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Abstract

We define Higher Order Recursive Program Schemes (HRPSs) by allowing metasubstitutions (as in the A-
calculus) in right-hand sides of function and quantifier definitions. To study reductions in a HRPS we split it into
“first order part” and “pure substitution part”’. A study of pure substitutions and several kinds of similarity of
redexes makes it possible to lift properties of (first order) Recursive Program Schemes to the higher order case. The
crucial properties are that corresponding arguments of essentially similar redexes are either both essential or both
inessential, and that essentially similar redexes create essentially similar redexes. The main result is the decidability
of weak normalization in HRPSs, which immediately implies that HRPSs do not have full computational power. We
analyze the structural properties of HRPSs and introduce several kinds of persistent higher order rewrite systems

that enjoy similar properties. For uniformly persistent systems, we design an efficient optimal sequential normalizing
strategy.
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1. INTRODUCTION

Higher Order Recursive Program Schemes (HRPSs) are recursive definitions of functions, predicates,
and quantifiers, considered as rewriting systems. Similar definitions are used when one extends a
theory by introducing new symbols. For example, the existential quantifier 3 and the quantifier 3!
for “there is exactly one” can be defined using Hilbert’s operator (sign) 7 as follows:

JaA & (TaA/a)A
laA & JaAAVaVb(AA (bfa)A=>a=1D)

The definitions of new symbols are added to the theory as axioms, and weak normalization of
the system of definitions considered as a rewriting system ensures that the enriched theory is a

conservative extension of the original one. A study of definitions as contraction schemes is made
in [18]. '

The main result of the paper — decidability of weak normalization (that is, existence of a normal
form) in HRPSs — implies that HRPSs do not have full computational power: the existence of
an interpreter for, say A-calculus, in an HRPS would imply decidability of weak normalization for
A-terms, which is not valid [3]. Note that rewrite rules for the conditional cannot be used for
evaluating expression on the syntactic level, since they do not fall into the scope of our HRPSs.
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1. Introduction 2

Indeed, it is well-known that addition of if — then — else yields full computational power (see
for example Courcelle [4]). The deep reason for Turing incompleteness of HRPSs is the restricted
possibility for redex creation compared to languages with full computational power, the A-calculus
and Combinatory Logic, for example. This paper is a part of a general study of how various kinds
of redex creation are reflected in syntactic properties of rewriting systems such as normalization,
perpetuality, decidability of weak and strong normalization (that is, termination of all reductions),
expressive power, etc. Some results in this direction are obtained in [10].

In [9], we introduced a formalism for higher order rewriting (i.e., term rewriting systems with
bound variables and substitution mechanism) which is close to Combinatory Reduction Systems

(CRSs) of Klop [11]. Our syntax is more close to the syntax of A-calculus and First Order Logic.
For example, the 3-rule is written as

B : Ap(AeA, B) — (B/a)A,

where a is to be instantiated by a variable and A and B are to be instantiated by terms. The
expression (B/a)A is a metasubstitution, and its instance (t/z)s denotes the result of substitu-

tion of the term ¢ for z in the term s. To express “pure” substitutions syntactically (instead of
metasyntactically) we introduce S-reduction rules

S""’lal . .anAl .o .AnAo — (Al/al,. .o ,An/an)Ao, n= 1,2, e

The substitution operator S™*1 binds free variables only in the last argument. The difference with
B-rules is that S-reductions can only express S-developments of A-terms [8]. Therefore S-reductions

have more simple properties and their study enables us to construct an interpretation of HRPS in
(first order) Recursive Program Schemes (RPSs).

To this end, we split an HRPS R into a “first order part” R; and a “substitution part” S.
(The method was originally used by Klop [11] to prove the Church-Rosser Property. Klop used
f-reductions instead of S-reductions.) The Rj-rules are obtained from R-rules by replacing in
right-hand sides all metasubstitutions of the form (4 /a1, ..., An/a,)Ao by Sa1 ...azA;... An Ay,

respectively, and the S-rules have the form
§"+1a1 .. .anAl cee AnAo — (Al/al, e ,An/an)Ao, n= 1, 2, cees

So S-rules are just S-rules: we only need to distinguish S-redexes that are created during Ry-
reduction steps. For example, a B-reduction step (Azt)s — (s/z)t expands to a Bs-reduction
step (Azt)s — Szst and an S-step Szst — (s/x)t. Now in the promised interpretation of
HRPSs in RPSs, S-reductions play the role of projection functions. Ignoring some subtilities,
the interpretation can be expressed by the following Representation Lemma: for any R-reduction
P :t —» s there is an Ry-reduction Py : t — o such that s is obtained from o by any normalizing
S-reduction Ps; and conversely (see Lemma 3.9 for the precise formulation). Moreover, P is strictly
equivalent to the concatenation Py + Ps of Py and Pg in the following sense: descendants of any
subterm of ¢ under P and Py + Ps are the same occurrences in s. The notion of descendant is a
generalization of the usual notion of residuals of redezes to all subterms in a way that makes it
possible to trace contracted redexes: the descendant of a contracted redex is its contractum, while
it does not have residuals. For the case of TRSs, this notion is studied in [10].

As in the case of orthogonal Term Rewriting Systems (TRSs), we say that a subterm s of a
term ¢ in a CRS R is inessential if there is a reduction P starting from ¢ such that s does not
have descendants under P; we call s essential otherwise. Now an immediate corollary of the
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Representation Lemma is that s is R-inessential in ¢ iff there is an R¢-reduction P : ¢ - e such
that each P-descendant of s is S-inessential in e. Since S-reductions (like B-developments) are
terminating, it is decidable whether a subterm is S-inessential.

We can now introduce the key concepts of the paper: several kinds of similarity of redexes. We
explain the notion informally in terms of S-redexes. Let us consider the redexes u = (Az.z)s,
v = (Az.(\y.2)z)o, w = (Az.zz)e, and v’ = (Az.y)t. We call v and v similar (written u ~ v)
because the binding variable z occurs free both in the bodies of u and v. In contrast, we have
u & u. We call u and w essentially similar (written u = w) because the binding variable = has
essential occurrences in bodies of both redexes. Similarly, v = v/, because = occurs in the body
(My.2)z of v, but the occurrence is inessential — it does not have descendants in the contractum
of (A\y.z)z. In general, let us call a S-redex (Az.e)o an E-redez if z has an essential occurrence in
e. (Recall that (Az.e)o is an I-redex if z occurs free in e and is a K-redex otherwise.) Then I-
redexes are similar, K-redexes are both similar and essentially similar, and E-redexes are essentially
similar. An important property of F-redexes is that they stay E-redexes under any reduction.
Further refinement of the notion of similarity takes into account also the number of occurrences
and essential occurrences of a binding variable in corresponding arguments. These similarity notions
are formalized by special characteristic systems. For example, the essential characteristic system
of a redex 01 ...Znty ...ty corresponding to a rewrite rule oa;...anA; ... Ay — B is the set of
all pairs (a;, A;) such that ¢; is in the scope of o and z; has an essential occurrence in ;. We call
a pair (r, ECS(r)), where r is a rule and ECS(r) is an essential characteristic system for some
r-redex, an essentially characterized rule (EC-rule for short).

Let a term t be obtained from s by replacing some subterms. We call ¢ and s essentially similar
if corresponding redexes in ¢t and s (that are outside of replaced subterms) are essentially similar.
The crucial property of essentially similar terms is the following Essential Similarity Lemma: cor-
responding subterms of essentially similar terms are either both essential or both inessential. A
consequence is that corresponding arguments of essentially similar redexes are either both essential
or both inessential. Hence each EC-rule (r, ECS(r)) has an essentiality indicator which indicates
which arguments of a redex with the essential characteristic system ECS(r) ((r, ECS(r))-redez
for short) are essential. Another consequence of the Essential Similarity Lemma is that essentially
similar redexes create essentially similar redexes.

Now, the strategy for proving the decidability of weak normalization in HRPSs is similar to the
first order case [10]. We first establish a criterion for weak normalization. We define an essential
chain to be a sequence of EC-rules (rg, ECS(rp)), (r1, ECS(r1)),... such that any (r;, ECS(r;))-
redex creates an (ri+1, ECS(rit1))-redex (i = 0,1,...). We show that a term in an HRPS R is
weakly normalizable iff any essential chain, starting from any EC-rule (r, ECS(r)) such that a
(r, ECS(r))-redex has an essential occurrence in ¢, is finite. So we need an algorithm for finding
all essential (and inessential) subterms in a given term, which also will enable us to find essential
characteristic systems of all redexes in ¢, and an algorithm for finding essentiality indicators of all
EC-rules. Complete descriptions of the algorithms are presented in the body of the paper; we only
note that our algorithm can also find essentiality indicators of redexes that do not have normal
forms. As a corollary, we have an algorithm for optimal S-reductions and, in general, algorithms
for optimal developments in orthogonal CRSs.

The above properties of HRPSs are due to the fact that each subterm s of a term ¢ is free: if
s is inside a redex u, then it is either inside an argument of u or coincides with u. We introduce
persistent CRSs (PCRSs), where not all subterms are free but all free subterms remain free under
any reduction. This persistency property of free subterms is due to the fact that PCRSs are
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the systems where only a special kind of redex creation — generation — is possible: all new
redexes are actually presented in right-hand sides of rewrite rules. For example, in the step ozz —
f((ozz/z)xz) = f(ozz), which corresponds to a rule caA — f((caA/a)A) and an assignment
6(a) = 6(A) = z, the created redex ozz is an instance of the metaterm caA presented in the
right-hand side of the rewrite rule. We have generation here because 6(a) has an occurrence in
6(A). Therefore, the generation is not uniform — uniformly generated redexes are presented in
right-hand sides of rules outside of “mobile” arguments of metasubstitutions. During the reduction
step ozz — f((d/z)z) = f(d) in the system {r; : caA — f((d/a)A), r2: f(d) — c}, where d and
c are constants, we have quasi-generation in the sense that all symbols needed to create the new
redex f(d) are presented in the right-hand side of 7;.

The Essential Similarity Lemma remains valid in PCRSs if the replaced subterms are free. There-
fore, all the results obtained for HRPSs, the decidability of weak normalization in particular, remain
valid for PCRSs in general. Similar reasoning shows that strong normalization also is decidable in
PCRSs. For uniformly persistent systems, we show that the strategy that in each step contracts
an innermost essential redex is optimal. For PCRSs in general, sharing of redexes of the same
origin [14] is necessary, and this can be implemented in the framework of Interaction Systems [2].
However, the above results can not be generalized to quasi-persistent CRSs, where quasi-generation
of redexes is possible.

2. ORTHOGONAL COMBINATORY REDUCTION SYSTEMS

Combinatory Reduction Systems have been introduced in Klop [11] to provide a uniform framework
for reductions with substitutions, as in the A-calculus and its extensions [3]. Different formalisms
are proposed in Kennaway and Sleep [7] ((Functional) Combinatory Reduction Systems), Khasi-
dashvili [8] (Expression Reduction Systems), and Nipkow [16] (Higher-order Rewrite Systems).
They are extensions of Term Rewriting Systems [5, 12] by means of variable binding and sub-
stitution mechanisms. Restricted notions of CRSs were first introduced in Pkhakadze [18] and
Aczel [1]. A comparison of some formalisms of rewriting systems with bound variables and substi-
tution mechanism (referred to also as higher order rewrite systems) can be found in van Oostrom
and van Raamsdonk [17]. A survey paper is Klop et al. [13]. Here we describe a system for higher
order rewriting as defined in Khasidashvili [9]; it is based on the syntaxs of [18].

Definition 2.1 (1) Let ¥ be an alphabet, comprising variables vg,v1,...; function symbols, also
called simple operators; and operator signs or quantifier signs. Each function symbol has an arity
k € N, and each operator sign ¢ has an arity (m,n) with m,n # 0 such that, for any sequence
Z1,...,Zy, of pairwise distinct variables, 0z ... T, is a compound operator or a quantifier with arity
n. Occurrences of z1,...,%m in 0T ... Ty are called binding variables. Each quantifier oz, ... Tnm,
as well as corresponding quantifier sign ¢ and binding variables z;...z,,, has a scope indicator
(k1,...,k;) to specify the arguments in which oz; ...z, binds all free occurrences of z1,...,Zm.
Terms are constructed from variables using functions and quantifiers in the usual way.

(2) Metaterms are constructed from terms, term metavariables, which range over terms, and
object metavariables, which range over variables. Apart from the usual rules for term-formation,
one is allowed to have metasubstitutions — expressions of the form (A;/ay, ..., An/an)Ao, where a;
are object metavariables and A; are metaterms. Metaterms that do not contain metasubstitutions
are called simple metaterms. An assignment maps each object metavariable to a variable and
each term metavariable to a term over ¥. If ¢ is a metaterm and @ is an assignment, then the
f-instance tf of t is the term obtained from ¢ by replacing metavariables with their values under
6, and by replacement of subterms of the form (¢1/z1,...,tn/zn)t by the result of substitution of
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terms ¢1,...,t, for free occurrences of zi,...,z, in t.

Definition 2.2 (1) A Combinatory Reduction System (CRS) is a pair (X, R), where ¥ is an al-
phabet, described in Definition 2.1, and R is a set of rewrite rules r : ¢ — s, where ¢ and s are
metaterms such that ¢ is a simple metaterm and is not a metavariable, and each term metavariable
which occurs in s occurs also in ¢. Further,

(a) The metaterms ¢ and s do not contain variables, and each occurrence of object metavariable
in t and s-is bound. '

(b) An occurrence of a term-metavariable A in s is in the scope of an occurrence of an object
metavariable a in s iff any occurrence of A in ¢ is in the scope of an occurrence of a in t.

(2) An assignment 6 is admissible for a rule r : t — s if occurrences of binding variables in s
corresponding to object metavariables of s not occurring in ¢ do not bind variables in subterms
corresponding to term metavariables of s. For any admissible assignment ', t§' is an r-redez, and
s is the contractum of t6. Redexes that are instances of the left-hand side of the same rule are
called weakly similar.

(3) R is simple if right-hand sides of R-rules are simple.

Remark 2.1 Terms o and e are called congruent, notation o £ e, if o is obtained from e by
renaming bound variables. The conditions in Definition 2.2 imply that, for any rule r : ¢t — s, if
6,0' € AA(r), then t0 = t0' implies s6 = sf'. Below we identify all congruent terms.

Notation We use a,b for object metavariables, A, B for term metavariables, c,d for constants,
t,s,e,o for terms and metaterms, u, v, w for redexes, o for operators and operator signs, and P, Q@
for reductions. We write s C t if s is a subterm of t. A one-step reduction in which a redex u in a
term ¢ is contracted is written as t — s or t — s. We write P : t - s if P denotes a reduction of
t to s. |P| denotes the length, i.e., the number of steps, of P. If the last term of P coincides with
the initial term of @, then P + @ denotes the concatenation of P and Q. @, or simply @, denotes
the empty reduction of a term ¢; the symbol @ is also used to denote the empty set.

Definition 2.3 A term ¢ in a CRS R is said to be in normal form (nf) or to be a nf if it does
not contain redexes. If s - ¢t and t is a nf, then ¢ is called a normal form of s. A term is called
weakly normalizable if it has a nf and is called strongly normalizable if it does not possess an infinite
reduction. A CRS R is called weakly normalizing (resp. strongly normalizing) if each term in R is
weakly normalizable (resp. strongly normalizable).

Definition 2.4 Let ¢ — s be a rule in a CRS R and 6 be an assignment. Subterms of a redex
v = tf that correspond to term metavariables of ¢ are the arguments of v, and the rest is the pattern
of v. Subterms of v rooted at the pattern are called the pattern-subterms of v. If R is a simple CRS,
then arguments, pattern, and pattern-subterms are defined analogously in the contractum sf of v.

Definition 2.5 A rewrite rule¢ — sina CRS R is left-linearif t is linear, i.e., no term metavariable
occurs more than once in t. R is left-linear if each rule in R is so. R is non-ambiguous or non-

overlapping if in no term redex-patterns can overlap. R is orthogonal (OCRS) if it is left-linear and
non-overlapping.

Definition 2.6 The CRS S comprises rules of the form
S™ a1 .. anAr ... AnA = (Ar/ay,. .., Anfan)A, n=1,2,...,

where S™*1 is the operator sign of substitution with arity (n,n + 1) and scope indicator (n + 1),
and a1,...,a, and A;,..., A,, A are pairwise distinct object and term metavariables, respectively.
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Definition 2.7 Let R = {r; : t; — s;|i € I} be a CRS.

1. Rf =ges {r} : t; — sj|i € I}, where s/, is obtained from s; by replacing all metasubstitutions of
the form (t1/ay,...,tn/an)t with S 1a; ... axt; . .. tat, respectively (S™t! is a fresh symbol
with the same arity and scope indicator as S™*1).

2. If R is simple, then Rfg =gef Rf =gy R. Otherwise R¢s =gey Ry U S, where S-rules are
obtained from S-rules by underlining the S-symbols.

3. For each step e = C[t;f] = C[s;0] = o in R (corresponding to the rule r; and an admissible
assignment 6) there is a reduction P : e = C[tif] — C[s}f] - C[sf] = o in Ryg, where
C[s'8] - C[sb] is the rightmost innermost normalizing S-reduction. We call P the ezpansion
of u and denote it by Ex(u). The notion of ezpansion generalizes naturally to R-reductions
with O or more steps.

Definition 2.8 1. Let t = s in a simple OCRS and e be the contractum of » in s. For each
argument t* of u there are 0 or more arguments of e. We call them (u—)descendants of t*.
Correspondingly, subterms of t* have 0 or more descendants. The descendant of each pattern-
subterm of u that is not a variable is e. (We do not define descendants of “variable pattern-
subterms”, which are binding variables). It is clear what is to be meant under descendants of
subterms that are not in u. The notion of descendant extends naturally to arbitrary reductions
in simple OCRSs.

2. Let t = s, where u = Szi...Znt1...tato, and let e be the contractum of u in s. For each
mobile argument ¢; of u (¢ = 1,...,n) there are substituted occurrences of ¢; in e. We call
them u-descendants of t;. By definition, they also are u-descendants of corresponding free
occurrences of the variable z; in ¢y. Subterms in ¢; have the same number (possibly none) of
descendants in s. The descendant of u is e. It is clear what is to be meant under descendants
of subterms that are not in u, or are in t and are not free occurrences of variables z1, . .., Tp.
The notion of descendant extends naturally to S-reductions with 0 or more steps.

3. Let P:t—» sin an OCRS R and let Q = Ez(P). It is clear from (1) and (2) what is to be
meant under ()-descendants of subterms in t. We call a subterm o' € s a P-descendant of a
subterm o € t if o’ is a Q-descendant of o, and call o in this case a P-ancestor of o'.

4. Let t = s. Descendants of all redexes of ¢ except u are also called residuals. By definition, u
does not have residuals in s. A redex v C s is a (u)-new redex or a created redex if it is not
a residual of a redex in ¢. The notion of residual of redexes extends naturally to reductions
with 0 or more steps.

Definition 2.9 We call the co-initial reductions P : ¢t -» s and Q : t —» e strictly equivalent (written
P =~ Q) if s = e and P-descendants and @-descendants of any subterm of ¢ are the same in s
and e.

Notation If F is a set of redexes in ¢t and P : t —» s, then F/P denotes the set of all residuals
of redexes from F in s. If F = {u}, then we write u/P for {u}/P. In the following, F will also
denote a complete F-development, where the residuals of redexes from F are contracted as long as
possible. Similarly, if u € ¢, then u will also denote the reduction ¢t = s.

Definition 2.10 Let Q : t - s and ¢t — e. Then the residual Q/u of @ by u is defined modulo
permutation of non-overlapping steps by induction on |Q)| as follows. If Q@ = @;, then Q/u = 0. If

Q=Q +v, then Q/u=Q'/u+v/(v/Q').
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Definition 2.11 Let P:t —» s and Q : t —» e. Then the residual P/Q of P by @ and the residual
Q/P of Q by P are defined modulo permutation of non-overlapping steps by induction on |P| as
follows.

(1) If P = {;, then P/Q =0, and Q/P = Q.

(2) If P=P +u, then P/Q =P /Q+u/(Q/P') and Q/P = (Q/P')/u.
We write PLU @ for P+ Q/P.

Theorem 2.1 (Strict Church-Rosser [9]) Let R be an OCRS, and P and @ be co-initial reduc-
tions in R. Then PU Q =, QU P.

3. SIMILARITY OF REDEXES

In this section, we study some properties of substitutions and similarity of terms. In particular
we prove the Replacement Lemma, the Essential Similarity Lemma, and the Uniform Generation
Lemma.

Definition 3.1 We call an OCRS R a Higher Order Recursive Program Scheme (HRPSs) if, for
any rule t — s, pattern of ¢ consists of one operator, i.e., t has the form oa;...amnA; ... A,, where
o is an operator sign with arity (m,n) (o is a function if m,n = 0).

Definition 3.2 Let ¢ be a term in an OCRS R. We call a subterm s in ¢ essential (written ES(s, t))
if s has at least one descendant under any reduction starting from t and call it inessential (written
IE(s,t)) otherwise.

The notion of essentiality is a generalization of the notion of neededness [6, 15] in a way that it
works for all subterms, bound variables in particular. (See [10] for the precise relationship between
the notions). The following two lemmas are valid for all OCRSs; the proofs are similar to the case
of orthogonal TRSs [10].

Lemma 3.1 Let sg,...,8; C t be such that IE(s;,t) for all ¢ = 0,...,k. Then there exists a
reduction P starting from ¢ such that none of the subterms sq,..., sy have P-descendants.

Proof Let P; be a reduction starting from ¢ such that s; does not have P;-descendants (P; exists
since IE(s;,t)). Then, by Theorem 2.1, one can take P = (... (P UP)U...UPR,).

Lemma 3.2 Let P: ¢ —» t' and s C t. Then IE(s,t) iff any P-descendant s’ of s is inessential in
t'. In particular, if ¢’ is a normal form, then ES(s,t) iff s has a P-descendant.

Proof (=) Let IE(s,t). Then there is some reduction @ starting from ¢ such that s does not have
@-descendants. By Theorem 2.1, P+Q/P =, Q+ P/Q. Hence, s’ does not have P/Q-descendants,
ie., IE(s,t'). («) If all u-descendants of s are inessential in ¢/, then, by Lemma 3.1, there is some
reduction P’ starting from t' under which none of them have descendants. Thus s does not have
P + P'-descendants, i.e., IE(s,t).

Definition 3.3 We call a CRS R’ a subsystem of a CRS R if the alphabet of R’ is a subset of the
alphabet of R and the set of R'-rules is a subset of the set of R-rules.

Notation Below EFVg(t) denotes the set of variables having R-essential free occurrences in ¢t and
FV (s) denotes the set of variables having free occurrences in s. We write t = (t1//e1,...,tx//ex)e
if t is obtained from e by replacing non-overlapping proper subterms ey, ...,e, in e with t1,..., t,,
respectively. For any s C t, BVg(s) (resp. EBVg(s)) denotes the set of free occurrences (resp.
R-essential free occurrences) of s bound by quantifiers belonging to patterns of R-redexes that
are outside s. For any subsystems R; and Ry of R, EBVpg, g,(s) is the set of Rp-essential free
occurrences of s that are bound by quantifiers belonging to patterns of R;-redexes that are outside s.
(Note that EBVpg g(s) = BVgr(s) and EBVg r(s) = EBVg(s).)



3. Similarity of redexes 8

Definition 3.4 (1) Let 0a;...anA;... Ay, be the left-hand side of a rewrite rule 7 in an HRPS R
andlet 0z ... Znt1 ...ty be an r-redex. The characteristic system of u (written CS(u)) is the set of
pairs (a;, A;) such that t; is in the scope of o and z; € FV(¢;) (i =1,...,m, j=1,...,n). In this
case, u is an (r,CS(u))-redex. A characterized rule (C-rule for short) is a pair (r,CS(r)), where
CS(r) is a characteristic system for some R-redex. For any subsystem R’ of R, an R'-essential
characteristic system of u (written ECSg (u)) is the set of pairs (a;, A;) such that ¢; is in the scope
of o and z; € EFVg/(t;). In this case, u is an (r, ECSg(u))-redez. An R'-essentially characterized
rule (EC-rule for short) is a pair (r, ECSg/(r)), where ECSg/(r) is an R'-essential characteristic
system for some r-redex. (We omit the subscript R' if R = R'.)

(2) Let t = (t1//e1,. .. tk//ex)e. We write e <g t (resp. e <<g t) if BVg(e;) C BVg(t:) (resp.
EBVpg(e;) C EBVg(t;)) foralli =1,...,k. We call the terms ¢ and e R-similar (resp. R-essentially
similar), written e ~g t (resp. e ®g t),if s <gp t and t <g s (resp. s «<gp t and t «<g s). We
write e <Rg,,r, t if EBVR, r,(e;) C EBVR, R,(t;) for all ¢ = 1,...,k, and write e ~pg, g, t if
e <Rr,,R, t and t <g, g, e. In the latter case, we call e and t (R;, Rp)-essentially similar. (Note
that <pg coincides with <gp and <<r coincides with <g g; therefore, R-similarity coincides with
(R, 0)-similarity and R-essential similarity coincides with (R, R)-similarity.)

Of course, (essential) similarity of terms depends on the specification of the replaced subterms.
Note that, for any weakly similar R-redexes v and wu, if one specifies replaced subterms to be the
arguments of the redexes, then v < u (resp. v <« u) iff CS(v) C CS(u) (resp. ECSg(v) C
ECSg(u)). Below, when we speak of (essential) similarity of redexes without specifying replaced
subterms, we mean that the replaced subterms are the arguments of the redexes; we write qu,

v-<r-<u, veu, and vau for v < u, v << u, v ~ u, and v = u, respectively, to stress the fact that the
replaced subterms are specified to be arguments of the redexes.

3.1 The Replacement Lemma
Definition 3.5 Let u = Sz1 ...zt ... tato and t be an S-normal form of ¢3. A subterm e in u
is called u-inessential (written I E(u;e)) if e is in ¢; for some 1 < i < n and z; € FV(tp).

Lemma 3.3 Let u= Sz1...Znt1...thto C t. Then IEg(u;t;) iff z; € EFVg(to).
Proof By Lemma 3.2, if t{ is the S-normal form of ¢, then EFVg(to) = FV(tp).

Lemma 3.4 Let s Ct. Then IEg(s,t) iff IEg(u;s) for some S-redex w in t.
Proof sketch One can take for u the redex whose residual erases all descendants of s in the
rightmost innermost normalizing S-reduction.

Lemma 3.5 Let e C s Ct. Then ESs(e,t) iff ESg(e, s) and ESg(s,t).
Proof (=) From Definition 3.2. (<=) By Lemma 3.4, the redex that would make e inessential can
neither occur in s nor contain s in its argument.

Lemma 3.6 (Replacement Lemma) Let s = (s1//t1,...,8n//tn)t, where s; and ¢; do not con-
tain S-redexes, and let t <g s. Further, let s’ and t’ be any corresponding subterms in s and ¢ that
are not in replaced subterms. Then IEg(s’,s) = IEg(t,t).

Proof By induction on the length of s. If ¢t and s are not S-redexes, then the lemma follows
easily from Lemma 3.4 and the induction assumption. So suppose that t = Sz;...zme1...eneo,
8 = S8T1...Tp,01...0m00, 8 C o, and IEg(s',s). If IEs(s',0;), then by the induction assump-
tion IEg(t',e;) and hence IEg(t',t). Otherwise, by Lemma 3.5, we have IEg(o;,8). Hence, by
Lemma 3.4, IEs(s;0;). Thus, by Lemma 3.3, z; € EFVg(0p). Let us show that z; ¢ EFVg(eo).
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By the induction assumption, if 2; has an S-essential occurrence in ey outside of replaced subterms,
then the corresponding occurrence of z; in og is S-essential. If z; has an S-essential occurrence in
a subterm t; C eg, then, by Lemma 3.5, ESs(t;,e0). By the induction assumption, ESs(s;,0p).
Since ¢; <5 s;, 7; has a free occurrence in s;. Since s; does not contain S-symbols, it follows from
Lemma 3.4 that this occurrence is S-essential in s; and hence, by Lemma 3.5 and ESs(s;,0p), is
S-essential in og. Hence z; € EFVg(eg) and, by Lemma 3.3, IEg(t; ¢;). Therefore, by Definition 3.5
and Lemma 3.4, [Es(t;t') and IEs(t,t).

3.2 The Essential Similarity Lemma
In this subsection we only consider HRPSs.

Definition 3.6 Lett = (t1//s1,...,tx//sn)sandlet P: s =ey =3 e; = ...in R;. Let us construct

the reduction P||(t) : t =09 =3 0; 3 ... in Ry as follows. If vy is outside si,...,8p, then ug is
its corresponding redex in op. Otherwise ugp = 0. Since o; is obtained from e; by replacing the
descendants of si,..., s, with t1,...,t,, respectively, in 0; we can choose the redex u; analogously,
and so on.

Lemma 3.7 Let t = (t1//s1,...,ta//5s)s, let P:s —» s’ in Ry, and let Q = P||(t) : t - t'. Then
t' can be obtained from s’ by replacing the descendants of sq,...s, with t1,...,%,, respectively,
and if e and o are corresponding subterms in s and t, then the P-descendants and @-descendants
of e and o are the corresponding subterms of s’ and ¢'.

Proof By induction on |P|.

Notation Recall that, if F' is a set of R-redexes in a term t, then a complete F-development of
t is a reduction that contracts residuals of redexes from F' as long as possible. Below Fgr denotes
a complete F-development in R, F; denotes a complete F-development in Ry, and Fs denotes a
complete development of the set of S-redexes created during Fy. If F' consists of one redex u only,
then we write ug, uy, and us for Fg, Ff, and Fg, respectively.

Lemma 3.8 Let F' be a set of R-redexes in a term ¢t. Then Fg =, Ff + Fys.

Proof By induction on number n of redexes in F. The case n = 0 is trivial. So let F = F' U {u},

where u is an outermost among redexes in F. Then Fg =, Fp+ uly (where v’ = u/Fg) =4 (by the

induction assumpt10n)~st F + FS + up Ryt F’ +up+ Fs /ug (where u” is the unique ancestor of
u') =g Ff+uf + us + FS/uR ~st Fy +uS+FS/uR ~q Ff + Fs.

Fy Fs

y
Y
y

Ff v 0 u’;

IS
)

A

Fg/ug
Lemma 3.9 (Representation Lemma) Let R be an HRPS.
(1) For any R-reduction P :t —pg s there are @ : s »g e and P’ : t »p, o such that P+ Q =~

P' + P", where P" is a normalizing S-reduction starting from o.

(2) If Pf : t »p, s and Ps is a normalizing S-reduction starting from s, then there is an
R-reduction Pg such that Py + Pg =, Pg.
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Proof (1) By induction on [P|. Let P = P* + u. By the induction assumption, there are R-
reduction Q*, Rs-reduction Pj, and a normalizing S-reduction Q; such that P* + Q" =4 P+ Q.
Let F be the set of all Q*-residuals of u and let F” be the set of their Q;-ancestors for which redexes
from F' are residuals (S-reduction steps do not create new redexes). Then, Fp+Q1/Fp =5 Q1+ Fr.
By Lemma 3.8, FII{ = F}-{-Fé Thus P1+F}-+Fé+Q1/FIIQ Rst PP+ Q1+ Fr=~s P*+Q*+ Fr =~y
P*+u+Q*/u= P+ Q*/u and we can take Q = Q*/u, P' = P, + F}, and P" = Fg + Q1/Fp,.

P* u
Py Q*
Q" /u
A 4
Y @ Y
FY &
4 Y
Y N
Q1/Fg

(2) By induction on |Pf|. The case |Pf| = 1 is immediate. So let Ps it » e>s and let
P} : t - e be the initial part of Py. By the induction assumption, there is an R-reduction Pk
such that Pp = P} + Pé. Hence Py + Pg =~ P} + uy + Pg =t P} + Pé + Ff + Fg (where F is
the set of residuals of u under Pg) =, (by the induction assumption) ~; Pp + Ff + Fg =g (by
Lemma 3.8)~,; Py + Fg, and we can take Pg = P§ + Fp.

Remark 3.1 It is easy to see that the reduction @ in the Representation Lemma contracts the
redexes that belong to the “families” [14] of redexes contracted by P.

Corollary 3.1 (1) (Erasure Lemma) Let R be an HRPS. Then IEg(s,t) iff there is an Ry-
reduction P : t — e such that all P-descendants of s in ¢’ are S-inessential.
(2) Let t - e in Ry. If ESg(s,t), then s has an R-essential descendant in e.

Lemma 3.10 Let s = (s1//t1,...,8n//tn)t, let t <R s, and let s’ and t' be any corresponding
subterms of s and ¢ that are outside of replaced subterms. Then IEg(s',s) = IEg(t,t).

Proof Let IEg(s',s). By the Erasure Lemma, there is an Rj-reduction P : s — e such that
all P-descendants of s’ are S-inessential. Let P||(t) : ¢ - o in R;. Further let s!,. ..sf" be the
enumeration of all P-descendants of s; from left to right and let ¢}, ... tf" be the enumeration of all
P||(t)-descendants of ¢; from left to right (i = 1,...,n). By Lemma 3.7, 0 is obtained from e by
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replacing sJ with ¢ (subterms s’ and t'7 are disjoint, t? =¢;, and 8; - & 7). By Lemma 3.1, there
are R-reductions sj —» s’ and tJ- — 37 such that none of R-inessential free variables of s’ and t’
that are bound by (outmde) S-operators have descendants in s"‘J and ¢; *7_ Let ¢’ and o' be obtained
from e and o by replacing s} and #/ with s}’ and ¢ *J respectively. Since t <<g s, it follows from
the conditions (a)-(b) in the Deﬁmtlon 2.2 that o <grus,r €; in particular, o <g,r €. Hence, it
follows from EBVg p(s!) = EBVsy(s) = BVs(s}’) and EBVs p(t]) = Eng,m(t;‘j) = BVs(t})
that o’ <gg €, i.e., o' <5 €'. Since BVs(s*j) - BVs(sj) we have also that e’ <g e. Thus, by the
Replacement Lemma, all descendants of s’ in €’ are S-inessential and hence all descendants of t' in
o' are S-inessential. Hence, again by the Erasure Lemma, IEg(t', t).

Corollary 3.2 (Essential Similarity Lemma) Let s = (s1//t1,...,5.//tn)t, t =g s, and let &'
and t' be any corresponding subterms of s and ¢. Then IEg(s', s) iff IEg(t',t).

Corollary 3.3 Corresponding arguments of essentially similar redexes are either both essential or
both inessential.

3.3 The Uniform Generation Lemma

In this subsection we prove the Uniform Generation Lemma; the Essential Generation Lemma
and the Generation Lemma are its immediate corollaries. The lemma establishes relation between
similarity of redexes and generation of redexes in HRPSs.

Lemma 3.11 Let t=s in R and let v C s be a residual of a redex u C t. Then uéRv.

Proof It is easy to see that if u C w, then v = uf for some substitution 6; no free variables
are bound in substituted subterms after the substitution. Therefore, it follows from the Essential
Similarity Lemma that in this case uR rv. If uw and w do not overlap, then u = v. Otherwise, if
w C u, then U grv follows from Lemma 3.2.

Lemma 3.12 Let eg C sg C to, P : tg=3t1=>... — t,, and let 8;41 C t;4+1 be a u;-descendant of
8; Ct; (i=0,...,n—1). Then there is a reduction Q : 0p = 3030123 ... — oy, such that s; = 0;6;
for some substitution §; and the descendants of eg in s; and o; are corresponding occurrences.

Proof By induction on |P|. The case |P| = 0 is obvious. Suppose that ox; = si. If ux and s do
not overlap, then we take vy = 0 and 0y = x4+ (since sg = Sg+1). If ug is in a substituted subterm
of si, then again we take vy = 0, and take a corresponding substitution 6i4;. If ux contains s,
then again vy = @ and 641 = 6,0 for some substitution 6. Finally, if ux C sx and is outside of the
substituted subterms, then we take as vy, the corresponding redex of uy in ok, and take 8 = O41.

Lemma 3.13 (1) Each outermost redex in a term ¢ is essential.

(2) ES(e,t) iff ES(s,t) and ES(e, s).

(3) IE(e,t) iff e is in an inessential argument of an essential redex u of .
Proof (1) From Definition 3.2.

(2) (=) From Definition 3.2. («) By Lemma 3.12, IE(e,t) and ES(s,t) would imply 1E(e, s),
a contradiction.

(3) (=) Since IE(e,t), e is inside an outermost, hence essential, redex. Let u be the innermost
essential redex containing e in an argument s. Then ES(s,u) would imply by (2) that IE(e, s),
and the outermost redex of s that contains e would be essential in ¢ by (2), contrary to the choice
of u. («) By (2).
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Lemma 3.14 (Uniform Generation Lemma) Let R be an HRPS, R’ be a subsystem of R, u
and v be R-redexes, U< RV, u—0, and v—e. If there is an R'-essential R-redex w in o created by
u, then e contains an R'-essential R-redex w’, created by v, such that W< rw'.

Proof Let o' and €’ be contracta of u and v in Rs. Then ¢’ is obtained from o’ by replacing the
descendants of arguments of u with corresponding descendants of arguments of v. Since the replaced
subterms do not contain S-redexes (and R'-essentiality coincides with R’ U S-essentiality), it follows
from conditions (a)-(b) of Definition 2.2 that o’ <<sur' €'. Let w; be the ancestor of w in o' and ws
be the corresponding redex of w; in ¢’. By Lemma 3.10 and o' <«<gup' €', ESsur(w1,0') implies
that ESsyr (we,€’). Therefore, wy has an R'-essential residual w’ in e’ (where again R'-essentiality
coincides with R’ U S-essentiality).

Let w; = oz1...2401...0m and wy = 0Y1...Yk€1...m. Let o; be in the scope of ¢ and z}
be an occurrence of z; in o; that is R' U S-essential in o;. If z} is outside the replaced subterms,
then its corresponding occurrence of y; in e; is R' U S-essential in e; by Lemma 3.10. If z; is in a
replaced subterm t*, then, by Lemma 3.13, t* is R’ U S-essential in 0j, its corresponding replaced
subterm s* is R’ U S-essential in e; by Lemma 3.10, and, again by Lemma 3.13, each occurrence of
¥ in s* that is R' U S-essential in s* (there exists one because o' «<gup €') is R' U S-essential in

e; as well. Thus w; +T<§U31w2. Hence, by Lemma 3.11, W< rw' (since, in e and o, R'-essentiality
coincides with R’ U S-essentiality).

Corollary 3.4 (Essential Similarity Lemma) Let R be an HRPS, uAs RV, u—0, and v—>e. Then
there is an R-essential redex w in o created by u iff there is an R-essential redex in e, R-essentially
similar to w, created by v.

Remark 3.2 If s = (s1//t1,...,8,//ta)t and s = t, then it follows from the Essential Similarity
Lemma that corresponding redexes of s and ¢ (that are outside of the replaced subterms) are
essentially similar (when replaced subterms are specified to be the arguments of the redexes). The
converse is not true in general: consider the redexes u = ozg(y, z) and v = ozg(z,z) in a system
R = {0aA — ...}; then u %g v when v = (z//y)u, while u~gv. However, it follows easily from
Lemma 3.13 and Corollary 3.2 that the Essential Similarity Lemma remains valid if the condition
t = s is replaced by a weaker condition that, for any corresponding redexes w and w’ in ¢ and s,
wAw'. Similar remark is valid for Lemma 3.10.

4. DECIDABILITY OF WEAK NORMALIZATION IN HRPSs
In this section we further study (only) HRPSs. In particular, we construct a decision algorithm for

weak normalization. The following definition is crucial; its correctness follows from Corollaries 3.3
and 3.4.

Definition 4.1 (1) We call a sequence of EC-rules (ro, ECS(r9)), (r1, ECS(r1)),... an essen-
tial (ro, ECS(ro))-chain if an essential (r;y1, ECS(r;41))-redex is created by contraction of any
(riy ECS(r;))-redex. For any (rg, ECS(ro))-redex u, we also call an essential (rg, EC'S(rg))-chain
an essential u-chain.

(2) Let (r, ECS(r)) be an EC-rule and u be an (r, ECS(r))-redex. We call the sequence of
numbers of essential arguments of u the essentiality indicator of (r, ECS(r)) and of u.

Lemma 4.1 A term t is weakly normalizable iff any essential chain of any essential redex in ¢ is
finite.

Proof (=) Consider an infinite essential chain (rg, ECS(ro)), (r1, ECS(r1)),... of an essential
redex in t. We show by induction on i that (a);: for any reduction P : t = tg=3¢;23... and for
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each i < |P| there is a k; such that ¢; contains an essential (ry,, ECS(r,))-redex. (a)o is obvious.
If u; is an essential (rg,, ECS(rk,))-redex, then it follows from Lemmas 3.2 and 3.13.(2) that t;4;
contains an essential (7g, 41, ECS(rk+1))-redex. Otherwise, by Lemmas 3.2 and 3.11, any essential
(T, ECS(ry;))-redex in t; has an essentially similar essential residual in #;+;. Thus (a); holds
for all 4, and t is not normalizable. (<=) For any (r, ECS(r))-redex u, let the weight of u be the
length of a longest essential (7, ECS(r))-chain. Since the contraction of any essential redex creates
essential redexes only with smaller weights, a reduction that in each step contracts an innermost
redex among essential ones with maximal weight terminates in a normal form.

Lemma 4.2 Let ¢ be a term in an HRPS R and essentiality indicators of all EC-rules in R be
known. Then one can find all inessential subterms in ¢ using the following

Algorithm 4.1 Choose in ¢ an innermost redex; find its essential characteristic system (which
coincides with its characteristic system); underline its inessential arguments; and mark the redex
itself. Now choose in ¢t an unmarked redex that only contains marked redexes; find its essential
characteristic system (only occurrences that are in the underlined subterms are inessential); under-
line its inessential arguments; mark the redex itself; and so on, as long as possible. Then exactly
occurrences that are in underlined subterms are inessential in ¢.

Proof From Lemma 3.13.

Definition 4.2 Let (r, ECS(r)) be an EC-rule,let r: t =0ay...anA;1... Ay — B, and let 6 be
an admissible assignment such that A;0 is in R-normal form and ECS(t§) = ECS(r). Then we
call r@ : t0 — s6 a trivial ECS(r)-instance of r.

Lemma 4.3 Let (r1, ECS(r1)),...,(r, ECS(r;)) be all EC-rules in an HRPS R and r;6; : t;6 —
s;0 be a trivial ECS(r;)-instance of r; : t; — s; (1 = 1,...,1). Then the essentiality indicators of
the EC-rules in R can be found using the following

Algorithm 4.2 Find, for each i, all arguments of ¢;0; that do not have descendants in s;0;. Let
the corresponding arguments of any (r;, ECS(r;))-redex be O-inessential. Let the 0-essentiality
indicator of (r;, ECS(r;)) be the list of numbers of arguments of any (r;, ECS(r;))-redex that
are not O-inessential. Apply Algorithm 4.1 to the right-hand sides of all EC-rules of R using 0-
essentiality indicators of EC-rules instead of essentiality indicators. Let the 1-inessential arguments
of ¢;0; be all arguments whose descendants in s;0; are in underlined subterms (¢ = 1,...,1). Let
the corresponding arguments of any (r;, EC'S(r;))-redex be 1-inessential, and let the 1-essentiality
indicator of (r;, ECS(r;)) be the list of numbers of arguments of any (r;, ECS(r;))-redex that are
not l-inessential. Apply again Algorithm 4.1 to the right-hand sides of all EC-rules of R using
1-essentiality indicators of EC-rules instead of essentiality indicators; and so on. The algorithm
stops after ng steps if no-essentiality indicator of each EC-rule in R coincides with its (ng — 1)-
essentiality indicator. Let the np-inessential arguments of R-redexes be inessential*. Then the
essentiality indicator of (r;, ECS(r;)) coincides with the list of non-inessential* arguments of ¢;6;.

Proof An easy induction on n shows that n-inessential arguments of each redex are inessential; the
case n = 0 follows from Corollary 3.3, and the induction step follows from Lemmas 4.2 and 3.2. Now
let us prove by induction on & that if, for an EC-rule (r;, ECS(r;)), there is an (r;, ECS(r;))-redex
u whose j-th argument s; (is inessential and) does not have descendants under some reduction P
with a length |P| < k, then the j-th argument e; of t;6; is inessential*. The case k = 1 is obvious.
So suppose P : u—o0 — e. Let s;- be a descendant of s; in o, and let v be the minimal redex that
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contains s’ and has a descendant in e. Suppose that v is an (T, ECS(ry,))-redex and s} is in its p-
th argument. By Lemma 3.12, there is a reduction Q starting from v with a length less than k, such
that the p-th argument of v does not have Q-descendants. Hence, by the induction assumption,
the p-th argument of ¢, is inessential*. Similarly, any descendant of s; in o is in an inessential*
argument of some redex. Since CS(t:6;) = ECS(t:6;) = ECS(u) C CS(u), for any descendant e}
of e; there is a descendant s} of s; in o that is not in an inessential argument of a non-created
redex and such that, for any ¢ =1,...,l, €} is in an argument of an (ry, ECS(ry))-redex iff s} is
in the corresponding argument of a crea.ted (rq, ECS(rq))-redex. Hence, any descendant of eJ in
s;0; is in an inessential® argument of some redex, and e; itself is inessential*.

Algorithm 4.2 can be illustrated by the following example.
Example 4.1 Let us consider an HRPS R with the following rules:
oa(A, B) — (eaA/a)B
daA — ga(A, f(A))
f(A) — g(A, A)
g(A, B) — const
where a is an object metavariable, A, B are term metavariables, f, g are function symbols, o, €, and
6 are quantifier signs with arities (1,2), (1,1), and (1, 1), and binding scopes (1,2), (1,1), and (1, 1),
respectively. The rule for o has four trivial ECS-instances r; : oz(z,z) — (ezz/z)T = ezz, T3 :
oz(z,y) — (ezz/z)y =y, r3 : 0z(y,2) — (exy/z)z = exy, and r4 : 0z(y,y) — (exy/z)y = y with
ECSs {(a,A),(a,B)},{(a,A)},{(a, B)}, and {}, respectively. Similarly, we can choose trivial

ECS-instances of the rules for 4, f, and g: rs : dxz — ox(z, f(z)), re : bzy — oz(y, f(y)), r7 :
f(z) — g(z,z), and rg : g(z,y) — const. The result of Algorithm 4.2 is then as follows:

r1:oz(z,z) — (exz/T)T = exT

0
ro:oz(Tz y) — (exz/T)y =1y
r3:0z(y,z) — (exy/z)z = exy
0
~~
re:0z("y L y) = (exy/z)y =y
2
~~
15 : 67 T — 0x(Zy3, f(Z2,3))
2
A~
T : oz y — ‘7-'1"(312,3, f(:’ig’g))
1
A~
r7: f(Cx7) = 9(z1,23), Z12,3))
0 0
et
rg:9("z "y ) — const

i
where ~~~ indicates that corresponding subterms are i-inessential and subscripts j in underlined
subterms indicate that the underlining was made while running Algorithm 4.1 for the j-th time.
The 3-essentiality indicators of all the EC-rules in R coincide with their 2-essentiality indicators, so
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it is enough to run Algorithm 4.1 three times. Note that, for example, the ECS of the right-hand
side oz(z, f(z)) of rs5 used while running Algorithm 4.1 for the second time is a proper subset
of ECS of oz(z, f(z)) used while running Algorithm 4.1 for the first time, and this makes it
possible to determine that the argument z of the left-hand side ézz of 75 is 2-inessential, and hence
inessential. By Lemma 4.3, essentiality indicators of EC-rules in R coincide with the numbers of
non-overbraced arguments of corresponding trivial instances.

Theorem 4.1 Weak normalization is decidable in HRPSs.
Proof From Lemmas 4.1, 4.2, and 4.3.

Corollary 4.1 HRPSs do not have full computational power.
Proof The existence of an interpreter for, say A-calculus, in an HRPS would imply decidability of
weak normalization for A-terms, which is not valid [3].

5. PERSISTENT SYSTEMS

Without restricting the class of OCRSs we can assume that in right-hand sides of rewrite rules
the last argument of each metasubstitution is a term-metavariable or a metasubstitution. For
example, we can replace the metasubstitution f((B/a)g(A)) by the equivalent metasubstitution
f(g((B/a)A)). Using this convention, we can define the following persistent systems.

Definition 5.1 Let R be an orthogonal CRS.

(1) Let t->s, let t — t' — s be its expansion, let o C ¢’ be the contractum of u in Ry, and let
v be a new redex in s. We call v generated if v is a residual of a redex w of t' whose pattern is
in the pattern of 0. We call v uniformly generated if the pattern of w is in the pattern of o and is
not inside an S-redex. We call v quasi-generated if any of its pattern-subterms is a descendant of
a pattern-subterm of o that is not an S-redex.

(2) We call R respectively persistent (PCRS), uniformly persistent, or quasi-persistent if, for any
R-reduction step, each created redex is generated, uniformly generated, or quasi-generated.

(3) We call R strongly persistent if Ryg is persistent.

A quasi-persistent CRS R = {r; : 0aA — f((d/a)A), r2 : f(d) — c} that is not persistent was
considered in the introduction. The CRS R; = {3aA — g((raA/a)A), f(rac) — d}, where c and d
are constants, is an example of persistent system (no redex creation is possible in R;) that is not
strongly persistent.

The following is a characterization of HRPSs in terms of redex creation.

Proposition 5.1 A non-simple OCRS R is strongly persistent iff it is an HRPS.

Proof If R is not simple, then R¢g contains S-rules. If R is not an HRPS, then there is a redex
containing at least two function symbols in its pattern, and it can be created during an appropriate
S-step. (For example, if u = f(g(a)) is a redex with f, g in the pattern, then Sz g(a) f(z) — u.)
Hence any non-simple strongly persistent CRS must be an HRPS. The converse is obvious.

We call a subterm s in t free if s is not a proper pattern-subterm of a redex in t. It is easy
to see that all free subterms remain free under any reduction in PCRSs. This fails already for
quasi-persistent systems: in the quasi-persistent CRS R = {r; : 0aA — f((d/a)A), r2: f(d) — c},
the argument z is free in the redex ozz, while its descendant d under the contraction of ozz
is a pattern-subterm of the created redex f(d). All properties of similar and essentially similar
terms in HRPSs are valid because all subterms are free in HRPSs. Therefore, it is not difficult to
check that this properties remain valid for all PCRSs if in the definition of similarity and essential
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similarity one requires the replaced subterms to be free. Since in PCRSs arguments of all redexes
are free, one can analogously define essentiality indicators and essential chains for FC-rules in
PCRSs. Algorithms 4.1 and 4.2 work also in PCRSs. Hence we have the following theorem.

Theorem 5.1 Weak nofma,lization is decidable in persistent CRSs.

Lemma 5.1 Let R be a persistent CRS, u-r<v, u—o0, and v—>e. If there is a redex w in o generated
by u, then e contains a redex w’, generated by v, such that w=w'.

Proof The proof of Lemma 3.14 remains valid (after some minor changes) for the case of persistent
CRSs. Hence it is enough to take R' = 0.

Corollary 5.1 (Generation Lemma) Let u and v be similar redexes in a persistent CRS. Then
u and v generate similar redexes.

Definition 5.2 We call a sequence of C-rules (rg, CS(rg)), (r1,CS(r1)),... an (rg, CS(rg))-chain
if an (ri+1, CS(ri+1))-redex is generated by contraction of any (r;, CS(r;))-redex (1 = 0,1,...). For
any (rg, CS(ro))-redex u, we also call an (rg, CS(rp))-chain a u-chain.

Lemma 5.2 A term ¢ in a PCRS R is strongly normalizable iff all chains of redexes in ¢ are finite.

Proof (=) Immediate. (<) Let P: ¢ = to=3¢,-5 ... be an infinite reduction. Let us call a redex
u, C t, a son of uy C to if there are redexes uj C ¢t; (¢ = 1,...,n — 1) such that either u,, is
a residual of u] or u; = v; and u,, is generated by u;. Since in P only redexes from t and their
sons are contracted, there is at least one redex ug C to such that infinitely many sons of ug are
contracted in P. Let vg be a residual of ug that is contracted in P and infinitely many sons of
which are contracted in P. Then vy generates a redex u; whose infinitely many sons are contracted
in P. By analogy, u; has a residual v; contracted in P that generates a redex us whose infinitely

many sons are contracted in P, and so on. Obviously, voguo. Thus by Lemma 5.1, ug generates a
redex wy such that u; le. Further, v; -T<u1 le. Thus, again by Lemma 5.1, w; generates a redex

wy such that ug-r<w2. By analogy we can show that ws generates a redex ws such that u32w3, and
so on. Thus, ug has an infinite chain.

Corollary 5.2 Strong normalization is decidable in persistent CRSs.

Obviously, a PCRS R is weakly (resp. strongly) normalizing iff all essential chains (resp. all
chains) in R are finite. Thus it is decidable whether R is weakly (strongly) normalizing.

Remark 5.1 Let R be a persistent CRS and R’ be a subsystem of R. We call an R-redex u
ECSgi-complete if each binding variable of a quantifier belonging to the pattern of v has an R'-
essential free occurrence in all arguments that belong to its binding scope. It is easy to check that
ECSp-complete redexes generate ECSpg-complete redexes (this follows from conditions (a)-(b)
of Definition 2.2 and Lemma 3.13). By Lemma 3.14, if u and v are weakly similar redexes such
that ECSg (u) € ECSp(v) and u generates a redex u, then v generates a redex v’ such that
ECSp(u') C ECSg(v'). Therefore, any R-essential chain (resp. any chain) of a redex w is a
subsequence of an R-essential chain (resp. chain) of an ECSg-complete (resp. ECSy-complete)
redex that is weakly similar to w. Thus, in order to establish weak (strong) normalization of a
persistent CRS, it is enough to check essential chains (chains) of ECSg-complete (EC Sg-complete)
rules only.



6. Optimal normalization in persistent CRSs 17

6. OPTIMAL NORMALIZATION IN PERSISTENT CRSs

Theorem 6.1 Let ¢ be a term in a uniformly persistent CRS. Contraction of innermost essential
redexes gives a reduction of ¢ to normal form with the least number of steps, whenever the normal
form exists.

Proof Let P:t=1t;38... > t, bea normalizing reduction starting from t and Q : t = sg =3 s; >
... be an innermost essential reduction. It is enough to assign a number n; < n to each i < |Q| in
such a way that 7 # j implies n; # n;. We show by induction on 7 that there is a number n; < n
such that ES(un,,tr;), uniévi, and i # j implies n; # n;.

(1) Let i = 0. Since vy is essential in ¢ and t,, is a normal form, it follows from Corollary 3.2 that
at least one essential residual of vy is contracted in P. Thus we can take as ng a number such that
Upn, 15 an essential residual of vg. By Lemma 3.11, 'Uoguno-

(2) Suppose that, for each i < m, we have already defined n; < n such that ES(up,,t,,) and
uniévi, and assume that ¢ = m. Consider two possible cases: (a) v, is a residual of a redex v’ C ¢.
It follows from ES(vm, Sm) and Lemma 3.2 that ES(v',t). Thus, as before, there is a number n,,

such that uy,, is an essential residual of v/, and v ~un,, by Lemma 3.11. (b) There is a number &
such that vy, is a residual of a redex v* C sj generated by vg—;. By Lemma 3.2, ES(vy, s) implies
ES(v*, sg). By the induction assumption, u,,_, is essential and unk_lévk_l. Let | = ng—1 + 1.
By Corollary 3.4, there is an essential redex w* C t; generated by u,,_, that is essentially similar
to v*. Hence at least one essential residual of w* is contracted in P, i.e., there is a number n,, such
that un,, is an essential residual of w*. Thus ES(uy,,,ts,,) and, by Lemma 3.11, unmévm. Hence
n; can be constructed for each ¢ < |Q|. Since Q is innermost essential, any essential redex in s; has
at most one residual contracted in Q. Hence, i # j implies n; # n; and this completes the proof.

Thus, one can construct optimal sequential normalizing reductions in uniformly persistent CRSs.
For PCRSs in general, sharing of redexes of “the same origin” [14] is necessary. For example,
one can check that all normalizing reductions starting from a term oz f(z) in the following PCRS
R = {0aA — (eaA/a)A,caA — (taA/a)A, f(A) — g(A, A)} must contract two copies of at least
one generated redex. Optimal implementation of PCRSs is possible in the framework of Interaction
Systems [2].

7. FURTHER WORK

We believe that the Essential Similarity Lemma can be generalized to the case of the A-calculus.
The replaced subterms must be independent: a subterm is independent if it is free and remains free
under any reduction; moreover, redex creation is not possible inside an independent subterm during
contraction of a redexes outside it. In this case, independent subterms are indeed independent in
the sense that their computation can be made in parallel.

One can also define a class of constructor CRSs (pattern-matching definitions) that are persistent
and enjoy the decidability of weak normalization.

Forthcoming papers will be devoted to a classification of OCRSs based on the patterns of redex
creation and to a study of normalization and perpetuality behaviour in several subclasses. In this
context, it is interesting to investigate whether inside creating systems, where each created redex
is inside the contractum of the creating redex, have full computational power. In inside-creating
systems, all outermost redexes are essential and independent, hence any outside-in strategy is
normalizing and non-overlapping redexes can be computed independently.
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