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1. INTRODUCTION

In 1927, Kermack and McKendrick published a contribution to the mathematical theory of epidemics
in which they considered the following situation:

1. a single infection triggers an antonomous process within the host (i.e., they look at ‘microparasites’ and
not at ‘macroparasites’); :

. the disease results in either complete immunity or death;

. contacts are according to the law of mass-action;

. all individuals are equally susceptible;

the population is closed, i.e. at the time-scale of disease transmission the inflow of new susceptibles into

the population is negligible;

6. the population size is large enough to warrant a deterministic description.

oV B W

The aim of this paper is to first very briefly review the results of Kermack and McKendrick and then

to give an overview of some new issues which have received a lot of attention more recently, to wit

- more complicated dynamics (relaxing 5)

- heterogeneity (relaxing 4)

- submodels, in particular for the contact process (relaxing 3)
while staying within the deterministic setting (i.e. retaining 6, although we will make one or two remarks
on the difficulty of defining the ‘border’ between those situations where a deterministic model makes sense
and those where it does not). We will not consider partial and/or temporary immunity (Anderson and May
(1991)), nor say anything about models for macroparasites (see Kretzschmar and Adler (1993) for a com-
parison of different approaches and Roberts, Smith and Grenfell (1993) for a recent review; see also Dobson,
this volume ). For a general introduction to modelling infectious diseases, especially those incorporating

vertical transmission, consult Busenberg and Cooke (1993).
Admittedly, the overview will be strongly biassed by personal interest and knowledge. At the positive
side of this we want to acknowledge the pleasant cooperation over several years with M.C.M. de Jong and

M. Kretzschmar which has contributed a lot to any insight we might have.

2. INVASION, TIME COURSE AND FINAL SIZE ACCORDING TO KERMACK AND MCKENDRICK

The assumptions listed in section 1 directly lead to the integral equation
S(t) = S(®) / A(r)8(t - 7)dr, (2.1)
]

where S(t) denotes the (spatial) density of susceptibles (i.e., number of individuals per unit area) at time ¢
and where, by definition,

A(7) = expected infectivity of an individual that became infected 7 units of time ago. (2.2)

In order to understand equation (2.1) one has just to realise that, by the closedness of the population,
—8(t) is precisely the incidence at time ¢, so —-S’(t — 1) is the number of individuals arising per unit of time

who at time ¢ have been infected for 7 time-units.
At this point we make a short digression. Even though it has been emphasised repeatedly that Kermack

and McKendrick deal with the case of a general time-kernel A(7) for mfectlwty, most people keep referring
to the system of ordinary differential equations

5(t) = -BS()I(t) (2.3)
I(t) = BS()I(t) — 7I(t)
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as the Kermack and McKendrick model. This should stop!* Note that (2.3) is derived from the special case

A(r)=pe™ ™ (2.4)
by defining I(t) := fo A(P)S(t - 1)dr = f A(t — 7)8(r)dr and dlﬂ’erentlatmg In conclusion of
our digression, we pa.ss on the observation of Kﬁms Dietz that already in 1917, in a neglected paper, Ross

and Hudson (1917) discussed a model where infectivity can be a general function of the time elapsed since
infection took place (and, incidentally, also discuss (2.3) with differential mortality). Although Kermack &
McKendrick were the first to give a detailed analysis of such a model, they were clearly influenced by Ross
and Hudson (see Aitchison & Watson (1988)). The spirit of the Kermack and McKendrick and Ross-Hudson
papers is very much one of generality. Their aim is to analyse large classes of models in one go. In recent
years, a trend in the opposite direction can be discerned, leading to page after page on the analysis of the
umpteenth variant of model 448*, without any more extensive insights or methods coming to the fore (see
Hethcote (1993) for a critique of this phenomenon).

The definition of A(7) as an ezpected infectivity emphasises that some heterogeneity, viz. variability
in infectivity, is already incorporated. Indeed, one should always realise that even deterministic models are
built from stochastic considerations at the individual level. Sometimes it is clear how to take averages and
sometimes, as we will see below, it is less clear or even not clear at all.

To illustrate this remark we recall the usual interpretation of (2.3): individuals are infected for an

exponentially distributed period of time (with exponent 7) and have a constant infectivity 8. Hence
i) = [~ awose, @)

where f(£) = ve~7¢ and A(7,£) = B when 7 < ¢ and A(7,§) = 0 when 7 > £. So here the ‘type’ {
of individuals refers to the length of their period of infectivity. In this manner any compartmental model
(indicated as some finite sequence of characters from {S, E, I, R}) for a closed population may be reduced
to (2.1) with an appropriate kernel A4, (see Metz (1978)).

Kermack and McKendrick derive an invasion criterion and the equation for the final size of the epidemic
in the general setting of (2.1) and they obtain more detailed information about the time course of the

epidemic for the special case described by (2.3).
The invasion criterion is based on the linearisation in which at the right hand side of (2.1), 5(¢) is

replaced by Sy, the density of the population at the start of the epidemic with everyone susceptible. The
linearised equation has a solution $(t) = ce™ with » > 0 if and only if Ry > 1 where, by definition,

Ro =50 /o ” A(r)dr. (2.6)

Hence, Ry can be interpreted as the expected number of secondary cases produced by one typical primary
case and it describes the growth of the epidemic in the initial phase on a generation basis. In the same vein
r, the real root of the characteristic equation

1=25, /0 m A(r)e~""dr (2.7)

describes the ‘real-time’ growth in the initial phase. The positivity of A guarantees the equivalence

Ry>1&r>0 (2.8)

* The often heard ‘excuse’ for only citing but not reading the Kermack and McKendrick papers, i.e. that
it is difficult to obtain them, can no longer be upheld due to the recent reprinting in Bulletin Math. Biol.

53: 33-55, 57- 87 and 89-118, (1991).
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but one should note that, if one compares different kernels, the ordering of the Ry-values does not necessarily
correspond to the ordering of the r-values (early or late ‘reproduction’ does not matter for Ry but it does
matter for r). Anyhow, the invasion criterion clearly is By > 1.

The invasion criterion is actunally very often used negatively, viz. as an eradication/elimination cri-
terion*: whether or not a certain control measure (e.g. a vaccination programme) is strong enough to
eradicate/eliminate the disease is determined by whether or not it is capable of reducing the value of the net
reproduction ratio R to below 1. Incidentally, we remark that explicit expressions for R may be helpful in
suggesting which component(s) of the transmission cycle are most sensitive to control measures. See Dietz

(1993) for a more elaborate discussion.
Dividing (2.1) by S(¢) and integrating we obtain

S(t)
In T

- /0 " A(r){S(t — 1) — So}dr (2.9)

and subsequently a limit argument yields the final size equation

S(c0) S(oo)

5 -1) (2.10)

In

= Ry(

which can easily be analysed graphically (here we are concentrating on a negligibly small inoculum; a more
elaborate presentation of the arguments involved can be found in Metz and Diekmann (1986), section IV.4.1).

The outcome is most conveniently presented pictorially as in figure 1.
Concerning the time course of the epidemic when (2.3) is used, the density of infecteds reaches its peak

value when S = . This can be seen directly from the second equation of (2.3).

3. THE PROBLEM OF ENDEMICITY

In 1932 and 1933, Kermack and McKendrick {1932,1933) addressed the problems that arise when one
relaxes assumption 5 that the population is closed, and assumption 2 of permanent immunity. Here, possibly
by the nature of the problem and by the lack of computers, they did not arive at such clear conclusions.

What type of model is appropriate depends on the time-scale

1. of disease transmission;
2. of population turnover (demography);
3. which interests us.
First of all one has to decide whether one takes the rate at which newborns are added to the population

a. constant
or

b. (linearly) related to population size.
In case a, demography influences the disease dynamics but not really vice versa, whereas in case b one can
study the regulation problem: can an infectious agent control the size of its host population? Anderson and
May called attention to this regulation problem in influential papers in 1978 and 1979.

Before briefly listing the typical results for cases a and b, we want to emphasise a problem which is,

in our opinion, not understood at all: when can we expect repeated outbreaks (i.e. epidemics separated by

* One can argue whether or not a new symbol should be introduced in the case of a population that is not
wholly susceptible because some control measures have been applied. One could denote the corresponding
net reproduction ratio by R. However, from a mathematical point of view, Ry and R are reproduction
ratios calculated in precisely the same manner, the only difference being that the virgin and the controlled
populations differ in density of susceptibles at the moment of invasion. Under the assumptions in this section
R= %Ro, where §/Sy is the fraction of the population that is actually susceptible.
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disease free periods, e.g. measles in Iceland) and when an endemic situation? Here we touch upon the
difficulty that deterministic dynamics may lead to a situation where the deterministic approximation ceases
to be meaningful (the ‘atto-fox’ of D. Mollison (1991)). If we draw the somewhat symbolic picture in figure
2, we can distinguish three types of stochastic aspects:

1. At the introduction of the infectious agent the possibility of a minor outbreak exists, but if a major
outbreak starts off then the deterministic description applies.

2. If population turnover is slow relative to disease transmission, we reach almost the final size situation
of the closed epidemic before the gradual inflow of new susceptibles has any effect. In this situation,
there are very few infecteds and the density of susceptibles is of the order of Spe~°, which is far below
threshold. It will take a long time before the density is above threshold again, and during this period
demographic stochasticity may easily lead to the extinction of the infectious agent. But when and how
to switch to a stochastic model?

3. Even if the infective agent escapes extinction after the first outbreak and becomes established, there is
still the possibility of extinction as a result of chance fluctuations. Relevant questions are: what is the
expected time until extinction if we are currently in the ‘endemic’ regime? (See Nasell, this volume);
what is the expected total number of cases during that time?

A general feeling is that the possibility of extinction due to demographic stochasticity is strongly enhanced
if the deterministic dynamics is characterised by oscillations, rather than by a stable endemic steady state.

Bartlett (1960), Dietz & Schenzle (1985) and others mainly concentrate on 3. The distinction between
2 and 3 is also mentioned in passing as epidemic fade-out versus endemic fade-out in the book by Anderson
and May (1991, p. 20). The notion of a critical community size (Bartlett (1960), Dietz (1982), Schenzle
and Dietz (1987)) seems to come in for two reasons. The first is that Ne™ % may still be reasonably large
if the total population size N is large (a low density over a large domain may yield an appreciable number).
The second is that the geographical distribution by itself may necessitate a reconsideration of the process
of disease transmission. If local epidemics are out of phase, then the proneness to extinction may be much
smaller (cf. metapopulation models in ecology, Gilpin and Hanski (1991)). See Grenfell (this volume) for
this aspect and others, related to age structure, of the fade-out phenomenon in the context of measles.
Concerning 2, see Rand and Wilson (1991) for other aspects.

Let us now consider case a where the birthrate is assumed to be a constant. Basic issues are the
existence, uniqueness, representation and stability of endemic steady states. The representation is important
when one wants to use estimates of endemic levels for parameter estimation (cf. Hasibeder, this volume).
Stability has both a local aspect (where do the roots of the characteristic equation lie?) and a global aspect
(e.g. can we find a Lyapunov function?). See e.g. Hethcote (1976), Bailey (1975). The generic picture that
emerges is that there exists a (unique) steady state if and only if Ry > 1 (but see section 5 below). Recent
issues are: if the steady state is unstable, what sort of dynamics can we expect? Periodic oscillations or
chaos?; if contact rates are periodic (seasons, school system) then how are the periods of the solutions related
to the driving period? For results in this line we refer to Smith (1983), Aron and Schwarz (1984), Dietz
(1976), Kuznetsov and Piccardi (1992), Schenzle (1984), Schwarz (1985, 1988), Schaffer (1985), Hethcote
and Levin (1989) and Grenfell, this volume.

The regulation case b is characterised by the existence of multiple thresholds if there is differential
mortality. Typically we find four regimes for a contact rate parameter according to the following types of
dynamic behaviour:

- the infectious agent dies out;
- the infectious agent grows exponentially, but at a slower rate than the host population (the dilution
effect is that the proportion of infecteds in the population goes to zero);
- host and infectious agent grow at the same rate, which is reduced relative to the host growth rate in
the disease free situation;
- either the common growth rate is negative or a steady state obtains, depending on how exactly one
models the contact rate (strictly homogeneous or only asymptotically homogeneous).
For this type of result see Anderson (1979), Diekmann and Kretzschmar (1991), Busenberg and Van den
Driessche (1990), Busenberg and Hadeler (1990), Anderson and May ( 1991), Thieme (1992) and Mena-Lorca
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and Hethcote (1992).
Results become more subtle when one allows for the interaction of disease effects with other density

dependent effects. This area currently receives much atiention, see, e.g., Brauer (1990), Pugliese (1990),
Greenhalgh (1992a,b), Greenhalgh and Das (1992) and Gao and Hethcote (1992), but we feel that time-scale
aspects deserve more prominence (see Andreasen (1989, 1992a,b)). For a recent general approach to SIS

density-dependent models, see Zhou and Hethcote (1993).
The following table summarises our classification of aspects of infectious-disease dynamics.

invasion/elimination
closed population { time course

final size
repeated outbreaks

steady state
‘endemic situation { periodic oscillations

chaos
independent growth

feedback to demography { partial regulation: reduced growth of host
regulation.

4. HETEROGENEITY

Suppose that not all individuals are equally susceptible, but that certain traits (e.g. age, gender or
whether or not one suffers from a sexually transmitted disease causing ulcers, when we consider HIV trans-
mission) have a marked influence. Of course one then has to specify these traits, their dynamics and their
frequency in the susceptible population. Having done that, one question is: can we average and if so, how
to do it?

In order to have a common formulation for both static and dynamic traits it is most convenient to
parametrise by the trait an individual has at the moment it becomes infected (we will also write ‘at birth’).

Let now A be a function of three variables defined by

A(r,€,m) = the expected infectivity of an individual that was infected r units of time ago (@1)

while having trait value n towards a susceptible with trait value ¢

then exactly the same reasoning which led to (2.1) yields, in the case of a closed population,
85 [ [~ ', 08
Buo=s6e [ [~ amenge—rndrdr (4.2
nJo :

where Q denotes the set of trait values. So the structure remains essentially the same as in (2.1), but the way
to proceed is slightly more involved. We have to deal with distributed quantities and replace straightforward
multiplication by an operator mapping a function onto a new function. The linearised version of (4.2) has a

solution of the form %‘?—(t,f ) = (£)e> if and only if ¥() is an eigenvector of the operator K defined by

(Bxd)(€) = So(€) L /o ™ Alr,&,n)e=>"drg(n)dn (4.3)

(here Sy(-) is the demographic steady state at the start of the epidemic). Note that Ky is the nezt-generation
operator corresponding to the linearisation. This means that, given a generation of infecteds distributed as
¢ with respect to trait value at birth and of size Jo #(n)dn, the function K¢ describes both the size and
the distribution of the next generation. The positivity of A guarantees that K, is a positive operator on
Ly(2), the space of integrable functions, and under appropriate minor extra conditions (minor in the sense
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that they will generally be fulfilled in practical situations) one can conclude that Ky has a strictly dominant
eigenvalue Ry. We can rightfully identify this eigenvalue with Ry since, under those minor extra conditions,

we have the asymptotic relation
Kyo ~ R30(¢)¢d, n — 00, (4'4)

where c(¢) is a scalar depending on the initial generation, and ¢4 the eigenvector corresponding to Ry. So, if
we iterate the next-generation operator, the distribution of infected individuals over all trait values stabilises
to the form described by ¢4, while numbers are multiplied by Ry from generation to generation. In other
words, ¢4 describes the distribution of the ‘typical’ infected individual and Rp is the number of secondary
cases. With the normalisation [, ¢a(n)dn = 1, the eigenvector has the interpretation of a probability
distribution for the trait value at the moment of infection.

Remark: In the host-vector case, the population can be divided into two subpopulations which do not
communicate internally and hence transmission has a well-defined cycle (of length two). The next-generation
matrix then has the anti-diagonal structure

_— 0 Khv
%= (a 57)

and Ry = *\/Ad(K hoKon) = \/)\d(thK;w), where Aq{M) denotes the dominant eigenvalue of the (positive)
matrix M. In this case it is, in the biological literature, more usual to choose R2 for the quantity one calls
Ry, in particular since B2 admits a more direct interpretation, as the host-to-host (and vector-to-vector)
multiplication factor. Useful as this may seem, one should realise that such a choice can lead to a proliferation
of Ry’s (think for example of two loosely coupled groups, where one can define Ry'? (‘return-in-group’) as
the number of first offspring in ones own group, i.e. the sum of the cases in ones own group produced either
directly or indirectly via an arbitrarily long transmission chain in the other group). We therefore sympathise
with Hasibeder’s suggestion (Hasibeder, this volume) to use the notation R§ for the dominant eigenvalue of
the iterated next-generation matrix in the case of a well-defined transmission cycle.

In the heterogeneous case we have, as before, the equivalence
Ry>1er>0 (4.5)

where now r is defined as the (real) value of X for which K has dominant eigenvalue one, ie. r is the
‘real-time’ growth rate (in contrast to the homogeneous case, the proof of the equivalence requires some
work, see Heesterbeek (1992) for one possible proof).

Here a cautionary remark is in order. We have to worry about how irreducible the kernel A and how
dominant r really is before we can rightfully conclude that the epidemic grows as e™ in real time. For
instance, when we consider a very large spatial domain, then the speed of the epidemic is not described
by r but rather by the asymptotic speed of propagation co (see Metz and van den Bosch, this volume). In
this connection we also mention that the Perron root of Ky (which is in a certain way a measure of local
changes; see Jagers (1992), Shurenkov (1992)) and the spectral radius Ry (which is more concerned with
total growth) may differ when the epidemic drifts off towards infinity while growing (e.g. think of a focus
of a fungal plant disease in a field of wheat where the spread of the epidemic can be heavily influenced by
a strong prevailing wind direction). In the theory of branching processes r, there usually referred to as the
Malthusian parameter, recently has become associated with the Perron root rather than the spectral radius,
see Jagers (1992), Shurenkov (1992), Taib (1992). However, the two notions can only lead to different results
for non-compact trait spaces (Shurenkov (1992)). As another example, consider two very loosely coupled
subpopulations, one small but highly active and one big with low activity. Then it may very well be that
the nonlinearity comes into play in the small group before enough time has elapsed for the stable invasion
distribution to be attained.

Anyhow, concerning the invasion/elimination criterion we can conclude that there is a systematic way
of performing the right averaging: compute the dominant eigenvalue Ry (R) of the next-generation operator
and compare it with 1. This still leaves us with important basic problems:




- how to express the kernel A in terms of ingredients of submodels for the contact- and transmission
process?
- how to actually compute Ry (R) for a given kernel A?

We refer to Heesterbeek (1992), Diekmann, Heesterbeek and Metz (1990) and Diekmann (1991a,b) and
the references therein for various results in this direction. In De Jong, Diekmann and Heesterbeek (1993a)
an algorithm is given to compute the elements of the next-generation matrix for discrete-time multigroup
models where the individuals are allowed to change their ‘type’. Dietz (1993) gives a survey of various
methods to estimate reproduction ratios.

The final size equation for the closed population takes the form

S(.8) _ [ [T atr (S(oo ) —
In AGEE /n /o A(r,§,m)dr(S(o0,m) — So(n))dn (4.6)

and has, in particular when £ is a discrete variable, been studied by Radcliffe and Rass (1984) (see also
Diekmann (1978), Thieme (1977a)). One can easily show that a nontrivial positive solution exists if and only
if Rp > 1, but apart from that very little can be said in any generality. The nonlinearity is an obstruction for
a further simplification of (4.6), the problem remains higher-, usually even infinite-, dimensional and cannot
be summarised in terms of one or two numbers as in the case of the invasion problem.

In heterogeneous populations, the invasion/elimination problem is the only part of the classification
table in section 3 that has been addressed in some generality. As far as the other aspects listed in that
table are concerned, results are only available for special kinds of structure. There are many results on
age-structured models, on spatial structure and on models incorporating a finite number of groups. While
not at all claiming to list all important contributions, we mention a few papers that tackle aspects of table 3
in heterogeneous populations. For a recent review of models for periodic outbreaks see Hethcote and Levin
(1989) and Liu (1992). For the endemic equilibrium see for example Hethcote and Yorke (1984), Lajmanovich
and Yorke (1976), Lin and So (1990), Busenberg and Van den Driessche (1992), Hethcote and Thieme (1985)
and Beretta and Capasso (1986) in the case of a finite number of individual types, and Busenberg, Iannelli
and Thieme (1991), Greenhalgh (1988) and Inaba (1990) in the case of age structure. For the interaction
with demography see for example Busenberg, Cooke and Thieme (1991) for multigroup models, and May,
Anderson and McLean (1988a,b), Tuljapurkar and John (1991) for age structured models.

5. SUBMODELS FOR THE CONTACT PROCESS

What exactly constitutes a ‘contact’ depends on the disease being modelled. For example, for sexually
transmitted diseases contacts take place at two levels (partners and sexual contacts within partnerships),
and for some host-vector diseases a different type of contact is involved for the two transmission steps. Even
if contacts are symmetric, the transmission probability, given contact, need not be so.

Disregarding heterogeneity for a moment, a first question is how many contacts an individual makes as
a function of population size. (Here we have to carefully distinguish between the cases where our variables
describe numbers and where they describe (spatial) densities (see De Jong, Diekmann and Heesterbeek
(1993b) for a discussion of both theoretical arguments and experimental results concerning this point); in
this paper we consistently work with densities.) This is the functional response question from predator-prey
ecology, but now in an epidemic context. The following approaches have been taken:

a.) mass-action: the per capita number of contacts per unit of time is a linear function of density;
b.) saturation: the linear function is replaced by i_—‘l’_%,— as a convenient phenomenological description without

mechanistic underpinning (see Dietz (1982));
c.) extreme saturation: the linear function is replaced by a constant. Even though this does not make sense
at extremely low densities, it seems a reasonable assumption for, e.g., sexual contacts or blood meals

taken by mosquitoes;
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d.) Holling squared: In Heesterbeek and Metz (1993) a submodel for the contact process is considered
for pair formation at a short time-scale, together with a quasi-steady-state assumption to derive the
functional response in much the same way as one derives the famous Holling disc expression of b) above
from a submodel of prey search and handling by a predator. In the simplest situation the argument
works as follows. Let z denote the (local spatial) density of ‘free’ individuals and let ¢ denote the density
of pairs of individuals involved in a contact. One assumes that there are constants p and o, respectively
the contact rate parameter and the inverse of the average duration of contacts, such that

. —pz? + 20¢
dt

de (5.1)
dt

1
= -2—;):1:2 —oc.

Solving the steady state equations of (5.1) under the constraint that = + 2¢ = n, one obtains for the

number of contacts per individual per unit of time f%:, the expression

2
e (5.2)
1+2pnfo ++/1+4pn/c

which behaves like 2pn for small densities n, while approaching the limit ¢ for n — co.

If we add heterogeneity again, matters quickly get complicated. The approach d) still works but usually
no longer leads to explicit expressions (for several possible ‘next steps’, e.g. numerical integration, this need
not trouble us too much).

When one has a constant functional response, as in c), strange things may happen since the reduction
of the size of some groups may increase the infective ‘pressure’ on an other group. Indeed, Huang, Cooke,
Castillo-Chavez (1992) showed by way of example that one may have a bifurcation diagram as sketched
in figure 3, where there is bistability for Ry < 1 (see Jacquez, Simon and Koopman, this volume, for a
related phenomenon: Ry of the whole population may increase when some subpopulation reduces its contact
intensity with another group, if one works with a constant functional response).

In addition, we have to face the consistency problem: the total number of contacts (per unmit of time)
of all individuals of type £ with all individuals of type 1 has to be equal to the same quantity with £ and g
interchanged. This is automatically satisfied for the extended version of (5.1) and for the mass-action type
selective mixing of Morris, this volume, but has to be achieved by a suitable choice of mixing pattern in the
case c) of a constant functional response. In Busenberg and Castillo-Chavez (1991) all possibilities have been
classified. In this purely descriptive approach, the free parameters have no clear interpretation. Other authors
like Sattenspiel (1987), Sattenspiel and Castillo-Chavez (1990), and Jacquez et al. (1988) have introduced
submodels which allow somewhat more of a mechanistic interpretation. However, the matching of supply
and demand by a market mechanism incorporating preferences remains a difficult problem in combinatorial
sociology. Of course, the acquisition and analysis of actual data adds another difficult component to this
problem (see Morris, this volume).

Another special case is when an individual is either single or paired to one other individual, where pairs
remain together for a substantial period of time (as opposed to the short time-scale pairing of d) above)
which however may not cover the entire period of infectiousness (as opposed to the long time-scale bonds
described in the previous paragraph), and where partnerships are formed at random. One can again derive
a next-generation operator which has a dominant eigenvalue deserving the name Ry. This is explained in
detail in Diekmann, Dietz and Heesterbeek (1991) and used in Dietz, Heesterbeek and Tudor (1993) to
analyse, among other things, the effect that ‘wasted’ contacts (i.e. contacts between two infected partners)
have on the value of Ry. An annoying feature of the comparison of various members of a family of models
with each other, that arises here (and elsewhere), is that it is not directly obvious how to gauge the models

in order to make them comparable in the first place.
A final question concerning the contact process is the following: is the deterministic limit meaningful?

Clearly when individuals interact only with their nearest neighbours on a spatial lattice, the answer is no and
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one has to turn to cellular automata (or interacting particle systems, in another jargon; see Durret and Levin
(1992) for a nice overview; also see Mollison, this volume, and Durret, this volume). If the neighbourhood
structure has no regularity, but still individuals interact only with a fixed group of others, at least for some
period of time, one is considering an epidemic on a random graph, see Blanchard, Bolz and Kriiger (1990).
However, very little headway with such models has been made on a general level.

6. FINAL REMARKS

Differences in behaviour necessitate subtle ways of averaging. In the linearisation appropriate for the
initial phase of an epidemic one can do this in quite some generality and arrive at one or two numbers (R
and r or ¢o (the asymptotic speed of spatial propagation, see Metz and van den Bosch, this volume)) to
describe the dynamics. Things are far less clear for other aspects of the dynamics, such as the final size of
an epidemic, the ‘size’ and stability of an endemic steady state, the growth rate reduction in the ‘regulation’
setting. Here we need clever case studies, where ‘clever’ means that one has to consider simplifications which
are not too unrealistic while making the problem tractable.

In addition there is a need for quasi-mechanistic submodels especially for the contact process, dealing
with such issues as handling time, satiation, virus transport by aerosols, modes of spore dispersal, lining up
of seals on a sandbank, etc. (The last example illustrates a further difficulty in the modelling of contact
rates: when numbers go down, the effective density may stay constant since the nearest neighbour distances
remain roughly the same.)

We have to contemplate what is the time-scale of the various processes that we are combining into one
model, in order to decide what should be considered as constant and what as variable on the time-scale that
we focus on (see Andreasen (1992a,b) for a nice example of the power that the exploitation of differences in
time-scale may have).

We reiterate that the border between stochastic and deterministic phases of the dynamics of disease is
hard to define or to determine, yet is very relevant to our overall understanding.

In modelling one can either use a top-down approach, where one starts to build a general abstract
framework and then gradually gives a more concrete specification of various ingredients, or a bottom-up
approach, where one first concentrates on the data concerning a specific disease in a given population and
then gradually tries to describe and analyse the essential mechanisms and phenomena. Ry and ¢p are among
the success-stories of the top-down approach, the current understanding of measles dynamics illustrates the
potential power of the bottom-up approach. Although we classify ourselves as ‘top-down’ people, and have
written this paper in a top-down spirit, we think that both approaches should be followed. A chain of people
with partially overlapping interests and knowledge should bridge the gap between the two starting points by
striving for unity in the formulation of mathematical models and the type of data that are collected. The
Cambridge workshop was an excellent catalyst for the formation of such chains.

After these somewhat pedantic remarks we like to close with paraphrasing Simon Levin’s observation
during the conference dinner:

“to are or to Ro, that was the question.”
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