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Abstract

We design a strategy that for any given term ¢ in an Orthogonal Term Rewriting System (OTRS) constructs a longest
reduction starting from t if £ is strongly normalizable, and constructs an infinite reduction otherwise. We define some
classes of OTRSs for which the strategy is easily computable. We develop a method for finding the least upper bound
of lengths of reductions starting from a strongly normalizable term. We give also some applications of our results.
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1. INTRODUCTION

It is shown in O’Donnell [9] that the innermost strategy is perpetual for orthogonal term rewriting
systems (OTRSs). That is, contraction of innermost redexes gives an infinite reduction of a given
term whenever such a reduction exists. In fact, a strategy that only chooses redexes that do not
erase any other redex is perpetual. Moreover, one can even reduce redexes whose erased arguments
are strongly normalizable (Klop [7]). For the lambda-calculus, a more subtle perpetual strategy
was invented in Barendregt et al. [1]. However, none of these strategies work for all Orthogonal
Combinatory Reduction Systems (OCRSs), i.e., OTRSs with bound variables and a substitution
mechanism [6].

We design a perpetual strategy for orthogonal term rewriting systems that works also for all or-
thogonal combinatory reduction systems. Perpetual reductions are interesting because termination
of a perpetual reduction starting from a term ¢ implies strong normalization of ¢ (i.e., termination
of all reductions starting from ¢). Our aim is not only to construct an infinite reduction of any given
term ¢ whenever it exist, but also to construct a longest reduction if all reductions starting from
t are finite. Thus we will be able to characterize the complexity of computations of terms. The
idea is that in order to construct a perpetual reduction one should try to avoid erasure of (infinite)
redexes. On the other hand, in order to construct a longest possible reduction, one should delay
contraction of a redex until it will no longer be possible to duplicate it by reducing an outer redex.
The two conditions agree if in each term s one contracts a limit redex, which is defined as follows:
choose in s an unabsorbed redex u;, i.e., a redex whose descendants never appear inside arguments
of other redexes; choose an erased argument s; of u; that is not in normal form; choose in s; an
unabsorbed redex ug, and so on, as long as possible. The last chosen redex is a limit redex of s.

An unabsorbed redex exists in any term not in normal form, but there is no general algorithm to
find one. So we define some classes of OTRSs, such as persistent, inside-creating, non-absorbing,
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2. Perpetual strategies in OTRSs 2

non-left-absorbing, and non-right-absorbing systems, for which the unabsorbed redexes are easy to
find. For example, in non-left-absorbing systems, no subterm can be absorbed to the left of the
contracted redex, so the leftmost-outermost redexes are unabsorbed. (In particular, the A-calculus
and the combinatory logic are non-left-absorbing.) Unabsorbed redexes can easily be found also in
the wide class of strongly sequential OTRSs [3].

We develop a method for proving that the reductions constructed according to our perpetual
strategy are indeed the longest, and for finding their lengths. Our method is similar to the Neder-
pelt’s method [8] invented to reduce proofs of strong normalization to proofs of weak normalization
(i.e., existence of a normal form). For any OTRS R, we define the corresponding non-erasing OTRS
R, called the p-extension of R. We add fresh function symbols u" of arity n (n = 0,1,...) in
the alphabet of R. For any R-rule r : t — s, we keep the erased variables of ¢ in the right-hand
side of each corresponding R,-rule v, : ¢ — &' as “u-erased” arguments of s'. Since this transfor-
mation affects the structure of redex-creation in R, we have to introduce infinitely many R,-rules
for each R-rule. This helps to have a natural translation of R-reductions into R,-reductions and
vice-versa. Finally, we keep also all u-symbols of ¢’ as y-erased symbols in &, since they can be used
as “counters” of steps in longest normalizing reductions. We then show that the least upper bound
of lengths of R-reductions starting from a term o coincides with the number of p-occurrences in the
Ry-normal form of 0. To find this number, sometimes it is not necessary to do actual transformation
of t. We show this for the case of persistent TRSs.

Another consequence is that a term ¢ is strongly normalizable in R iff it is weakly normalizable
in Ry; this result holds also on the level of OTRSs: an OTRS R is strongly normalizing iff its
p-extension R, is weakly normalizing [6]. Therefore, for any class of OTRSs that is closed under
u-extension, i.e., contains the y-extension of each of its elements, one can prove undecidability of
weak normalization if undecidability of strong normalization is known, and prove decidability of
strong normalization if decidability of weak normalization is known. For example, all the above
classes of OTRSs are closed under u-extension. We describe some applications of our results in
section 3. The main results are obtained in section 2.

2, PERPETUAL STRATEGIES IN OTRSs

We recall some basic notions of TRS theory; one can find comprehensive introductions to the subject
in [2] and [7). A TRS is a pair (X, R), where the alphabet ¥ consists of variables and function
symbols and R is a set of rewrite rules r of the form ¢ — s. The left-hand side ¢ is any term different
from a variable, and the term s may only contain variables that occur in t. An r-redez u is obtained
from t by substituting arbitrary terms for the variables in ¢, and the corresponding instance of s is
the contractum of u. Arguments of u are subterms of u that correspond to variables of £, and the
rest is the pattern of u. Subterms of u rooted at the pattern are called the pattern-subterms of u.
The arguments, pattern, and pattern-subterms are defined analogously in the contractum of u. A
TRS is orthogonal if it is left-linear and non-ambiguous, i.e., patterns of redexes can never overlap
in a term.

A one step reduction in which a redex u in a term o is contracted is written o ~ e oro— e.
We write P : 0 - e if P is a reduction of o to e comprising 0 or more steps. A term ¢ is called
weakly (resp. strongly) normalizable if ¢ has a normal form (resp. if any reduction starting from ¢ is
terminating). An OTRS R is weakly (resp. strongly) normalizing if any term in R is weakly (resp.
strongly) normalizable. We use t, 5, ¢, 0 for terms, u, v, w for redexes, and P, Q for reductions. [P|
denotes the length of P. We write s C ¢ if s is a subterm of ¢.
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For a given OTRS R we now define its “y-extension” R,: for each R-rule t — s, we have a set of
Ry-rules of the form ¢’ — p!(0, ..., u% z;,, ..., %, 5), where u™ is a fresh n-ary function symbol; ¢
is obtained from ¢’ by removing all except the last arguments of y-symbols occurring in ' (we write
t = [t'],); and z;,,...,z;, are all variables of ¢ that do not occur in s. If a term e has a normal
form in Ry, then all R,-reductions of e are finite, since their lengths can not exceed the number
lloll. of u-occurrences in R,-normal form o of e. (Indeed, for any R,-reduction P : e —» €', we have
e’ - o; hence |P| < ||¢/||, < |lo||,-) For any R-reduction Q : t; — t3 — ... — t, we construct a
corresponding R,-reduction @, : s1 =t; — s2 — ... — s, such that [si]u = ti. So in order to
prove that a term ¢ in R is strongly normalizable it is enough to prove that ¢ has a normal form
in R,. This is the idea of Nederpelt’s method. Now if s, is an R,-normal form of sy, then |[s,]|,
is an upper bound of lengths of R-reductions starting from ¢;. Thus the length of Q is maximal if
$n is the R,-normal form of s; whenever ¢, is the normal form of ¢;, and |Q,| = ||sa||,, i-e., each
step of Q) increases the number of y-occurrences exactly by 1. This is achieved by contracting the
limit redexes only. Indeed, in this case the old p-occurrences do not duplicate, and the only new
p-symbol created in each step is the head symbol of the contractum.

Definition 2.1 The p-extension (X, R,) of an OTRS (%, R) is defined as follows:

1. ¥, =YU{p"|n =0,1,...}, where p" is a fresh n-ary function symbol. For any subterm
s = p"(t1,...,ta, to) of a term ¢ over Y., the arguments t1,...,t,, as well as subterms and
symbols in ty,...,%, and the head-symbol p itself, are called u-erased or more precisely y'-erased,
where p' is the occurrence of the head symbol of s in ¢. The argument t; is called x/-main. Symbols
and subterms in ¢ that are not u-erased are called yu-main. We denote by [t], the term obtained
from ¢ by removing all py-erased symbols.

2. R, is the set of all rules of the form 7, : t’ — s’ such that

(a) there is a rule 7 : t — s in R such that [t'], =¢;

(b) the term t' is linear (i.e., no variable appears twice or more in t');

(c) the head symbol of ¢’ is not a u-symbol, i.e., it coincides with the head symbol of ;

(d) the p-erased arguments of each occurrence u’ of a y-symbol in ¢’ are variables, and the y'-main
argument is not a variable (i.e., it contains a function symbol from ¥ or a y-symbol);

(e) if zq,...,z, are all y-main variables of t' (from left to right), v1,...,ym are all u-erased

variables of ¢/, and z;, ..., z;, are all variables among 71, ...,z that do not occur in s, then
k
’ s, 0 0
s =4 (ﬂ PREREY 1) ,yl,--~aym,$i1,~-,$i,,,3),

where k is the number of occurrences of p-symbols in ¢’ and I = k + m + p+ 1. For any r,-redex
u = t'0, we call arguments that correspond to z;,,...,z; quasi-erased arguments of u, and call
the arguments that correspond to other variables from zi,...,z, quasi-main. R, and R are called

p-corresponding OTRSs, and 7, and r are called corresponding rules in R, and R.
Example 2.1 Let R = {r: f(a,z) — b}. Then R,-rules have the form

f(uk(mla“'azk—l)ﬂ'l(yla'-'ayl—-la'--um(zl’-"azm—lia')---))’x) -
/‘L(.uoi"',.u01$1,“'1zk—-l7y1 cees Yi-15---521 "'1zm—1,$1b)
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For example, 7, : f(t*(y, 4%(2,a),z) — pb(uO, %, y,2,x,b)) is an R,-rule. For any r,-redex t =
F(p%(o, #%(s,a)),€), [t]u = f(a,e) is an r-redex, t' = u(u®, u°, 0, s,e,b) is the contractum of ¢, and
[t'], = b is the contractum of f(a,e).

Lemma 2.1 If R is an orthogonal TRS, then so is R,.

Proof Any overlap of patterns of two R,-redexes in a term ¢ over X, causes an overlap of patterns
of corresponding R-redexes in [t],.

Lemma 2.2 Let ¢ be a term over X, the head-symbol of which is not a p-symbol, and let [t], = s.
Then ¢ is an r,-redex iff s is an r-redex, where r, and r are corresponding rules in R, and R,
respectively. Moreover, if ¢’ is the contractum of ¢ in R, and s’ is the contractum of s in R, then
[tl]“ — 8/ A .

Proof From Definition 2.1 (see also Example 2.1).

Corollary 2.1 Let R be an OTRS and sy =3 s; =3 ... be a reduction in R. Then, for any term %,
in R, such that [to], = so, there is a reduction ¢y Bt B .. in R, such that [t;], = s; and u; and
v; are corresponding subterms in s; and ¢; (1 =0,1,...).

Notation ||t||,, denotes the number of occurrences of y-symbols in ¢.

Lemma 2.3 Let ¢ be a term in an OTRS R. If ¢ is weakly normalizable in R, then ¢ is strongly
normalizable in R, and R.

Proof Let s be an R,-normal form of ¢t and ¢ — ¢; — ... be an R,-reduction. By Lemma 2.1 and
the Church-Rosser theorem, ¢; - s for all i = 1,2, ... It is easy to see that ¢ < ||¢;]|. < ||s||u- So ¢
is strongly normalizable in R,. Hence, by Corollary 2.1, ¢ is strongly normalizable in R.

Definition 2.2 Let ¢t — s and let e be the contractum of » in s. For each argument o of u there
are 0 or more arguments of e. We call them (u-)descendants of o. Correspondingly, subterms of o
have 0 or more descendants. An argument of u is called (u)-erased if it does not have a descendant,
~ and is called (u)-main otherwise. By definition, the descendant of each pattern-subterm of u is e.
Descendants of all redexes of ¢ except u are also called residuals. By definition, u does not have
residuals in s. A redex of s is said to be created by contracting u or to be an (u)-new redex if it is
not a residual of a redex of ¢'. It is clear what is to be meant under descendants of subterms that
are not in u. The notion of descendant and residual extend naturally to arbitrary reductions. The
ancestor relation is the inverse of the descendant relation.

Definition 2.3 We call a redex u complete (resp. oo-complete) if erased arguments of u are in
normal form (resp. are strongly normalizable). A reduction is complete (resp. oo-complete) if it
only contracts complete (resp. co-complete) redexes.

Lemma 2.4 Let P :typ 8t 2 ... = ¢, be a complete reduction in an OTRS (%, R), and let
P, : 5o X 351 3 ... = s, be a corresponding R,-reduction such that all R,-redexes in so are

p-main. Then
(1) for each k (0 < k < n), we have (b)x: any R,-redex in s is p-main.
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(2) if P is normalizing, then so is P,.
Proof (1) By induction on k. (b)o is obvious. Suppose that (b); holds and let us show (b)g41. Let

ug = Cloy,...,0m] and v, = C'ley, ..., em, €}, . .. ,e;,], where e1, ..., en are y-main arguments of vy,
which correspond to arguments o1, . . ., Om Of ug, respectively, and €f,..., e, are -erased arguments
of vg. Then the contractum of v; in R, has the form o = u(u0,...,u%¢€,... 3 €ps €igy - -+ €3, 0),
where o is the contractum of Cley, ..., en] in (3,, R) and, for each j, 0;; is ux-erased. Since vy and
uy, are corresponding subterms of s; and t, and e; and o; are corresponding arguments, we have
that (@): [e;], = 0;, 1 =1,...,m. Since 0;,,...,0; are ug-erased and uy is complete, we have that
(B): 0y, .- ,04 are R-normal forms. It follows from () that in €}, ..., e}, there are no R,-redexes

and that R,-redexes in siy1, that are not in o' or are in o, are y-main. It follows from (b);, (@),
(B), and Lemma 2.2 that e;,,...,e; are R,-normal forms. Thus (b)4; holds and (1) is proved.

(2) By Lemma 2.2 and (b)y,.

Recall that a (sequential) strategy selects a redex to be contracted in any given term. A complete
(resp. oo-complete) strategy contracts a complete (resp. an oo-complete) redex in each step. A
strategy is perpetual if it constructs an infinite reduction of any given term whenever such a reduction
exists.

Theorem 2.1 A complete strategy is perpetual in orthogonal TRSs.

Proof It is enough to show that if £ has a normalizing complete reduction P : ¢ — t/, then
t is strongly normalizable. Indeed, by Lemma 2.4, the corresponding R,-reduction of P is also
normalizing. Hence, by Lemma 2.3, t is strongly normalizable in R.

Definition 2.4 (1) A TRS is called non-erasing if left- and right-hand sides of each rule in it
contain occurrences of the same variables.

(2) A TRS is called weakly innermost normalizing [9] if each term has a normal form reachable
by an innermost reduction.

Corollary 2.2 (Church) Let R be a non-erasing OTRS. Then R is weakly normalizing iff it is
strongly normalizing.

Corollary 2.3 (O’Donnell [9]) Let R be an OTRS. Then R is strongly normalizing iff it is weakly
innermost normalizing.

Theorem 2.2 (Klop [7]) An co-complete strategy is perpetual in orthogonal TRSs.

Proof It is enough to prove that if ¢y has a normalizing co-complete reduction P : tg =3 ¢; — ... —
tn, then ¢ is strongly normalizable in R. Since u; is co-complete, there is a complete normalizing
reduction Q : tg = t1 —» ... = t,. Now by Theorem 2.1, #g is strongly normalizable.

The following propositions are obtained in Klop [6]. The proof of Proposition 2.2 is, however,
not correct, since it establishes weak normalization of R, only for terms of R, not for all terms
of R,.

Proposition 2.1 (Klop [6]) A term ¢ in an OTRS R is strongly normalizable iff ¢ is weakly nor-
malizable in R,.

Proof (=) From Lemma 2.4. (<) From Lemma 2.3.
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Proposition 2.2 (Klop [6]) An OTRS R is strongly normalizing iff R, is weakly normalizing.

Proof (=) Let t' be a term in R,. We prove that ¢’ is weakly normalizable by induction on the
length of t'. By the induction assumption, all y-erased subterms of ' are weakly normalizable in
R,. Let t* be obtained from ¢’ by their reduction to normal forms. By Lemma 2.4, t* is weakly
normalizable in R,,, since [t*], is strongly normalizable in R. Hence, t' is weakly normalizable. (<)
From Lemma 2.3.

Definition 2.5 ([4]) We call a subterm s of a term ¢ unabsorbed in a reduction P : t — e if the
descendants of s do not appear inside redex-arguments of terms in P, and call s absorbed in P
otherwise. We call s unabsorbed in t if it is unabsorbed in any reduction starting from ¢, and
absorbed in t otherwise.

In (3], Huet and Lévy introduced the notion of erternal redez of a term and proved that each
term not in normal form possesses an external redex. It is easy to show that a redex u C ¢ is
unabsorbed iff u is external in . Thus we have the following lemma; a short direct proof of it can
be found in [4].

Lemma 2.5 In any term ¢ not in normal form there is an unabsorbed redex.

Definition 2.6 Let u; be a redex in a term ¢ defined as follows: choose an unabsorbed redex u;
in t; choose an erased argument s; of u; that is not in normal form (if any); choose in s; an
unabsorbed redex ug, and so on, as long as possible. Let u;, 81, usg, ..., u be such a sequence. Then
we call u; a limit reder and call ui, s1,us,...,u; a limit sequence of t.

It follows from Lemma 2.5 that in any term not in normal form there is a limit redex. We call a
reduction limit if each contracted redex in it is limit, and call a strategy l#mit if in any term not in
normal form it contracts a limit redex.

Lemma 2.6 Let « be a limit redex in £t and P : ¢ -» e. Then there is no new redex in e that
contains a descendant of u in its argument.

Proof Let uy,si,us,...,u; be the limit sequence of ¢ with u; = u. We prove by induction on
|P| that (a): descendants of redexes ui,...,% do not appear inside arguments of new redexes. If
|P| = 0, then (a) is obvious. So let P : ¢t - ¢’ = e, let o be a descendant of u in e, and let o' be
its ancestor in €. It follows from the induction assumption that each redex u; (i = 1,...,{—1) has
exactly one residual u; in €’ (because contraction of a residual of any of the redexes u,...,u—1
erases the descendant of u), there is no new redex in €’ that contains o’ in its argument, and o is
the only descendant of u. Thus if there is a new redex w in e that contains the residual w] of some
u; in its argument, then it must be created by v. If v € u}, then w contains »] in its argument iff
it contains the residual of %] in its argument, but this is impossible since u; is unabsorbed. Thus
v C u}. Let k be the maximal number such that v is in u; and let s; be the descendant of si in
e’. Then v is in s}, and contains uj ;. Let @ : s — s{ consist of steps of P that are made in
descendants of s;. Then the residual of ug,; is in an argument of the new redex w C s{. But this
is impossible since uyy; is unabsorbed in sg. Thus (a) is valid and the lemma is proved.

Lemma 2.7 Let (X, R) be an OTRS, P : #p 2t B ... > t, be a limit reduction in R and
P,:s0=1to 3 s1 3 ... sn be its corresponding reduction in Ry.
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(1) For each k (0 < k < n) the following holds:

(@i llsell = E;

(b): each redex v}, C si is p-main in s;

(€)k: in quasi-main arguments of any redex v} in s there are no y-symbols.
(2) If P is normalizing, then so is P,.

Proof (1) (a)o — (c)o are obvious. Suppose that (a); — (¢)r hold and let us show (a)r+1 —
(¢)k+1- Let up = Clo1,...,0q and vy = C'les,...,eq,€1,...,€], where ei,...,e, are y-main
arguments of vy (which correspond to arguments o0y,...,0, of uy respectively) and e,...,e;, are
p-erased arguments of vy. Since uy and v are corresponding redexes in ¢ and s, we have [vg], =
ur, and hence (a): [ei]y = o; for all ¢ = 1,...,q. Let 0;,...,0; be ui-erased arguments and
0jyy---,05, be ug-main arguments. Then contractum of vy in R, has the following form: o =
w(p, ..., 1 el,... e e, .., e€i,0), where o is the contractum of Cley, ..., en] in (X, R). Since
ug is limit, (8): 0;,...,0; are in R-normal form. By (c), (7): there are no occurrences of u-
symbols in ej;,...,e;,,0. (Hence o coincides with the contractum of ug.) It follows from (), (8),
(b)k, and Lemma 2.2 that (6): e;;,...,e; are in R ,-normal form.

By (1), l0'llu = llvellu + 1. Hence [Isptally = llskllu + 1=k +1, i, (@)k41 holds.

If v}, ; € 0, then (b)) implies that v, is p-main. If vj,, C o, then, by (B)k, vjy; Z €1,---,€m
(since ancestors of e},. .., e}, are p-erased arguments of v;) and, by (6), vy, € €;;,---,€;,- Hence
Vpyq € 0 and vy is p-main by (7). Now (b)x+1 is proved.

If o' N vy, =0, then (c)r41 follows immediately from (c)x. If vy, C o, then as we have shown
above (for vy, ;), vy, C 0 and (c)k+1 follows from (7). Suppose now that o is a proper subterm of
vj,1 and vy, has an v-ancestor v} in sy for which vy, is a residual. Let u} be the corresponding
redex of v} in ¢ (it exists, because, by (b)x, v§ is g-main). Obviously, ux is a proper subterm of
u} and since uy, is limit, it must be in an erased argument of u;. Hence v is in a quasi-erased
argument of v}. Therefore o' is in a quasi-erased argument of v, ; and the quasi-main arguments of
vy 41 coincide with the corresponding quasi-main arguments of v§. Thus, by (c)k, in the quasi-main
arguments of v}, +1 there are no occurrences of p,-symbols. To prove (¢)k+1, it remains to consider
the case when o' is a proper subterm of v}, 41 and vy, is created by vg. If in quasi-ma.in arguments
of vy, , there are y-symbols, then in main arguments of corresponding redex uj,; in sgy1, which is
also a uy-new redex, there are descendants of redexes contracted in P. (Since vy is p-main, o' and
hence uy1 are also y-main.) But each redex contracted in P is a limit redex. Thus, by Lemma 2.6,
their descendants can not occur in arguments of new redexes. Hence, also in this case, there are
no p-symbols in quasi-main arguments of v}, and (¢)x41 is valid. Now (1) is proved.

(2) By Lemma 2.2 and (b),.

Theorem 2.3 A limit strategy is perpetual in OTRSs. Moreover, if a term ¢ in an OTRS R is
strongly normalizable, then a limit strategy constructs a longest normalizing reduction starting
from ¢, and its length coincides with the number of p-occurrences in an R,-normal form of ¢.

Proof If alimit R-reduction P starting from ¢ is normalizing, then by Lemma 2.7 its corresponding
R,-reduction also is normalizing. Hence, by Lemma 2. 3, t is strongly normalizable in R. Thus,
the limit strategy is perpetual. Now, if ¢ is strongly normalizable, @ is a normalizing R-reduction,

and s is an R,-normal form of ¢, then |Q| =(by Corollary 2.1)= |Q,| < (by the CR property of
R,)< ||s|l, =(by Lemma 2.7)= |P|. Thus, P has the maximal length among all reductions of ¢ to
normal form.



3. Applications ‘ 8

We now give a direct proof of the fact that limit reductions are the longest. The advantage of
the previous proof is that it additionally gives a characterization of lengths of longest reductions.

Lemma 2.8 Let P:t) 3¢ 3 ...and ty > S0, where u is a limit redex. Then there is a reduction
@ starting from sg such that |Q| > |P| — 1.

Proof Using the Church-Rosser theorem, we can construct the following diagram

to w t1 w i

> »
> >

u= Po P] Pg

Y Y
4 A 4 y

> >

so Qo s1 Q1 s

where in P; : t; —» s; all residuals of u in t; are contracted, and in Q; : 8;i — 8;41 all P;-residuals
of u; are contracted. It follows from Lemma 2.6 that u has at most one residual in each term ¢;,
which is complete. Thus if there is an ¢ such that u; is a residual of u, then Q; is empty, 8; =t
for all j > 4, and Q; contracts exactly one redex. Otherwise, each reduction Qj, contracts at least
one redex. Hence, we can take the concatenation of Qq, Q1,... for Q.

Corollary 2.4 The limit strategy is perpetual in Orthogonal TRSs, and the limit reductions are
longest among reductions starting from a strongly normalizable term.

3. APPLICATIONS
3.1 Recursive perpetual strategies for some classes of OTRSs
We now define some classes of OTRSs for which the limit strategy is efficient.

Definition 3.1 (1) Let ¢t = s in an OTRS R, and let v C s be a new redex. We call v generated if
its pattern is in the pattern of the contractum of u. We call an OTRS R persistent (PTRS) if, for
each reduction step in R, any created redex is generated.

(2) We call an OTRS outside-creating if, for any reduction step ¢ — s, any new redex in s contains
at least one symbol above the contractum of u, and call it inside-creating if any new redex in s is
inside the contractum of u.

(3) We call an OTRS non-absorbing if, for any reduction step ¢ — s, the arguments of any new
redex in s are in the contractum of u.

(4) We call an OTRS non-left-absorbing (resp. non-right-absorbing) if, for any reduction step
t > s, any argument of a created redex in s is inside the contractum of u or to the right (resp. to
the left) of it.

Proposition 3.1 (1) Let ¢ be a term in a non-absorbing OTRS. Then any outermost redex in ¢ is

unabsorbed.
(2) Let t be a term in a non-left absorbing (resp. non-right-absorbing) OTRS. Then the leftmost-

outermost (resp. the rightmost-outermost) redex in ¢ is unabsorbed.
Proof From Definitions 2.5 and 3.1.
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Thus a limit redex can be found efficiently in non-absorbing, non-left-absorbing, and non-right-
absorbing systems. Note that left-normal OTRSs [9] (where in left-hand sides of rules function
symbols precede variables), and Combinatory Logic in particular, are non-left-absorbing. Persistent
and inside-creating systems are non-absorbing.

Proposition 3.2 Outside-creating OTRSs are strongly normalizing.

Proof Let ¢ be a term in an outside-creating OTRS R. It is easy to see that R, is outside-
creating as well. Thus, by Lemma 2.3, it is enough to prove that ¢ has a normal form in R. Let
P:t—t1 — ... be an innermost reduction in which any created redex is contracted immediately
after creation (each step creates at most one redex). Since a created redex is strictly above the
contractum of a contracted redex, the number of redexes of terms in P is decreasing. Thus P is
finite.

Remark 3.1 The above proposition is equivalent to Corollary 4.10 of van Raamsdonk [10] stating
that all “superdevelopments” in OTRSs are finite.

3.2 On decidability of weak and strong normalization
Definition 3.2 We call a class R of OTRSs closed under u-extension if R contains the y-extension
of each of its elements.

Proposition 3.3 Let R be a class of OTRSs closed under p-extension. Then decidability of weak
normalization for OTRSs in R implies decidability of strong normalization for OTRSs in R.
Proof For any R € R, weak normalization is decidable for R, € R. Hence, by Proposition 2.2,
strong normalization is decidable for R.

It is easy to see that all classes of OTRSs, defined in Definition 3.1, and the class of strongly
sequential OTRSs [3] are closed under p-extension. Note that although, for any OTRS R, R,
contains infinitely many rules, it is decidable whether a term in R, is an R,-redex. Thus the
decidability question makes sense for R,. We show in [5] that weak normalization is decidable in
Persistent TRSs. Hence, by Proposition 3.3, strong normalization is also decidable for Persistent
TRSs. For inside-creating TRSs, decidability of weak and strong normalization is open. For OTRSs
in general, undecidability of strong normalization follows from undecidability of the (uniform)
halting problem. Thus, weak normalization is also undecidable.

3.3 The least upper bound of lengths of reductions in persistent TRSs

We now present an algorithm for finding the least upper bound of lengths of coinitial reductions in
persistent TRSs, which does not need to make an actual transformation of an input term. We first
recall some results from [5].

Notation We write ¢t = (t1//e1, ..., tk//ek)e if e1,..., ex are non-overlapping proper subterms in e,
and t is obtained from e by their replacement with 1, ..., £k, respectively.

Definition 3.3 We call a subterm s in ¢ free if s is not a proper pattern-subterm of a redex in ¢.

Lemma 3.1 Let ¢ = (¢//0)s in a persistent TRS, let e be free in ¢, and let s and e be strongly
normalizable. Then ¢ is strongly normalizable.

Proof sketch By persistency, all descendants of e remain free; therefore, infinitely many steps
of an infinite reduction starting from ¢ must be performed inside (descendants of) e or outside e,
meaning that symbols of e do not belong to patterns of the redexes contracted outside e. But e
and s are strongly normalizable. Therefore, ¢ does not possess an infinite reduction.
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Definition 3.4 We call a redex in a PTRS R trivial if it is a left-hand side of a rewrite rule in R.
We call redexes u and v similar if they are instances the left-hand side of the same rule. We call a
redex u finite if its similar trivial redex is strongly normalizable.

Lemma 3.2 ([5]) A term ¢ in a PTRS is strongly normalizable iff any redex in ¢ is finite.

Proof (=) Obviously, any redex u in ¢ is strongly normalizable. So, by Lemma 3.1, the trivial
redex similar to u is strongly normalizable as well. (<) By induction on the number n of redexes
in ¢. The case n = 0 is trivial. So let n > 0, u be an innermost redex in ¢, and s = (z//u)t. By the
induction assumption, s is strongly normalizable. Since arguments of u are in normal form and u
is a finite redex, Lemma 3.1 implies that u is strongly normalizable. Since t = (u//x)s, we have
again by Lemma 3.1 that ¢ is strongly normalizable.

Definition 3.5 let R be a PTRS and r € R. We call an r-tree the maximal tree with rules as nodes
and r as the root, such that a redex corresponding to a node has an occurrence in the right-hand
side of its ancestor node.

Lemma 3.3 ([5]) An r-redex u in a PTRS R is finite iff the r-tree is finite.

Proof (=) If the r-tree has an infinite branch rg, r1, ..., then one can construct infinite reduction
of the trivial r-redex v > t; 2> ty =3 ..., where v; is an r;-redex created by v, ve is an ro-redex
created by v, and so on. (<) By induction on the height n of the r-tree. If n = 0, then contractum
s of the trivial r-redex v is normal form. If n > 1, then by the induction assumption, each'redex in
s is finite. Hence, by Lemma 3.2, s is strongly normalizable. Thus, v is also strongly normalizable,
i.e., u is finite.

Definition 3.6 Let R be a PTRS.

(1) Let t be a term in Ry, let s C ¢, and let P : t —» e be the rightmost innermost normalizing
R,-reduction. Then, by definition, Mult,(s,t) is the number of P-descendants of s in e

(2) Let u = Cle1,...,es] be an r-redex in R, let &' C e;, let v = Cloi,...,0,] be an r-
redex (similar to u) with arguments oy,...,0, in Ry,-normal form, and let @ : v - o be the
rightmost innermost normalizing R,-reduction. Then, by definition, mult,(u,) = mult,(u,s’) =
mult,(r, i) = Mult,(o;,v), and mult,(u) = mult,(r) is the number of y-subterms in o that appear
during @, i.e., that are not descendants of subterms with head-symbol p from (arguments of) w.
Numbers mult,(u,7) and mult,(r,i) are proper u-indices of v and r, and numbers mult,(u) and
mult,(r) are p-indices of w and r.

The following lemma implies that the definition is correct.

Lemma 3.4 Let u = Cley,...,e,) and v = Cloy,...,0n,] be similar redexes with arguments in
normal form in a PTRS R, and let P:u=1ty 3¢ = ... and Q : v = 59 =3 57 3 ... be the
rightmost innermost normalizing R,-reductions. Then, for each ¢ =0, 1,..., there is an one-to-one

correspondence between

1. redexes in ¢; and s; such that corresponding redexes are similar, and u; and v; are correspond-
ing.

2. “appeared p-subterms”, which are descendants of contracta of R,-redexes in ¢; and s;.
Proof Easy induction on i, using persistency of R,,.

Lemma 3.5 Let ¢ be a normalizable term in a PTRS Ry, let e C s C ¢, and let s be in R,-normal
form. Then Mult,(s,t) = Mult,(e,t).

Proof Let t — o be the rightmost innermost normalizing R,-reduction. Then the descendants of
s in o are disjoint occurrences of s, and each of them contains exactly one descendant of e.
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Notation L(t) denotes the least upper bound of lengths of reductions starting from 2.

Lemma 3.6 Let t be a strongly normalizable term in a PTRS R and let uy,...,u, be all redexes
in t. Then .
L(t) = Z Mult,(u;, t)ymult,(u;)

i=1
Proof Let P:t -» o be the rightmost innermost normalizing R,-reduction and let uy,...,u, be
the enumeration of redexes in ¢ from right to left. In the fragment of P where u; is reduced to R-
normal form, mult,(u;) new p-symbols appear (in the beginning of the fragment, all arguments of u;
are in R,-normal form). By Lemma 3.5, during the rest of P each of these mult,(u;) p-occurrences
is duplicated Mult,(u;,t)-times. Hence

lloll. = Zn: Mult, (u;, t)ymult, (u;)

2=1
and the lemma follows from Theorem 2.3.

Lemma 3.7 Let t be a strongly normalizable term in a PTRS R,, let s C ¢, and let uy,...,un
be all redexes in ¢ that contain s in their arguments. Suppose that s is in m;-th argument of u;
(t=1,...,n). Then

Mult,(s,t) = Hmult,‘(ui, 8) = H mult,(ui, m;)
i=1

=1

Proof Let P : t — o be the rightmost innermost normalizing R,-reduction. It follows from
Lemma 3.5 that, in the fragment of P in which u; is reduced to R,-normal form, each descendant
of s is duplicated mult,(u;, s) = mult,(u;, m;)-times. Thus, the lemma is obvious.

Lemma 3.8 Let u = Cles,...,ex] be an r-redex with arguments ej,...,ex in normal form in a
PTRS R,. Then forall j =1,...,k:

m;
mult,(u,j) = mult,(r,j) = Z Mult,(ej;,0),

=1

m
mult,(u) = mult,(r) = z Mult,,(u;, o)mult,(u;) + 1,
i=1
where o is the contraction of u in Ry, €j,,... 1€jm; ATE all descendants of e; in o, and uy,...,Um

are all redexes in o.
Proof From Definition 3.6 (since all descendants of subterms e;; are pairwise disjoint).

Theorem 3.1 Let ¢ be a term in a PTRS R. Then the least upper bound L(t) of lengths of
reductions starting from ¢ can be found by the following

Algorithm 3.1 Let 71,...,7, be all rules in R such that an r;-redex has an occurrence in ¢
(i = 1,...,n). If the r-tree is not finite for at least one 7, then L(t) = oco. Otherwise, using
Lemmas 3.8 and 3.7, find p-indices and proper p-indices of all rules r;. Finally, using Lemmas 3.6
and 3.7, find L(2).

Proof From Theorem 2.3 and Lemmas 3.2, 3.3, and 3.6-3.8.
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8.4 The least upper bound of lengths of developments

Let R = {r; : t; — s;} be an OTRS and let R = {r; : t; — s;}, where t; is obtained from ¢;
by underlining its head-symbol; terms in R are constructed in the usual way with the restriction
that underlined symbols may only occur as head-symbols of redexes. Then, for each development
P:e — e — ... > e, of o in R (in which only residuals of redexes from ep are contracted),
there is a reduction P’ : ey — €] — ... — €], in R such that ! is obtained from e; by underlining
head-symbols of residuals of redexes from eg. Obviously, R is persistent, since no creation of redexes
is possible in it. Thus, to find least upper bounds of developments in R, one can use Algorithm 3.1,
which becomes simpler in this case. For any rule r € R, mult,(r) = 1, and proper p-indices of
r can be found immediately from the right-hand side of r. Indeed, if r : C[z1,...,Z,] — s, then
mult,(r,i) = 1 if z; does not occur in s, and mult(r, i) coincides with the number of occurrences
of z; in s otherwise.
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