R-reductions starting from t_1 . Thus the length of Q is maximal if s_n is the R_{μ} -normal form of s_1 whenever t_n is the normal form of t_1 , and $|Q_{\mu}| = \|s_n\|_{\mu}$, i.e., each step of Q_{μ} increases the number of μ -occurrences exactly by 1. This is achieved by contracting the limit redexes only. Indeed, in this case the old μ -occurrences do not duplicate, and the only new μ -symbol created in each step is the head symbol of the contractum. # **Definition 2.1** The μ -extension (Σ_{μ}, R_{μ}) of an OTRS (Σ, R) is defined as follows: - 1. $\Sigma_{\mu} = \Sigma \cup \{\mu^n \mid n = 0, 1, \ldots\}$, where μ^n is a fresh *n*-ary function symbol. For any subterm $s = \mu^{n+1}(t_1, \ldots, t_n, t_0)$ of a term t over Σ_{μ} , the arguments t_1, \ldots, t_n , as well as subterms and symbols in t_1, \ldots, t_n and the head-symbol μ itself, are called μ -erased or more precisely μ' -erased, where μ' is the occurrence of the head symbol of s in t. The argument t_0 is called μ' -main. Symbols and subterms in t that are not μ -erased are called μ -main. We denote by $[t]_{\mu}$ the term obtained from t by removing all μ -erased symbols. - 2. R_{μ} is the set of all rules of the form $r_{\mu}: t' \to s'$ such that - (a) there is a rule $r: t \to s$ in R such that $[t']_{\mu} = t$; - (b) the term t' is linear (i.e., no variable appears twice or more in t'); - (c) the head symbol of t' is not a μ -symbol, i.e., it coincides with the head symbol of t; - (d) the μ -erased arguments of each occurrence μ' of a μ -symbol in t' are variables, and the μ' -main argument is not a variable (i.e., it contains a function symbol from Σ or a μ -symbol); - (e) if x_1, \ldots, x_n are all μ -main variables of t' (from left to right), y_1, \ldots, y_m are all μ -erased variables of t', and x_{i_1}, \ldots, x_{i_n} are all variables among x_1, \ldots, x_n that do not occur in s, then $$s' = \mu^{l}(\overbrace{\mu^{0}, \dots, \mu^{0}}^{k}, y_{1}, \dots, y_{m}, x_{i_{1}}, \dots, x_{i_{p}}, s),$$ where k is the number of occurrences of μ -symbols in t' and l = k + m + p + 1. For any r_{μ} -redex $u = t'\theta$, we call arguments that correspond to x_{i_1}, \ldots, x_{i_l} quasi-erased arguments of u, and call the arguments that correspond to other variables from x_1, \ldots, x_n quasi-main. R_{μ} and R are called μ -corresponding OTRSs, and r_{μ} and r are called corresponding rules in R_{μ} and R. **Example 2.1** Let $R = \{r : f(a, x) \to b\}$. Then R_{μ} -rules have the form $$f(\mu^{k}(x_{1},\ldots,x_{k-1},\mu^{l}(y_{1},\ldots,y_{l-1},\ldots\mu^{m}(z_{1},\ldots,z_{m-1},a)\ldots)),x) \rightarrow \mu(\mu^{0},\ldots,\mu^{0},x_{1},\ldots,x_{k-1},y_{1},\ldots,y_{l-1},\ldots,z_{1},\ldots,z_{m-1},x,b)$$ For example, $r_{\mu}: f(\mu^2(y, \mu^2(z, a), x) \to \mu^6(\mu^0, \mu^0, y, z, x, b))$ is an R_{μ} -rule. For any r_{μ} -redex $t = f(\mu^2(o, \mu^2(s, a)), e)$, $[t]_{\mu} = f(a, e)$ is an r-redex, $t' = \mu(\mu^0, \mu^0, o, s, e, b)$ is the contractum of t, and $[t']_{\mu} = b$ is the contractum of f(a, e). **Lemma 2.1** If R is an orthogonal TRS, then so is R_{μ} . **Proof** Any overlap of patterns of two R_{μ} -redexes in a term t over Σ_{μ} causes an overlap of patterns of corresponding R-redexes in $[t]_{\mu}$. **Lemma 2.2** Let t be a term over Σ_{μ} the head-symbol of which is not a μ -symbol, and let $[t]_{\mu} = s$. Then t is an r_{μ} -redex iff s is an r-redex, where r_{μ} and r are corresponding rules in R_{μ} and R, respectively. Moreover, if t' is the contractum of t in R_{μ} and s' is the contractum of s in R, then $[t']_{\mu} = s'$. **Proof** From Definition 2.1 (see also Example 2.1). Corollary 2.1 Let R be an OTRS and $s_0 \stackrel{u_0}{\to} s_1 \stackrel{u_1}{\to} \dots$ be a reduction in R. Then, for any term t_0 in R_{μ} such that $[t_0]_{\mu} = s_0$, there is a reduction $t_0 \stackrel{v_0}{\to} t_1 \stackrel{v_1}{\to} \dots$ in R_{μ} such that $[t_i]_{\mu} = s_i$ and u_i and v_i are corresponding subterms in s_i and t_i $(i = 0, 1, \dots)$. **Notation** $||t||_{\mu}$ denotes the number of occurrences of μ -symbols in t. **Lemma 2.3** Let t be a term in an OTRS R. If t is weakly normalizable in R_{μ} , then t is strongly normalizable in R_{μ} and R. **Proof** Let s be an R_{μ} -normal form of t and $t \to t_1 \to \ldots$ be an R_{μ} -reduction. By Lemma 2.1 and the Church-Rosser theorem, $t_i \to s$ for all $i = 1, 2, \ldots$ It is easy to see that $i \leq ||t_i||_{\mu} \leq ||s||_{\mu}$. So t is strongly normalizable in R_{μ} . Hence, by Corollary 2.1, t is strongly normalizable in R. **Definition 2.2** Let $t \stackrel{u}{\to} s$ and let e be the contractum of u in s. For each argument o of u there are 0 or more arguments of e. We call them (u-) descendants of o. Correspondingly, subterms of o have 0 or more descendants. An argument of u is called (u)-erased if it does not have a descendant, and is called (u)-main otherwise. By definition, the descendant of each pattern-subterm of u is e. Descendants of all redexes of t except u are also called residuals. By definition, u does not have residuals in s. A redex of s is said to be created by contracting u or to be an (u)-new redex if it is not a residual of a redex of t'. It is clear what is to be meant under descendants of subterms that are not in u. The notion of descendant and residual extend naturally to arbitrary reductions. The ancestor relation is the inverse of the descendant relation. **Definition 2.3** We call a redex u complete (resp. ∞ -complete) if erased arguments of u are in normal form (resp. are strongly normalizable). A reduction is complete (resp. ∞ -complete) if it only contracts complete (resp. ∞ -complete) redexes. **Lemma 2.4** Let $P: t_0 \stackrel{u_0}{\to} t_1 \stackrel{u_1}{\to} \dots \to t_n$ be a complete reduction in an OTRS (Σ, R) , and let $P_{\mu}: s_0 \stackrel{v_0}{\to} s_1 \stackrel{v_1}{\to} \dots \to s_n$ be a corresponding R_{μ} -reduction such that all R_{μ} -redexes in s_0 are μ -main. Then (1) for each k $(0 \le k \le n)$, we have $(b)_k$: any R_{μ} -redex in s_k is μ -main. (2) if P is normalizing, then so is P_{μ} . **Proof** (1) By induction on k. (b)₀ is obvious. Suppose that (b)_k holds and let us show (b)_{k+1}. Let $u_k = C[o_1, \ldots, o_m]$ and $v_k = C'[e_1, \ldots, e_m, e'_1, \ldots, e'_p]$, where e_1, \ldots, e_m are μ -main arguments of v_k , which correspond to arguments o_1, \ldots, o_m of u_k , respectively, and e'_1, \ldots, e'_p are μ -erased arguments of v_k . Then the contractum of v_k in R_μ has the form $o' = \mu(\mu^0, \ldots, \mu^0, e'_1, \ldots, e'_p, e_{i_1}, \ldots, e_{i_l}, o)$, where o is the contractum of $C[e_1, \ldots, e_m]$ in (Σ_μ, R) and, for each j, o_{i_j} is u_k -erased. Since v_k and u_k are corresponding subterms of s_k and t_k , and e_i and o_i are corresponding arguments, we have that (α) : $[e_i]_\mu = o_i$, $i = 1, \ldots, m$. Since o_{i_1}, \ldots, o_{i_l} are u_k -erased and u_k is complete, we have that (β) : o_{i_1}, \ldots, o_{i_l} are R-normal forms. It follows from $(b)_k$ that in e'_1, \ldots, e'_p there are no R_μ -redexes and that R_μ -redexes in s_{k+1} , that are not in o' or are in o, are μ -main. It follows from $(b)_k$, (α) , (β) , and Lemma 2.2 that e_{i_1}, \ldots, e_{i_l} are R_μ -normal forms. Thus $(b)_{k+1}$ holds and (1) is proved. (2) By Lemma 2.2 and $(b)_n$. Recall that a (sequential) strategy selects a redex to be contracted in any given term. A complete (resp. ∞ -complete) strategy contracts a complete (resp. an ∞ -complete) redex in each step. A strategy is perpetual if it constructs an infinite reduction of any given term whenever such a reduction exists. **Theorem 2.1** A complete strategy is perpetual in orthogonal TRSs. **Proof** It is enough to show that if t has a normalizing complete reduction $P: t \rightarrow t'$, then t is strongly normalizable. Indeed, by Lemma 2.4, the corresponding R_{μ} -reduction of P is also normalizing. Hence, by Lemma 2.3, t is strongly normalizable in R. **Definition 2.4** (1) A TRS is called *non-erasing* if left- and right-hand sides of each rule in it contain occurrences of the same variables. (2) A TRS is called weakly innermost normalizing [9] if each term has a normal form reachable by an innermost reduction. Corollary 2.2 (Church) Let R be a non-erasing OTRS. Then R is weakly normalizing iff it is strongly normalizing. Corollary 2.3 (O'Donnell [9]) Let R be an OTRS. Then R is strongly normalizing iff it is weakly innermost normalizing. **Theorem 2.2** (Klop [7]) An ∞-complete strategy is perpetual in orthogonal TRSs. **Proof** It is enough to prove that if t_0 has a normalizing ∞ -complete reduction $P: t_0 \stackrel{u_0}{\to} t_1 \to \ldots \to t_n$, then t_0 is strongly normalizable in R. Since u_i is ∞ -complete, there is a complete normalizing reduction $Q: t_0 \to t_1 \to \ldots \to t_n$. Now by Theorem 2.1, t_0 is strongly normalizable. The following propositions are obtained in Klop [6]. The proof of Proposition 2.2 is, however, not correct, since it establishes weak normalization of R_{μ} only for terms of R, not for all terms of R_{μ} . **Proposition 2.1** (Klop [6]) A term t in an OTRS R is strongly normalizable iff t is weakly normalizable in R_u . **Proof** (\Rightarrow) From Lemma 2.4. (\Leftarrow) From Lemma 2.3. **Proposition 2.2** (Klop [6]) An OTRS R is strongly normalizing iff R_{μ} is weakly normalizing. **Proof** (\Rightarrow) Let t' be a term in R_{μ} . We prove that t' is weakly normalizable by induction on the length of t'. By the induction assumption, all μ -erased subterms of t' are weakly normalizable in R_{μ} . Let t^* be obtained from t' by their reduction to normal forms. By Lemma 2.4, t^* is weakly normalizable in R_{μ} , since $[t^*]_{\mu}$ is strongly normalizable in R. Hence, t' is weakly normalizable. (\Leftarrow) From Lemma 2.3. **Definition 2.5** ([4]) We call a subterm s of a term t unabsorbed in a reduction $P: t \rightarrow e$ if the descendants of s do not appear inside redex-arguments of terms in P, and call s absorbed in P otherwise. We call s unabsorbed in t if it is unabsorbed in any reduction starting from t, and absorbed in t otherwise. In [3], Huet and Lévy introduced the notion of external redex of a term and proved that each term not in normal form possesses an external redex. It is easy to show that a redex $u \subseteq t$ is unabsorbed iff u is external in t. Thus we have the following lemma; a short direct proof of it can be found in [4]. **Lemma 2.5** In any term t not in normal form there is an unabsorbed redex. **Definition 2.6** Let u_l be a redex in a term t defined as follows: choose an unabsorbed redex u_1 in t; choose an erased argument s_1 of u_1 that is not in normal form (if any); choose in s_1 an unabsorbed redex u_2 , and so on, as long as possible. Let $u_1, s_1, u_2, \ldots, u_l$ be such a sequence. Then we call u_l a limit redex and call $u_1, s_1, u_2, \ldots, u_l$ a limit sequence of t. It follows from Lemma 2.5 that in any term not in normal form there is a limit redex. We call a reduction *limit* if each contracted redex in it is limit, and call a strategy *limit* if in any term not in normal form it contracts a limit redex. **Lemma 2.6** Let u be a limit redex in t and $P: t \rightarrow e$. Then there is no new redex in e that contains a descendant of u in its argument. **Proof** Let $u_1, s_1, u_2, \ldots, u_l$ be the limit sequence of t with $u_l = u$. We prove by induction on |P| that (a): descendants of redexes u_1, \ldots, u_l do not appear inside arguments of new redexes. If |P| = 0, then (a) is obvious. So let $P: t \twoheadrightarrow e' \stackrel{v}{\to} e$, let o be a descendant of u in e, and let o' be its ancestor in e'. It follows from the induction assumption that each redex u_i ($i = 1, \ldots, l-1$) has exactly one residual u'_i in e' (because contraction of a residual of any of the redexes u_1, \ldots, u_{l-1} erases the descendant of u), there is no new redex in e' that contains o' in its argument, and o is the only descendant of u. Thus if there is a new redex w in e that contains the residual u''_i of some u_i in its argument, then it must be created by v. If $v \not\subseteq u'_1$, then w contains u''_i in its argument iff it contains the residual of u'_1 in its argument, but this is impossible since u_1 is unabsorbed. Thus $v \subseteq u'_1$. Let k be the maximal number such that v is in u'_k and let s'_k be the descendant of s_k in e'. Then v is in s'_k and contains u'_{k+1} . Let v is in v and let v be the descendant of v in descendants of v. Then the residual of v is in an argument of the new redex v is v but this is impossible since v is unabsorbed in v. Thus (a) is valid and the lemma is proved. **Lemma 2.7** Let (Σ, R) be an OTRS, $P: t_0 \stackrel{u_0}{\to} t_1 \stackrel{u_1}{\to} \dots \to t_n$ be a limit reduction in R and $P_u: s_0 = t_0 \stackrel{v_0}{\to} s_1 \stackrel{v_1}{\to} \dots \to s_n$ be its corresponding reduction in R_μ . - (1) For each k ($0 \le k \le n$) the following holds: - $(a)_k: ||s_k||_{\mu} = k;$ - $(b)_k$: each redex $v'_k \subseteq s_k$ is μ -main in s_k ; - $(c)_k$: in quasi-main arguments of any redex v''_k in s_k there are no μ -symbols. - (2) If P is normalizing, then so is P_{μ} . **Proof** (1) $(a)_0 - (c)_0$ are obvious. Suppose that $(a)_k - (c)_k$ hold and let us show $(a)_{k+1} - (c)_{k+1}$. Let $u_k = C[o_1, \ldots, o_q]$ and $v_k = C'[e_1, \ldots, e_q, e'_1, \ldots, e'_m]$, where e_1, \ldots, e_q are μ -main arguments of v_k (which correspond to arguments o_1, \ldots, o_q of u_k respectively) and e'_1, \ldots, e'_m are μ -erased arguments of v_k . Since u_k and v_k are corresponding redexes in t_k and s_k , we have $[v_k]_{\mu} = u_k$ and hence (α) : $[e_i]_{\mu} = o_i$ for all $i = 1, \ldots, q$. Let o_{i_1}, \ldots, o_{i_l} be u_k -erased arguments and o_{j_1}, \ldots, o_{j_p} be u_k -main arguments. Then contractum of v_k in R_{μ} has the following form: $o' = \mu(\mu^0, \ldots, \mu^0, e'_1, \ldots, e'_m, e_{i_1}, \ldots, e_{i_l}, o)$, where o is the contractum of $C[e_1, \ldots, e_n]$ in (Σ_{μ}, R) . Since u_k is limit, (β) : o_{i_1}, \ldots, o_{i_l} are in R-normal form. By $(c)_k$, (γ) : there are no occurrences of μ -symbols in e_{j_1}, \ldots, e_{j_p} , o. (Hence o coincides with the contractum of u_k .) It follows from (α) , (β) , $(b)_k$, and Lemma 2.2 that (δ) : e_{i_1}, \ldots, e_{i_l} are in R_{μ} -normal form. By (γ) , $\|o'\|_{\mu} = \|v_k\|_{\mu} + 1$. Hence $\|s_{k+1}\|_{\mu} = \|s_k\|_{\mu} + 1 = k + 1$, i.e., $(\alpha)_{k+1}$ holds. If $v'_{k+1} \not\subseteq o'$, then $(b)_k$ implies that v'_{k+1} is μ -main. If $v'_{k+1} \subseteq o'$, then, by $(b)_k$, $v'_{k+1} \not\subseteq e'_1, \ldots, e'_m$ (since ancestors of e'_1, \ldots, e'_m are μ -erased arguments of v_k) and, by (δ) , $v'_{k+1} \not\subseteq e_{i_1}, \ldots, e_{l_1}$. Hence $v'_{k+1} \subseteq o$ and v'_{k+1} is μ -main by (γ) . Now $(b)_{k+1}$ is proved. If $o' \cap v''_{k+1} = \emptyset$, then $(c)_{k+1}$ follows immediately from $(c)_k$. If $v''_{k+1} \subseteq o'$, then as we have shown above (for v'_{k+1}), $v''_{k+1} \subseteq o$ and $(c)_{k+1}$ follows from (γ) . Suppose now that o' is a proper subterm of v''_{k+1} and v''_{k+1} has an v_k -ancestor v''_k in s_k for which v''_{k+1} is a residual. Let u''_k be the corresponding redex of v''_k in t_k (it exists, because, by $(b)_k$, v''_k is μ -main). Obviously, u_k is a proper subterm of u''_k and since u_k is limit, it must be in an erased argument of u''_k . Hence v_k is in a quasi-erased argument of v''_{k+1} and the quasi-main arguments of v''_{k+1} coincide with the corresponding quasi-main arguments of v''_k . Thus, by $(c)_k$, in the quasi-main arguments of v''_{k+1} there are no occurrences of μ -symbols. To prove $(c)_{k+1}$, it remains to consider the case when o' is a proper subterm of v''_{k+1} and v''_{k+1} is created by v_k . If in quasi-main arguments of v''_{k+1} there are μ -symbols, then in main arguments of corresponding redex u''_{k+1} in s_{k+1} , which is also a u_k -new redex, there are descendants of redexes contracted in P. (Since v_k is μ -main, o' and hence u_{k+1} are also μ -main.) But each redex contracted in P is a limit redex. Thus, by Lemma 2.6, their descendants can not occur in arguments of new redexes. Hence, also in this case, there are no μ -symbols in quasi-main arguments of v''_{k+1} , and v''_{k+1} is valid. Now (1) is proved. (2) By Lemma 2.2 and $(b)_n$. **Theorem 2.3** A limit strategy is perpetual in OTRSs. Moreover, if a term t in an OTRS R is strongly normalizable, then a limit strategy constructs a longest normalizing reduction starting from t, and its length coincides with the number of μ -occurrences in an R_{μ} -normal form of t. **Proof** If a limit R-reduction P starting from t is normalizing, then by Lemma 2.7 its corresponding R_{μ} -reduction also is normalizing. Hence, by Lemma 2.3, t is strongly normalizable in R. Thus, the limit strategy is perpetual. Now, if t is strongly normalizable, Q is a normalizing R-reduction, and s is an R_{μ} -normal form of t, then $|Q| = (\text{by Corollary 2.1}) = |Q_{\mu}| \leq (\text{by the CR property of } R_{\mu}) \leq ||s||_{\mu} = (\text{by Lemma 2.7}) = |P|$. Thus, P has the maximal length among all reductions of t to normal form. We now give a direct proof of the fact that limit reductions are the longest. The advantage of the previous proof is that it additionally gives a characterization of lengths of longest reductions. **Lemma 2.8** Let $P: t_0 \xrightarrow{u_0} t_1 \xrightarrow{u_1} \dots$ and $t_0 \xrightarrow{u} s_0$, where u is a limit redex. Then there is a reduction Q starting from s_0 such that $|Q| \ge |P| - 1$. **Proof** Using the Church-Rosser theorem, we can construct the following diagram where in $P_i: t_i woheadrightarrow s_i$ all residuals of u in t_i are contracted, and in $Q_i: s_i woheadrightarrow s_{i+1}$ all P_i -residuals of u_i are contracted. It follows from Lemma 2.6 that u has at most one residual in each term t_i , which is complete. Thus if there is an i such that u_i is a residual of u, then Q_i is empty, $s_j = t_j$ for all j > i, and Q_j contracts exactly one redex. Otherwise, each reduction Q_k contracts at least one redex. Hence, we can take the concatenation of Q_0, Q_1, \ldots for Q. Corollary 2.4 The limit strategy is perpetual in Orthogonal TRSs, and the limit reductions are longest among reductions starting from a strongly normalizable term. ### 3. Applications 3.1 Recursive perpetual strategies for some classes of OTRSs We now define some classes of OTRSs for which the limit strategy is efficient. **Definition 3.1** (1) Let $t \stackrel{u}{\to} s$ in an OTRS R, and let $v \subseteq s$ be a new redex. We call v generated if its pattern is in the pattern of the contractum of u. We call an OTRS R persistent (PTRS) if, for each reduction step in R, any created redex is generated. - (2) We call an OTRS outside-creating if, for any reduction step $t \stackrel{u}{\to} s$, any new redex in s contains at least one symbol above the contractum of u, and call it inside-creating if any new redex in s is inside the contractum of u. - (3) We call an OTRS non-absorbing if, for any reduction step $t \stackrel{u}{\to} s$, the arguments of any new redex in s are in the contractum of u. - (4) We call an OTRS non-left-absorbing (resp. non-right-absorbing) if, for any reduction step $t \stackrel{u}{\to} s$, any argument of a created redex in s is inside the contractum of u or to the right (resp. to the left) of it. **Proposition 3.1** (1) Let t be a term in a non-absorbing OTRS. Then any outermost redex in t is unabsorbed. (2) Let t be a term in a non-left absorbing (resp. non-right-absorbing) OTRS. Then the leftmost-outermost (resp. the rightmost-outermost) redex in t is unabsorbed. **Proof** From Definitions 2.5 and 3.1. 3. Applications 9 Thus a limit redex can be found efficiently in non-absorbing, non-left-absorbing, and non-right-absorbing systems. Note that left-normal OTRSs [9] (where in left-hand sides of rules function symbols precede variables), and Combinatory Logic in particular, are non-left-absorbing. Persistent and inside-creating systems are non-absorbing. **Proposition 3.2** Outside-creating OTRSs are strongly normalizing. **Proof** Let t be a term in an outside-creating OTRS R. It is easy to see that R_{μ} is outside-creating as well. Thus, by Lemma 2.3, it is enough to prove that t has a normal form in R. Let $P:t\to t_1\to \ldots$ be an innermost reduction in which any created redex is contracted immediately after creation (each step creates at most one redex). Since a created redex is strictly above the contractum of a contracted redex, the number of redexes of terms in P is decreasing. Thus P is finite. Remark 3.1 The above proposition is equivalent to Corollary 4.10 of van Raamsdonk [10] stating that all "superdevelopments" in OTRSs are finite. 3.2 On decidability of weak and strong normalization **Definition 3.2** We call a class \Re of OTRSs closed under μ -extension if \Re contains the μ -extension of each of its elements. **Proposition 3.3** Let \Re be a class of OTRSs closed under μ -extension. Then decidability of weak normalization for OTRSs in \Re implies decidability of strong normalization for OTRSs in \Re . **Proof** For any $R \in \mathbb{R}$, weak normalization is decidable for $R_{\mu} \in \mathbb{R}$. Hence, by Proposition 2.2, strong normalization is decidable for R. It is easy to see that all classes of OTRSs, defined in Definition 3.1, and the class of strongly sequential OTRSs [3] are closed under μ -extension. Note that although, for any OTRS R, R_{μ} contains infinitely many rules, it is decidable whether a term in R_{μ} is an R_{μ} -redex. Thus the decidability question makes sense for R_{μ} . We show in [5] that weak normalization is decidable in Persistent TRSs. Hence, by Proposition 3.3, strong normalization is also decidable for Persistent TRSs. For inside-creating TRSs, decidability of weak and strong normalization is open. For OTRSs in general, undecidability of strong normalization follows from undecidability of the (uniform) halting problem. Thus, weak normalization is also undecidable. 3.3 The least upper bound of lengths of reductions in persistent TRSs We now present an algorithm for finding the least upper bound of lengths of coinitial reductions in persistent TRSs, which does not need to make an actual transformation of an input term. We first recall some results from [5]. Notation We write $t = (t_1//e_1, ..., t_k//e_k)e$ if $e_1, ..., e_k$ are non-overlapping proper subterms in e, and t is obtained from e by their replacement with $t_1, ..., t_k$, respectively. **Definition 3.3** We call a subterm s in t free if s is not a proper pattern-subterm of a redex in t. **Lemma 3.1** Let t = (e//o)s in a persistent TRS, let e be free in t, and let s and e be strongly normalizable. Then t is strongly normalizable. **Proof sketch** By persistency, all descendants of e remain free; therefore, infinitely many steps of an infinite reduction starting from t must be performed inside (descendants of) e or outside e, meaning that symbols of e do not belong to patterns of the redexes contracted outside e. But e and e are strongly normalizable. Therefore, e does not possess an infinite reduction. **Definition 3.4** We call a redex in a PTRS R trivial if it is a left-hand side of a rewrite rule in R. We call redexes u and v similar if they are instances the left-hand side of the same rule. We call a redex u finite if its similar trivial redex is strongly normalizable. **Lemma 3.2** ([5]) A term t in a PTRS is strongly normalizable iff any redex in t is finite. **Proof** (\Rightarrow) Obviously, any redex u in t is strongly normalizable. So, by Lemma 3.1, the trivial redex similar to u is strongly normalizable as well. (\Leftarrow) By induction on the number n of redexes in t. The case n=0 is trivial. So let n>0, u be an innermost redex in t, and s=(x//u)t. By the induction assumption, s is strongly normalizable. Since arguments of u are in normal form and u is a finite redex, Lemma 3.1 implies that u is strongly normalizable. Since t=(u//x)s, we have again by Lemma 3.1 that t is strongly normalizable. **Definition 3.5** let R be a PTRS and $r \in R$. We call an r-tree the maximal tree with rules as nodes and r as the root, such that a redex corresponding to a node has an occurrence in the right-hand side of its ancestor node. **Lemma 3.3** ([5]) An r-redex u in a PTRS R is finite iff the r-tree is finite. **Proof** (\Rightarrow) If the r-tree has an infinite branch $r_0, r_1, ...$, then one can construct infinite reduction of the trivial r-redex $v \stackrel{v}{\to} t_1 \stackrel{v_1}{\to} t_2 \stackrel{v_2}{\to} ...$, where v_1 is an r_1 -redex created by v_1 , v_2 is an v_2 -redex created by v_1 , and so on. (\Leftarrow) By induction on the height v_1 of the r-tree. If v_2 is normal form. If v_2 is normal form. If v_3 is finite. Hence, by Lemma 3.2, v_3 is strongly normalizable. Thus, v_3 is also strongly normalizable, i.e., v_3 is finite. ## **Definition 3.6** Let R be a PTRS. - (1) Let t be a term in R_{μ} , let $s \subseteq t$, and let $P: t \rightarrow e$ be the rightmost innermost normalizing R_{μ} -reduction. Then, by definition, $Mult_{\mu}(s,t)$ is the number of P-descendants of s in e - (2) Let $u = C[e_1, \ldots, e_n]$ be an r-redex in R_{μ} , let $s' \subseteq e_i$, let $v = C[o_1, \ldots, o_n]$ be an r-redex (similar to u) with arguments o_1, \ldots, o_n in R_{μ} -normal form, and let $Q: v \to o$ be the rightmost innermost normalizing R_{μ} -reduction. Then, by definition, $mult_{\mu}(u, i) = mult_{\mu}(u, s') = mult_{\mu}(r, i) = Mult_{\mu}(o_i, v)$, and $mult_{\mu}(u) = mult_{\mu}(r)$ is the number of μ -subterms in o that appear during Q, i.e., that are not descendants of subterms with head-symbol μ from (arguments of) u. Numbers $mult_{\mu}(u, i)$ and $mult_{\mu}(r, i)$ are proper μ -indices of u and r, and numbers $mult_{\mu}(u)$ and $mult_{\mu}(r)$ are μ -indices of u and r. The following lemma implies that the definition is correct. **Lemma 3.4** Let $u=C[e_1,\ldots,e_n]$ and $v=C[o_1,\ldots,o_n]$ be similar redexes with arguments in normal form in a PTRS R_{μ} , and let $P: u=t_0 \stackrel{u_0}{\longrightarrow} t_1 \stackrel{u_1}{\longrightarrow} \ldots$ and $Q: v=s_0 \stackrel{v_0}{\longrightarrow} s_1 \stackrel{v_1}{\longrightarrow} \ldots$ be the rightmost innermost normalizing R_{μ} -reductions. Then, for each $i=0,1,\ldots$, there is an one-to-one correspondence between - 1. redexes in t_i and s_i such that corresponding redexes are similar, and u_i and v_i are corresponding. - 2. "appeared μ -subterms", which are descendants of contracta of R_{μ} -redexes in t_i and s_i . **Proof** Easy induction on i, using persistency of R_{μ} . **Lemma 3.5** Let t be a normalizable term in a PTRS R_{μ} , let $e \subseteq s \subseteq t$, and let s be in R_{μ} -normal form. Then $Mult_{\mu}(s,t) = Mult_{\mu}(e,t)$. **Proof** Let $t \rightarrow o$ be the rightmost innermost normalizing R_{μ} -reduction. Then the descendants of s in o are disjoint occurrences of s, and each of them contains exactly one descendant of e. Notation L(t) denotes the least upper bound of lengths of reductions starting from t. **Lemma 3.6** Let t be a strongly normalizable term in a PTRS R and let u_1, \ldots, u_n be all redexes in t. Then $$L(t) = \sum_{i=1}^{n} Mult_{\mu}(u_i, t) mult_{\mu}(u_i)$$ **Proof** Let $P: t \to o$ be the rightmost innermost normalizing R_{μ} -reduction and let u_1, \ldots, u_n be the enumeration of redexes in t from right to left. In the fragment of P where u_i is reduced to R_{μ} -normal form, $mult_{\mu}(u_i)$ new μ -symbols appear (in the beginning of the fragment, all arguments of u_i are in R_{μ} -normal form). By Lemma 3.5, during the rest of P each of these $mult_{\mu}(u_i)$ μ -occurrences is duplicated $Mult_{\mu}(u_i, t)$ -times. Hence $$\|o\|_{\mu} = \sum_{i=1}^n Mult_{\mu}(u_i,t)mult_{\mu}(u_i)$$ and the lemma follows from Theorem 2.3. **Lemma 3.7** Let t be a strongly normalizable term in a PTRS R_{μ} , let $s \subseteq t$, and let u_1, \ldots, u_n be all redexes in t that contain s in their arguments. Suppose that s is in m_i -th argument of u_i $(i = 1, \ldots, n)$. Then $$Mult_{\mu}(s,t) = \prod_{i=1}^{n} mult_{\mu}(u_i,s) = \prod_{i=1}^{n} mult_{\mu}(u_i,m_i)$$ **Proof** Let $P: t \to o$ be the rightmost innermost normalizing R_{μ} -reduction. It follows from Lemma 3.5 that, in the fragment of P in which u_i is reduced to R_{μ} -normal form, each descendant of s is duplicated $mult_{\mu}(u_i, s) = mult_{\mu}(u_i, m_i)$ -times. Thus, the lemma is obvious. **Lemma 3.8** Let $u = C[e_1, \ldots, e_k]$ be an r-redex with arguments e_1, \ldots, e_k in normal form in a PTRS R_{μ} . Then for all $j = 1, \ldots, k$: $$mult_{\mu}(u,j) = mult_{\mu}(r,j) = \sum_{i=1}^{m_j} Mult_{\mu}(e_{j_i},o),$$ $$mult_{\mu}(u) = mult_{\mu}(r) = \sum_{i=1}^{m} Mult_{\mu}(u_i, o)mult_{\mu}(u_i) + 1,$$ where o is the contraction of u in R_{μ} , $e_{j_1}, \ldots, e_{j_{m_j}}$ are all descendants of e_j in o, and u_1, \ldots, u_m are all redexes in o. **Proof** From Definition 3.6 (since all descendants of subterms e_{j_i} are pairwise disjoint). **Theorem 3.1** Let t be a term in a PTRS R. Then the least upper bound L(t) of lengths of reductions starting from t can be found by the following Algorithm 3.1 Let r_1, \ldots, r_n be all rules in R such that an r_i -redex has an occurrence in t $(i = 1, \ldots, n)$. If the r_i -tree is not finite for at least one i, then $L(t) = \infty$. Otherwise, using Lemmas 3.8 and 3.7, find μ -indices and proper μ -indices of all rules r_i . Finally, using Lemmas 3.6 and 3.7, find L(t). Proof From Theorem 2.3 and Lemmas 3.2, 3.3, and 3.6-3.8. 3.4 The least upper bound of lengths of developments Let $R = \{r_i : t_i \to s_i\}$ be an OTRS and let $\underline{R} = \{\underline{r}_i : \underline{t}_i \to s_i\}$, where \underline{t}_i is obtained from t_i by underlining its head-symbol; terms in \underline{R} are constructed in the usual way with the restriction that underlined symbols may only occur as head-symbols of redexes. Then, for each development $P: e_0 \to e_1 \to \ldots \to e_n$ of e_0 in R (in which only residuals of redexes from e_0 are contracted), there is a reduction $P': e'_0 \to e'_1 \to \ldots \to e'_n$ in \underline{R} such that e'_i is obtained from e_i by underlining head-symbols of residuals of redexes from e_0 . Obviously, \underline{R} is persistent, since no creation of redexes is possible in it. Thus, to find least upper bounds of developments in R, one can use Algorithm 3.1, which becomes simpler in this case. For any rule $\underline{r} \in \underline{R}$, $mult_{\mu}(\underline{r}) = 1$, and proper μ -indices of \underline{r} can be found immediately from the right-hand side of \underline{r} . Indeed, if $\underline{r}: C[x_1, \ldots, x_n] \to s$, then $mult_{\mu}(\underline{r}, i) = 1$ if x_i does not occur in s, and $mult(\underline{r}, i)$ coincides with the number of occurrences of x_i in s otherwise. Acknowledgments I enjoyed discussions with H. Barendregt, J. W. Klop, J.-J. Lévy, L. Maranget, G. Mints, Sh. Pkhakadze, Kh. Rukhaia, and V. Sazonov. I also would like to thank G. Gonthier, G. Tagviashvili, K. Urbaitis, and F. J. de Vries for their help in preparation of this paper. REFERENCES - Barendregt H. P., Bergstra J., Klop J. W., Volken H. Some notes on lambda-reduction, in: Degrees, reductions and representability in the lambda calculus. Preprint no.22, University of Utrect, Department of mathematics, p. 13-53, 1976. - 2. Dershowitz N., Jouannaud J.-P. Rewrite Systems. In: J.van Leeuwen ed. Handbook of Theoretical Computer Science, Chapter 6, vol.B, 1990, p. 243-320. - 3. Huet G., Lévy J.-J. Computations in Orthogonal Rewriting Systems. In Computational Logic, Essays in Honor of Alan Robinson, ed. by J.-L. Lassez and G. Plotkin, MIT Press, 1991. - 4. Khasidashvili Z. Optimal normalization in orthogonal term rewriting systems. In: Proc. of the fifth International Conference on Rewriting Techniques and Applications, Springer LNCS, vol. 690, C. Kirchner, ed. Montreal, 1993, p. 243-258. - Khasidashvili Z. On the equivalence of persistent term rewriting systems and recursive program schemes. In: Proc. of the second Israel Symposium on Theory and Computing Systems, Natanya, 1993, p. 240-249. - 6. Klop J. W. Combinatory Reduction Systems. Mathematical Centre Tracts n. 127, CWI, Amsterdam, 1980. - 7. Klop J. W. Term Rewriting Systems. In: S. Abramsky, D. Gabbay, and T. Maibaum eds. Handbook of Logic in Computer Science, vol. II, Oxford University Press, 1992, p. 1-116. - 8. Nederpelt R. P. Strong normalization for a typed lambda-calculus with lambda structured types. Ph. D. Thesis, Eindhoven, 1973. - 9. O'Donnell M. J. Computing in systems described by equations. Springer LNCS 58, 1977. - 10. Van Raamsdonk F. A simple proof of confluence for weakly orthogonal combinatory reduction Systems. Report CS-R9234, CWI Amsterdam, 1992.